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FOREWORD

What is this Ph.D. thesis about? At a basic level the answer is: understanding the formation
of structures in a particular class of system with a large number of components. This special
class concerns systems formed with particles interacting with each other via long-range interac-
tions. The most obvious examples are self-gravitating systems and plasmas but many more sys-
tems are concerned. These interactions are opposed to the short-range interactions (e.g. shocks
with 0-range or nearest neighbor interactions) and can drive a system out-of-equilibrium. The
dynamics of these long-range systems is the primary interest of this Ph.D. thesis. It will be
studied through kinetics equations. The difficulty lies in the richness of these equations. The
goal of my work is to depict the dynamics around stationary states with simpler equations, this
is called dimensional reduction.

The manuscript is composed of two independent parts: one concerning an experimental
collaboration on a cold atom system with supposedly long-range interactions and another one
which can be considered as the main part on bifurcations in collisionless kinetic systems.

Main results of this Ph.D. thesis

In the experimental collaboration part, the main result is the proposition of two experiments
that could confirm or not the analogy between Large Magneto Optical Traps and a Non-Neutral
Plasma. Preliminary experimental results are discussed with a relatively good matching with
theory and simulations. However definitive conclusions remain uncertain.

In the second part, the main achievements are the bifurcation analysis for five different ki-
netic systems. Numerical simulations were done in some of these systems fully supporting the
theoretical claims. These results elucidate partially the dynamics around steady states of out-
of-equilibrium systems with long-range interactions and in at least one case predicts a behavior
that might be relevant in galactic systems. Our results could prove to be very generic thanks
to the universal character of bifurcation analysis. For example, bifurcation regimes found for
Vlasov systems with a small dissipation are like the one obtained for two dimensional fluids; we
also conjecture a Triple Zero bifurcations around non homogeneous Vlasov states. Moreover,
along this Part we raise many questions and observations on the unstable manifold technique
used after J.D. Crawford and the possibility of exact dimensional reductions.
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INTRODUCTION

The Newton’s law of universal gravitation describes one of the most fundamental forces,
thus since we all experience it directly we will use it as a guiding thread of this introduction.
Newton was able to derive planets motions around the sun associating this force with equations
of motion he postulated. In other words, he solved a one body problem (since the Sun is
considered fixed because of its large mass), meaning he could predict the motion of planets
(position and velocity) in time. The natural sequel for this problem is the two-body problem,
that we also know exactly how to solve. However, upon increasing the number of bodiesN from
two to three the problem incredibly more difficult: no general solutions are known and chaos
emerges. A chaotic system can behave very differently for two very close initial conditions,
making its analytical description difficult. For even larger systems with a large number N of
self-gravitating bodies, knowing the exact evolution is therefore hopeless.

What can we say about the evolutions of a N−body systems with gravitational like
interactions?

The statistical physics field was actually developed to understand many body systems, not
by describing the exact evolution for all bodies but rather by finding the most probable one.
The construction of various statistical ensembles such as the Microcanonical/Canonical/Grand
Canonical ensemble with quantities such as entropies lead for example to thermodynamics as
we teach it nowadays. Laws are essentially known for the non-interacting gas (perfect gas)
or for short-range interactions, which is enough to solve a lot of various problems from heat
engine to social dynamics. In these problems, a natural assumption is to consider ensemble
additivity meaning that if a system is composed of two subsystems 1 and 2, the total energy is
approximatively the sum of the individual energies of the subsystems E1 + E2 = E1+2. This
turns out to be true for short-range interactions in the large N limit.

But is this Bachelor statistical physics useful for our self-gravitating problem where long-
range interactions are at stake? First let’s set our definition 1 of long-range interactions. We will
say two bodies are interacting with long-range interactions if their potential of interaction V (r)

1. Depending on the field one can find different definitions. For example, one can find that interaction with
infinite range are "long-range". That is not our definition.
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Introduction

and more generally their force of interactions F(r) satisfies

V (r)
r→∞∼ cst

rα
or F(r)

r→∞∼ cst
rα+1

, with α ≤ D = spatial dimension. (1)

For example, a Coulomb/Newton interaction is long-range since its α = 1 < D = 3. From this
mathematical definition, we immediately see why this boundary exists 2 at α = D. Consider-
ing the total interaction energy of one particle centered at r = 0 in a constant distribution of
particles 3 ρ0 we get

Vint = ρ0

∫

r∈RD
V (r) dDr ∼ lim

L→∞
ρ0L

D−α =

{
cst if α > D

∞ if α ≤ D.
(2)

This phenomenon leads to the non extensivity of long-range systems E1 + E2 6= E1+2. Long-
range systems display other intriguing particularities such as nonequivalence of the different
statistical ensembles and negative heat capacity. For review of those systems see [CDR09,
DRAW02, CGML08] or the introductory and very understandable talks of J. Barré and H.
Touchette [ICT16] at the ICTP of Trieste at the Conference on Long-Range-Interacting Many
Body Systems: from Atomic to Astrophysical Scales.

