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ABSTRACT
Surface hopping (SH) is a popular mixed quantum-classical method for modeling nonadiabatic excited state processes in molecules and
condensed phase materials. The method is simple, efficient, and easy to implement, but the use of classical and independent nuclear trajec-
tories introduces an overcoherence in the electronic density matrix which, if ignored, often leads to spurious results, such as overestimated
reaction rates. Several methods have been proposed to incorporate decoherence into SH simulations, but a lack of insightful benchmarks
makes their relative accuracy unknown. Herein, we run numerical simulations of common coherence-corrected SH methods including
Truhlar’s decay-of-mixing (DOM) and Subotnik’s augmented SH using a Donor-bridge-Acceptor (DbA) model system. Numerical simu-
lations are carried out in the superexchange regime, where charge transfer proceeds from a donor to an acceptor as a result of donor-bridge
and bridge-acceptor couplings. The computed donor-to-acceptor reaction rates are compared to the reference Marcus theory results. For
the DbA model under consideration, augmented SH recovers Marcus theory with quantitative accuracy, whereas DOM is only qualita-
tively accurate depending on whether predefined parameters in the decoherence rate are chosen wisely. We propose a general method for
parameterizing the decoherence rate in the DOM method, which improves the method’s reaction rates and presumably increases its transfer-
ability. Overall, the decoherence method of choice must be chosen with great care and this work provides insight using an exactly solvable
model.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5092999

I. INTRODUCTION

Surface hopping (SH)1 is a mixed quantum-classical method
that is used for modeling nonadiabatic excited state processes
in molecules and condensed-phase materials.2–10 Its underlying
approximation is the representation of a nuclear wavepacket as
a swarm of independent and classical nuclear trajectories. The
method’s popularity is leveraged by its efficiency and ease of
implementation, but the classical description of nuclei introduces

well-known setbacks including lack of nuclear tunneling, lack of
zero-point energy, and overcoherence. Decoherence is the process
by which nuclear wavepackets on different potential energy surfaces
decouple and move independently. In surface hopping, the elec-
tronic wavefunction is integrated coherently along every (indepen-
dent) trajectory, resulting in an overcoherence between electronic
states.11 Long-time dynamics12 and systems with several regions of
nonadiabatic coupling13 are susceptible to spurious results without
the inclusion of decoherence. From the perspective of excited state

J. Chem. Phys. 150, 194104 (2019); doi: 10.1063/1.5092999 150, 194104-1

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.5092999
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5092999
https://crossmark.crossref.org/dialog/?doi=10.1063/1.5092999&domain=aip.scitation.org&date_stamp=2019-May-16
https://doi.org/10.1063/1.5092999
https://orcid.org/0000-0002-2964-1923
https://orcid.org/0000-0002-6169-7687
https://orcid.org/0000-0001-5547-3647
https://orcid.org/0000-0002-5140-7500
mailto:prezhdo@usc.edu
https://doi.org/10.1063/1.5092999


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

relaxation, decoherence is particularly important when wavepacket
separation is faster than the time needed to stabilize a coherent
electronic transition; this depends on the electronic manifold in
which relaxation occurs. For systems with a quasicontinuum of
electronic states, decoherence may not be so important as a high
density of states facilitates fast electronic transitions.14,15 By con-
trast, well-separated energy levels and localized states result in much
slower relaxation. This effect is seen for the electron-hole recombi-
nation across the bandgap in quantum-confined materials such as
quantum-dots and carbon nanotubes.16,17 Neglecting decoherence
in these materials leads to underestimating dephasing time scales by
several orders of magnitude.

There are a number of proposed methods that incorporate
decoherence into surface hopping simulations.18–26 The vast major-
ity can be boiled down to defining a decay rate indicative of
wavepacket separation. Yet even a simple collapse approach of the
electronic wavefunction has been applied to calculate transition rates
in a spin-boson model, which has proven successful in recovering
the correct quadratic-scaling in diabatic coupling.27 The decoher-
ence time scale has also been estimated using a Gaussian wavepacket
approximation with width given by the thermal de Broglie wave-
length.24–26,28 A more mathematically driven method is Augmented
Fewest-Switches Surface Hopping (FSSH) (A-FSSH), which involves
a moment expansion of the Liouville equation that gives rise to
time-dependent uncertainties in nuclear position and momentum.21

These uncertainties are propagated along the nuclear trajectory and
are variables of the collapse rate. A-FSSH recovers Marcus theory29,30

and improves branching ratios in model systems.13,21 A recent study
using a spin-boson model has also found that A-FSSH improves
results compared to exact calculations over a wide range of energetic
and coupling parameters.31 Here, we would like to benchmark the
most popular decoherence methods by calculating their nonadia-
batic charge transfer rates in a Donor-bridge-Acceptor (DbA) model
system whose standard reaction rates are obtainable using Marcus
theory.

In DbA-type systems, charge transfer from a donor to an accep-
tor proceeds through intermediate states called bridges.32 When the
energy gap between the donor and bridge is large relative to the
thermal energy, superexchange theory predicts a tunneling mech-
anism for charge transfer.33–35 Experimental studies have described
electronic tunneling through DNA hairpins36,37 and oligo-p-xylene
bridges.38,39 In such studies, the effect of the tunneling energy gap
is probed by measuring the rate of charge transfer from a donor
to an acceptor as a function of the number of bridging units. The
charge transfer rate exponentially decays as a function of distance,40

and the distance decay constant can be related to an expression for
tunneling through a finite barrier to estimate an effective tunnel-
ing energy gap.41–43 Not surprisingly, experimental evidence shows
that the outcome and efficiency of the tunneling mechanism is
related to the size of the gap. As more DbA systems are predicted,
synthesized, and ultimately used for applications,44,45 it is impor-
tant that the tools of excited state modeling (e.g., surface hop-
ping) correctly describe the superexchange mechanism for charge
transfer.

In this paper, global flux surface hopping (GFSH)46,47 is com-
bined with the following popular decoherence corrections: Truh-
lar’s decay-of-mixing (DOM)48 and Subotnik’s augmented surface
hopping.21 Donor-to-acceptor reaction rates are compared to the

rates computed using Marcus theory.49 This work investigates the
surface hopping description of superexchange for charge trans-
fer and adds to the body of literature31,50–53 aimed at assessing
the reliability of and improving the surface hopping method for
nonadiabatic molecular dynamics. The paper is organized as fol-
lows: Sec. II reviews the overcoherence problem of surface hopping,
Sec. III describes superexchange theory and the superexchange reac-
tion rate given by Marcus theory, and Sec. IV describes the tested
decoherence methods and simulation details, including the DbA
model used for benchmarking. Finally, results of the simulations and
conclusions are provided in Secs. V and VI, respectively.

II. OVERCOHERENCE PROBLEM
OF SURFACE HOPPING

In exact dynamics, the total wavefunction |ψ⟩ can be repre-
sented in terms of coupled electronic and nuclear wavefunctions
through the Born-Oppenheimer expansion54

∣ψ⟩ =∑
i
∣χi⟩∣�i⟩, (1)

where |�i⟩ are adiabatic electronic states determined at fixed nuclear
geometries and |χi⟩ are nuclear states. The electronic density
matrix (σ) is determined by tracing the combined nuclear-electronic
density matrix (|ψ⟩⟨ψ|) over the nuclear degrees of freedom
(R)55

σ =∑
i
∑

j
∫ dR⟨χj∣R⟩⟨R∣χi⟩∣�i⟩⟨�j∣

=∑

i
∑

j
⟨χi∣χj⟩∣�i⟩⟨�j∣. (2)

Equation (2) shows that elements of σ depend on the overlap of
nuclear wavepackets. In the adiabatic representation, diagonal ele-
ments of σ are adiabatic state populations and off diagonal elements
are coherences. Decoherence is related to the reduction of overlap
between nuclear wavepackets on different surfaces, i.e., ⟨χi|χj⟩ → 0
for i ≠ j.