To have a rather broad overview of the different systems displaying long-range forces, one
can refer to the program of the ICTP conference program 4 in Trieste, where a lot of differ-
ent fields were represented. The most obvious example are self-gravitating systems with many
astrophysical examples and plasma systems [EE02] with Coulomb forces between electron or
ions. Another example that will be presented in this thesis is the large Magneto-Optical Trap
(MOT). One also finds examples in hydrodynamics [Mil90, RS91], atomic physics, nuclear
physics and for Rydberg gases [DRAW02, CGML08] or spin systems [SJM15]. Character-
istic behaviors of long-range systems have been observed in some nonlinear optics experi-
ments [XVF+15].

One can argue that we know the fate of any Hamiltonian system (including self-gravitating
one) because they should at some point reach Boltzmann-Gibbs statistical equilibrium. Never-
theless, another particularity of long-range systems is that they possess what we call a Quasi Sta-
tionary State (QSS) that has a very long relaxation time. Thus, we will need out-of-equilibrium
tools. For example, the Large deviation theory [BBDR05] or fluctuation dissipation theo-
rems [Kub66] are precious to give statistical information. Entropy methods with applications
closer to our concern are also possible [RTBPL14, LB99, Per06]. Note that non Hamiltonian
systems are by nature out-of-equilibrium e.g. system with non-conservative forces and coupled
oscillator systems. In this thesis, we are interested in the temporal evolution of out equilibrium
system around their stationary states (or QSS). To do so we will use the kinetic description of
the system. The kinetic description is often said to be at the mesoscopic scale since it is an
intermediate description in between the microscopic scale and macroscopic scale. The micro-
scopic scale describes the evolution of every particle via the different equations of motion. The
macroscopic scale describes the evolution of macroscopic observable such as the mean velocity,
temperature, pressure, etc. see Figures 1 and 2.

2. In Part Two, in order to simplify the manuscript we will use only a simple all-to-all coupling (α = 0 < D),
but the main physicals phenomena remain. More generic potentials are considered in our publications.

3. In all the manuscript the term particles will refer to the components of the system studied, be it atoms, stars,
electrons, oscillators, crickets, etc.

4. http://indico.ictp.it/event/7612/other-view?view=ictptimetable
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Introduction

THE VLASOV EQUATION

The Vlasov equation is one of the fundamental kinetic equations. It will be the main evolu-
tion equation of this thesis (all other equations will be related to it in some way). Here we show
formally how the Vlasov equation emerges from the microscopic description of long-range sys-
tems. Then, once velocity is integrated, one can obtain macroscopic equations (for observables
such as velocity, pressure, etc.). All the reasoning is summarized in Figure 2.

The evolution of aN bodies Hamiltonian system is governed by 2N×D first order equations
of the form

~̇ri = ~vi, (3a)

m~̇vi =
∑

i 6=j

~F(~rj − ~ri). (3b)

As mentioned earlier, solving this problem analytically is utopian, so a statistical approach of
the problem must be developed. The exact position and velocity of each particles is no longer
considered but rather the density f of particles in the phase space (~r,~v) is. This forms the
mesoscopic approach. Thus, we keep track of both spatial distribution and speed distribution
of particles in time. A macroscopic approach would erase the velocity information ; therefore,
the kinetic approach can solve more subtle phenomena such as phase mixing and emergence of
instabilities due to velocity resonances as we will see later.

There are several ways to construct the Vlasov equation from Eq. (3), here we postulate its
form and show that it is the relevant equation to study. The empirical density function is defined
as

fE(~r,~v, t) =
N∑

i=1

δ(~r − ~ri(t))δ(~v − ~vi(t)), (4a)

with ∫∫
fE(~r,~v, t) d3~rd3~v = N. (4b)

This singular distribution still contains all information on the particles. It is possible to show 5

that fE is a weak 6 solution of the Vlasov equation,

∂tf + ~v · ~∇rf +
~FMF[f ]

m
· ~∇vf = 0, (5a)

~F[f ]MF(~r) =

∫∫
~F(~r − ~r′)f(~r′, ~v′, t) d3~r′d3~v′, (5b)

∫∫
f(~r,~v, t) d3~rd3~v = N. (5c)

For a distribution, f(~r,~v, t)d3~rd3~v gives the number of particles in the phase space volume
(~r + d~r,~v + d~v) at a time t. In this evolution equation, the distribution evolves through an
advection term and a nonlinear term with a self-consistent mean field force ~FMF[f ](~r).