In Surface Hopping (SH), the initially prepared nuclear
wavepacket is represented by a swarm of independent and classical
trajectories. Each trajectory evolves and stochastically hops between
potential energy surfaces according to a hopping algorithm.1,46 The
hopping algorithm depends on the adiabatic state coefficients (ci)
that make up the state

∣ψ⟩ =∑
i
ci∣�i⟩. (3)

The electronic density matrix in surface hopping (σSH) takes the
form

σSH
=∑

i
∑

j
cic∗j ∣�i⟩⟨�j∣. (4)

Equation (4) makes it clear that decoherence must be explicit in
the equation of motion of σ, but the electronic Schrödinger equa-
tion (with classical nuclear positions treated as parameters) does
not have a decoherent term [see the density matrix formulation in
Eq. (10) below]. Thus, in order to recover exact quantum mechanics,
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surface hopping simulations must be supplemented with a decoher-
ence correction.

A play-by-play of coherence-corrected surface hopping is as
follows: A trajectory enters an interaction region, and as a result,
there is an exchange of quantum amplitude, ci, between the interact-
ing states. In this process, the trajectory stochastically hops between
the surfaces and continues doing so until it is outside of the inter-
action region. On account of overcoherence in surface hopping,
even when the trajectory is sufficiently far away from the inter-
action region, there is still nonzero quantum amplitude associated
with states that were previously involved in the interaction but that
are not currently occupied by the trajectory. Instead, the popula-
tion of the occupied electronic state (|�i⟩) should approach unity
(ci = 1) at a rate known as the decoherence rate. The rate (τ−1

ij ) at
which the occupied electronic state decoheres from all other states
(|�j⟩) is the rate at which the overlap of nuclear wavepackets on

different potential energy surfaces decays to zero [⟨χi∣χj⟩
τ−1
ij
Ð→ 0 in

Eq. (2)].

III. SUPEREXCHANGE THEORY AND REACTION
RATES IN DONOR-BRIDGE-ACCEPTOR SYSTEMS

Previous studies have benchmarked surface hopping and deco-
herence methods using exactly solvable scattering models such as
those originally studied by Tully.1,13,21,46 In this work, we focus on
reaction rates using a DbA model that highlights an electronic tun-
neling mechanism ubiquitous in many materials.32 The Hamiltonian
of a DbA model with N bridges is (N + 2) × (N + 2) and can be
written as

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
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⎜

⎝

EDD VDb

VbD Ebb Vbb

Vbb Ebb Vbb

Vbb . . .

. . . Vbb

Vbb Ebb Vbb

Vbb Ebb VbA

VAb EAA

⎞

⎟
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⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

. (5)

Here, the diagonal and off diagonal elements are diabatic energies
and couplings, respectively. The donor and acceptor states are not
explicitly coupled, i.e., VDA = VAD = 0, but electron transfer pro-
ceeds through intermediates. To convey the main pathways, we refer
readers to Fig. 1 showing the Liouville space pathways of the density
matrix for a three-level system in the diabatic representation.34,56,57

Pathway A of Fig. 1 shows the superexchange pathway, with electron
transfer proceeding through coherences without populating bridge
state |2⟩. Pathways B and C of Fig. 1 that pass through state |2⟩’s pop-
ulation are referred to as sequential pathways. Superexchange plays
the dominant role for electron transfer when bridge states are ener-
getically displaced from the donor and acceptor states (i.e., when
bridge states are above the donor and acceptor states by an energy
gap that is greater than kBT).

FIG. 1. Liouville pathways from the donor to the acceptor in the diabatic repre-
sentation. Pathway A is that of superexchange, whereas pathways B and C are
sequential pathways that pass through the population of bridge state |2⟩.

The Marcus theory of electron transfer is the seminal work that
explains reaction rates from a donor to acceptor chemical species.49

In order to obtain the Marcus reaction rate during superexchange,
the indirect coupling between donor-to-acceptor must be known.
In the two-state limit, the energy gap between the surfaces at the
crossing is 2V, where V is diabatic coupling. McConnell derived
the energies of the two lowest symmetric and asymmetric eigen-
states corresponding to the donor and acceptor states, respectively.35

McConnell’s model assumed an aromatic free radical composed
of two phenyl groups, linked together by a series of N methylene
groups. In the limit of ∣Vbb/∆�∣ ≪ 1, the first-order energy gap, g, is
given by

g = −
2V2

Db
∆�

(
Vbb

∆�
)

N−1
, (6)

where VDb = VbA and ∆� is the energy required to remove an elec-
tron from the donor or acceptor orbital and place it in a noninteract-
ing bridge orbital. We will refer to ∆� as the tunneling energy gap.
By deriving the energy gap between a donor and an acceptor, the
(N + 2) × (N + 2) Hamiltonian reduces to an effective 2 × 2 Hamil-
tonian, with direct coupling between a donor and an acceptor given
by g/2. In the presence of a classical bath, the high-temperature limit
reaction rate follows from Marcus theory

kET =
2π
̵h

√

1
4πλkBT

g2

4
exp(

−(λ − �0)
2

4λkBT
), (7)

where λ is the reorganization energy and �0 is the driving force.
Besides the inverted regime and maximum when �0 = λ, the rate
scales as (∆�)−2N . Equation (7) is a product of a number of approxi-
mations including the high-temperature limit and dynamics at ther-
mal equilibrium. The high-temperature approximation is analogous
to taking the classical limit. Similarly, surface hopping assumes clas-
sical nuclei and thus the Marcus rate serves as a decent reference
solution for charge transfer in the DbA model.
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IV. METHODS AND SIMULATION DETAILS
We describe GFSH in Sec. IV A,58 tested decoherence correc-

tions in Sec. IV B, and simulation details in Sec. IV C.

A. Global flux surface hopping
Within GFSH,46,47 the change of adiabatic state population

(∆σii) is calculated at each time step as

∆σii = σii(t + ∆t) − σii(t). (8)

All states are classified into one of the two groups: one with ∆σii < 0
(group A) and another with ∆σii > 0 (group B). Transitions can only
occur from group A to group B, preserving the minimization crite-
rion of Fewest-Switches Surface Hopping (FSSH).1 The probability
of hopping between the surfaces corresponding to states |�i⟩ and
|�j⟩ is given by

gij =
∆σjj
σii

∆σii
∑k∈A ∆σkk

. (9)

The increase in the population of the target state |�j⟩, ∆σjj, may be
attributed to all states assigned to group A. We reduce this quan-
tity to roughly state |�i⟩’s contribution by multiplying ∆σjj with
the change in state |�i⟩’s population relative to the total change
in the population of group A, ∆σii/∑k∈A∆σkk. Finally, the expres-
sion in Eq. (9) is divided by the probability of the current state,
σii, to represent population flux, similar to FSSH. Scattering results
comparing GFSH and exact quantum mechanics are provided in
the supplementary material. GFSH combined with the augmented
decoherence method will be referred to as A-GFSH.

B. Surface hopping dynamics
and decoherence corrections

In surface hopping, nuclear trajectories evolve piecewise on
adiabatic potential energy surfaces. The electronic density matrix (σ)
is integrated with the Liouville-von Neumann equation1

σ̇ ≈ −
i
̵h
[E(RSH

) − i̵hd ⋅ ṘSH,σ], (10)

where E(RSH
) is a diagonal matrix with elements being poten-

tial energy surfaces calculated at fixed nuclear geometries (RSH),
ṘSH is the velocity of the nuclear trajectory, and d is the nona-
diabatic coupling matrix. Electronic transitions between surfaces
occur according to the GFSH algorithm given by Eq. (9). Follow-
ing a successful hop, the velocity is rescaled along the direction
of nonadiabatic coupling. Transitions that are directed upward in
energy are rejected if the dispensable kinetic energy does not exceed
the energy barrier (also known as frustrated hops). We choose to
reverse the nuclear velocity following frustrated hops. In model sys-
tems, in which nuclear dynamics are coupled to an implicit bath,
reversing the nuclear velocity after frustrated hops leads to reaction
rates that are in good agreement with Marcus theory59 and ther-
mal populations that are in good agreement with the Boltzmann
populations.60

1. Truhlar’s decay-of-mixing
The electronic density matrix is integrated with coherent (c)

and decoherent (d) contributions48

σ̇ = σ̇coherent + σ̇decoherent. (11)

The first term is computed with Eq. (10). The form of the second
term is derived from several assumptions such as the electronic state
population σkk for k ≠ K (where K is the current state) decays to zero
at a rate of 1/τkK , i.e.,

σ̇dkk = −
σkk
τkK

(k ≠ K). (12)

The other conditions used to obtain the time-domain equations
for all elements of σd are conservation of electronic population,
∑k σ̇kk = 0, and conservation of phase angle (θ) in ck = ∣ck∣ exp(iθ).
Reference 61 provides a detailed derivation and the explicit form of
σd.

The expression for the decoherence rate is given by62

τ−1
ij ∼

∣Ei − Ej∣
̵h

⎛

⎜
⎜

⎝

2mE0

(PSH
⋅ d̂ij)

2 + C
⎞

⎟
⎟

⎠

−1

, (13)

where PSH
⋅ d̂ij is the nuclear momentum in the direction of nonadi-

abatic coupling and C = 1 and E0 = 0.1 a.u. (atomic units) are empir-
ical parameters chosen based on numerical testing.62 Equation (13)
is an ad hoc expression that assumes decoherence does not occur if
the momentum in the direction of nonadiabatic coupling is insuf-

ficient to support energy transfer [i.e., τ−1
ij ∼ (PSH

⋅ d̂ij)
2
/2m when

PSH
⋅ d̂ij → 0]. Additionally, the decoherence time must be greater

than or equal to the shortest electronic time (i.e., τ−1
ij ≤ ∣Ei − Ej∣/̵h).63

2. Decay-of-mixing dephasing-informed
A drawback of the original decay-of-mixing method (Sec. IV

B 1) is a decoherence rate that depends on predefined parameters.
Unfortunately, this may limit the method’s transferability to systems
that differ from those used for fitting. Here, we show a plausible
improvement of decay-of-mixing that may overcome this problem.
On the basis of Eq. (13), the general form of the decoherence rate
is

τ−1
ij ∼ α∣Ei − Ej∣, (14)

where α is an unknown parameter. Equation (14) eliminates explicit
dependence on the kinetic energy [Eq. (13)] for simplicity. We pro-
pose an ensemble averaged α, α ∼ ⟨τ−1

ij ⟩/⟨∣Ei − Ej∣⟩, where ⟨. . .⟩
denotes statistical mechanical averaging. The ensemble averaged
decoherence rate, ⟨τ−1

ij ⟩, can be estimated by the decay rate of the
pure-dephasing function64

Dij(t) = exp(−gij(t)), (15a)

gij(t) = ∫
t

0
dτ2 ∫

τ2

0
dτ1Rij(τ1 − τ2), (15b)

Rij(t) =
1
̵h2 ⟨δ∆Eij(t)δ∆Eij(0)⟩, (15c)

δ∆Eij = Ej − Ei − (⟨Ej⟩ − ⟨Ei⟩), (15d)
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where gij(t) is approximated up to second order in the cumulant
expansion and Rij(t) is the autocorrelation function of the energy
gap fluctuation (δ∆Eij). Quantum correlation functions are gener-
ally complex, but in the present case, classical molecular dynamics
is being used to sample the real part of the autocorrelation func-
tion that enters the semiclassical expression for the pure-dephasing
function of optical response theory.65 The optical response pure-
dephasing function has been used in many applications of nonadia-
batic dynamics.66–69

We sample potential energy surfaces while the trajectory
evolves in the ground state70 and do so for a sufficient amount of
time so that thermal equilibrium behavior is realized. Although the
use of classical path approximation (CPA) to compute α is not nec-
essary for the relatively simple DbA model of the present study,
we choose to use this method as it is widely used for dynamics
in condensed matter systems.71 Given adiabatic state energies as
a function of time, the dephasing function between any two adia-
batic states and their decay rate (determined by fitting the dephas-
ing function to a Gaussian72) as well as average gap, ⟨∣Ei − Ej∣⟩, are
computed to estimate α. An important physical principle obeyed by
this method, which is violated by the out-of-box decay-of-mixing
[Eq. (13)], is that wavepackets on parallel surfaces do not decohere:
Dij(t) = 1 because Rij(t) = 0 and consequently gij(t) = 0. Fur-
ther details clarifying this point can be found in Sec. IV B 3 and
Ref. 11.

3. Subotnik’s augmented surface hopping
Subotnik’s augmented surface hopping is a stochastic col-

lapse approach. The collapse rate depends on dynamic variables
of the system including first-order uncertainties (or moments) in
nuclear position and momentum.21 The decoherence rate between
the occupied adiabatic state, |�i⟩, and all other states, |�j⟩, is given
by

τ−1
ij ∼

1
2̵h

(Fjj − Fii) ⋅ δRjj −
2
̵h
∣Fij ⋅ δRjj∣, (16)

where F = −∇V ∣RSH is the force evaluated at the position of the
surface hopping (SH) trajectory and δR = TrN{(R − RSH

)ρ} is the
position moment. The trace is over the nuclear (N) degrees of free-
dom, and ρ is the combined nuclear-electronic density matrix. A
derivation of Eq. (16) is available in the supplementary material.
Augmented surface hopping stands out as a more rigorous method
compared to other approaches because the decoherence rate outside
the interaction region is proportional to the force difference, Fjj − Fii,
which is fundamentally correct based on an analysis of the quantum-
classical Liouville equation.11 Several other studies (e.g., Refs. 73 and
74) have also derived a decoherence rate that depends on the force
difference.

C. DbA model simulations
The DbA model used in our simulations can be rationalized

as a linear chain of diatomic molecules, each representing a spe-
cific group: donor, bridge, and acceptor [Fig. 2(a)]. The model
contains a single bridge state (i.e., N = 1), and diabatic potential
energy surfaces are parabolic with respect to the reaction coordinate:
EDD = mω2x2/2 + Mx, Ebb = mω2

(x − xb)2
/2 + ∆�, and EAA

= mω2x2/2 − Mx − �0. Here, M =

√

λmω2
/2, where λ is the

FIG. 2. (a) Cartoon schematic of the DbA model represented as a linear chain of
diatomic molecules. (b) Adiabatic potential energy surfaces of the DbA model with
respect to the reaction coordinate. Donor, bridge, and acceptor diabats are labeled
by 1, 2, and 3, respectively. The tunneling energy gap is labeled by ∆�.

donor-to-acceptor reorganization energy, m is the reduced mass,
and ω is the angular frequency. Figure 2(b) shows the adiabatic
potential energy surfaces. The bridge diabat is centered at the tran-
sition state configuration between a donor and an acceptor at xb =
−�0/2M, where �0 is the driving force. The donor-bridge and bridge-
acceptor diabatic couplings are relatively weak (i.e., VDb = VbA = V)
in order to simulate nonadiabatic electron transfer between a donor
and an acceptor.

Trajectories started in the donor diabat with initial posi-
tions and momenta sampled from Boltzmann distributions.75 Each
ensemble was made up of 3000 trajectories. Every trajectory evolved
with a ∆t = 1.25 a.u. time step for a total of 107 time steps. The pop-
ulation of the acceptor diabat was recorded as a function of time and
was computed by squaring the inner product of the adiabatic state
of the occupied surface with the diabatic state of the acceptor diabat.
After averaging over all trajectories, the donor-to-acceptor reaction
rate, k, was obtained by fitting the population of the acceptor dia-
bat to the function 1 − exp(−kt). Reaction rates were computed as a
function of the driving force (�0), diabatic coupling (V), and tunnel-
ing energy (∆�). Constant parameters of the model (in atomic units)
are m = 1, ω = 4.375 × 10−5, λ = 2.39 × 10−2, kBT = 9.50 × 10−4, and
γ = 1.50 × 10−4 (the Langevin friction parameter). These numeri-
cal parameters were borrowed from Ref. 30 and are used to simulate
reactions on the nanosecond time scale.

V. RESULTS AND DISCUSSION
Figure 3 shows donor-to-acceptor reaction rates. The scaling

behavior of the reaction rates were determined with a least-squares
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FIG. 3. Donor-to-acceptor reaction rates
as a function of driving force (�0), dia-
batic coupling (V), and tunneling energy
gap (∆�). Reaction rates were computed
with surface hopping (red circles) and
Marcus theory (black lines). Decay-Of-
Mixing (DOM) data include C = 1 (orange
triangles) and C = 10 (red circles) [see
Eq. (13)]. Curve fits of the surface hop-
ping data are shown in light gray.

fit to Eq. (7). Table I shows fitted parameters of the reorganization
energy (λ), scaling in diabatic coupling (V), and scaling in tunneling
energy (∆�). All methods accurately predict the driving force cor-
responding to the maximum reaction rate (i.e., when �0 = λ), but
the magnitude of the rates as well as scaling behavior varies among
the methods. Generally speaking, we find that the donor-to-acceptor
reaction rate is related to the frequency of nonadiabatic transitions
between the two lowest-energy adiabatic surfaces [Fig. 2(b)]. In the
case of a few nonadiabatic events, a trajectory may quickly settle
in the acceptor diabat [right of the diabatic crossing in Fig. 2(b)],
resulting in a fast reaction rate, k13. Conversely, in the case of
many nonadiabatic transitions, the time elapsed before the nuclear

coordinate settles in the acceptor diabat will be longer, resulting in a
slower k13. The frequency of these nonadiabatic transitions depends
on how the electronic density matrix is propagated, with or without
decoherence.

GFSH without decoherence significantly overestimates the
reaction rates across all tests (Fig. 3) and fails to recover the cor-
rect scaling in diabatic coupling and tunneling energy (Table I).
In exact quantum dynamics, the coherence between two states
increases as the trajectory enters their interaction region and like-
wise decreases (and eventually decays to zero) as the trajectory leaves
their interaction region. Dynamics are compromised when this rela-
tion does not hold, especially if the trajectory exits and reenters the

TABLE I. Fitting parameters of the donor-to-acceptor reaction rates of Fig. 3. Data were fit to functions (shown in the column
labels) representing the scaling behavior of the Marcus theory expression of Eq. (7) with respect to driving force (�0), coupling
(V), and tunneling energy (∆�).

Driving force — Coupling— Tunneling energy—
Method a exp[ (x−b)

2

c ] axb axb

None b = 2.39× 10−2 b = 2.00 b = −0.97
Decay-of-mixing (C = 1) 2.37× 10−2 2.57 −1.04
Decay-of-mixing (C = 10) 2.37× 10−2 2.92 −1.23
DOM dephasing-informed 2.35× 10−2 2.69 −2.18
Augmented (A-GFSH) 2.38× 10−2 3.42 −1.71
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interaction region; an overcohered electronic density will ultimately
give spurious transition probabilities and reaction rates.

Decay-of-mixing is qualitatively correct in that the coherence
decays outside the interaction region. However, its decoherence
time has adjustable parameters that were originally chosen based on
numerical tests (see Ref. 62), which may limit the method’s trans-
ferability to new systems.76 In our case, we performed two sets of
simulations by adjusting the C parameter of the decoherence time
[Eq. (13)] and found that the magnitude of the reaction rate is very
sensitive to this change; the reaction rate decreased by approxi-
mately three-fold from C = 1 to C = 10 (Fig. 3). The C = 10 reac-
tion rates are in very good agreement with Marcus theory based
on their magnitude as well as scaling in coupling and tunneling
energy (Table I), but this choice of C was chosen by mere trial-
and-error. Therefore, the method’s applicability to other systems
might be open to serious challenge without further reparameteriza-
tion.

On the basis of the results of Fig. 3 and Table I, the best
performing methods are decay-of-mixing dephasing-informed and
augmented surface hopping. Each method has notable advantages
that make it appealing. In the case of augmented surface hopping,
the decoherence rate is relatively rigorous in its formulation and
explicitly depends on the force difference between the two decoher-
ing potential energy surfaces. This property proves to be important
for recovering Marcus theory with the best quantitative accuracy.
Moreover, the decoherence rate does not contain any predefined
parameters and is presumed to be applicable to various types of
systems, although further testing is needed to validate this claim.
In the case of decay-of-mixing dephasing-informed, the decoher-
ence rate is more general than that of the original decay-of-mixing
method since it contains information specific to the system under
consideration. As a result, the magnitude of the method’s reaction
rates is in much better agreement to Marcus theory (e.g., compare
C = 1 results to decay-of-mixing dephasing-informed in Fig. 3). Also
noteworthy is that reparameterization of the decoherence rate via
the dephasing function obeys the correct limiting behavior in which
wavepackets on parallel surfaces do not decohere. However, a poten-
tial downside to the dephasing-informed approach is the necessity
of an accurate and sufficient sampling of the potential energy sur-
faces involved during the dynamics to calculate the dephasing func-
tion [Eq. (15a)]. For the case shown here, we were dealing with a
one-dimensional model in which these criteria were easy to adhere
to.

VI. SUMMARY AND CONCLUSIONS
Electronic state mixing in a Born-Oppenheimer nuclear-

electronic system is controlled by the overlap of nuclear wavepackets
on different potential energy surfaces. Dissimilar forces on poten-
tial energy surfaces cause the overlap of nuclear wavepackets to
diminish, leading to decoherence. Due to classical and independent
nuclear trajectories in surface hopping, the electronic density matrix
is integrated with fictitious coherence between states that severely
compromise transition probabilities. The evolution of the electronic
density matrix must be corrected such that it continuously deco-
heres outside the interaction region. Herein, popular ad hoc and
practical first-principles approaches that incorporate decoherence
into the evolution of the electronic density matrix were assessed

by comparing their donor-to-acceptor reaction rates to Marcus
theory.

The strengths and weaknesses of the decoherence methods
were evaluated in the context of a Donor-bridge-Acceptor (DbA)
model. Truhlar’s decay-of-mixing decoheres the electronic den-
sity matrix outside the interaction region and qualitatively agrees
with Marcus theory. However, we find that the quality of decay-
of-mixing depends on predefined parameters; it was only by trial-
and-error that the chosen parameters gave reasonable results. We
further introduced a method that alleviates this issue by show-
ing that the decoherence rate can be parameterized for the sys-
tem under investigation as long as an accurate and sufficient sam-
pling of the potential energy surfaces involved in the dynamics is
attainable. The method, which we call decay-of-mixing dephasing-
informed, is in very good agreement with Marcus theory. Finally,
the decoherence rate between electronic states in Subotnik’s aug-
mented surface hopping explicitly depends on the force difference
between their surfaces. This feature proves to be important for
recovering both the magnitude of the reaction rates and the correct
scaling in diabatic coupling and tunneling energy with quantitative
accuracy.

On the basis of our benchmark study, the decoherence
method used to correct surface hopping simulations must be cho-
sen with great care. Our tests of popular methods indicate their
broadly varying system-dependent performance. Thus, it is rec-
ommended that the method of choice be justified for the sys-
tem under investigation. Further testing such as higher dimen-
sional potential energy surfaces and a broader range of reac-
tion time scales would provide deeper insight into the advantages
and disadvantages of the methods discussed in this paper. For
example, a follow-up study comparing decay-of-mixing dephasing-
informed and augmented surface hopping would be especially
interesting since they were the most successful methods for the
DbA model. Information regarding their versatility to new systems
and numerical costs may help to clarify their realm of applica-
bility.

SUPPLEMENTARY MATERIAL

See supplementary material for derivation of augmented sur-
face hopping decoherence rate and numerical tests of A-GFSH using
two- and three-level scattering models.
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