5. The Vlasov equation can be found writing the density conservation along trajectories dfE/dt = 0.
6. Weak means that is must be integrated with some test function to make sense.
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We just constructed the Vlasov equation from the singular empirical distribution, but is it
possible to construct in the large N limit a smooth distribution describing accurately the par-
ticles evolution? How close are the exact dynamics of fE to a smoothed version of it f? If
the two start "closely", how will they evolve through Vlasov dynamics? To measure this, one
defines a suitable distance between two distributions d(f1, f2) and look at its time evolution
d(f(t), fE(t)). It is possible to show [BH77, Dob79, NW80] that this distance is at most expo-
nential:

d(f(t), fE(t)) ≤ d(f(0), fE(0))et/τ , (6)

where τ is a constant independent of the initial condition and N . So, over a time scale O (τ)
the two distributions will stay close by. Moreover, the empirical distribution converges toward
the smoothed distribution as d(f(0), fE(0)) = O

(
1/
√
N
)

. So, if τ does not depend on N , we
expect the continuous description to be valid over a time scale τc = O (lnN). This estimate can
be made sharper for Vlasov steady states as τc = O

(
N δ
)
, δ > 0. We name violent relaxation

the time τv during which a particles system evolves according to the Vlasov dynamics, after
which the collisional relaxation dominates. These different time steps are summarized on
Figure 1. The demonstration 7 relies heavily on the long-range nature of the interactions to

Initial state

Violent relaxation

τv = O(1)

Vlasov’s equilibrium

Quasi-Stationary States

Collisional relaxation

τc = O(N δ)
Boltzmann’s equilibrium

Figure 1 – Schematic representation of the different time scales in a long-range system.

construct the mean field force. This means that the Vlasov equation is not well suited for
systems with short-range interactions. In the N → ∞ limit, particles only feel the mean force
~FMF[f ] created by the whole distribution of particles, thus correlations vanish. Therefore, the
exact interactions between two particles do not matter anymore.

The Vlasov equation has many interesting properties, amongst them, it possesses an infinite
number of preserved quantities called the Casimir invariants [Mor00]

Cs[f ] =

∫∫
s[f ](~r,~v, t) d3~rd3~v, (7)

where f is a Vlasov solution, meaning that Ċs[f ] = 0 (where the dot denotes d/dt) for any
generic function s. Thus, in addition to the energy, entropy, momentum, angular momentum,
etc. which are conserved in standard Hamiltonian systems, there are an infinite number of in-
tegrals of motion. This gives to the Vlasov equation an infinite number of stationary states.
Another very surprising feature associated with the Vlasov flow is that it can relax to its initial
state after a perturbation with constant entropy. More precisely, the phase space distribution

f(~r,~v, t) oscillates more and more in the velocity variable while the integrated density
∫
f d3~v

does relax (see Section V.4). This phenomenon is the Landau damping (or non-entropic re-
laxation) and was discovered in the linear case by L.D. Landau [Lan46], a proof for the full
nonlinear Vlasov equation has been given recently by C. Mouhot and C. Villani [MV11].

7. To be fair, rigorous mathematical derivation are not yet obtained for Coulomb/Newton potential. Demon-
strations without cut off are limited to F (r) ∼ r−α with α < 1 [JH11]. However, in 1D, interaction potential are
much more regular and rigorous results exist [Tro86].

Université Côte d’Azur 20



Introduction

Remark .1
— The word collision has different meaning here depending on the context. For short-range

systems, collision refers to real collision between two particles and in this context, they
would be essential, while long-range systems are dominated by mean field. A kinetic de-
scription of short-range system leads to the Boltzmann equation. For long-range systems
collisions or collisional effects mean finite N effects, in fact correlations. In the astro-
physical community, the Vlasov equation is called the collisionless Boltzmann equation.

— So far, we have used a deterministic approach, meaning that for a given initial distribution
fE the Vlasov equation gives the deterministic evolution of particles. Another approach
is the probabilistic one, considering for example the mean field evolution of particles
over different initial conditions distributed along a given finit distribution. It uses the
propagation of chaos theory [Szn91, Mon16]. Its use led to a recent proof of the mean
field limit of the Vlasov equation for Coulomb/Newton potential with a very small cut-off
scaling like N−1/3+ε.

(~ri, ~vi), i ∈ [1, N ]

~̇ri = ~vi

m~̇vi =
∑

i

~Fi(~rj − ~ri)

fE(~r, ~v, t) =

N∑

i=1

δ(~r − ~ri)δ(~v − ~vi)

f(~r, ~v, t)

∂tf+ ~v · ~∇rf +
~F[f ]

m
· ~∇vf= 0

〈~v〉 (~r, t), T (~r, t)
∂t〈~v〉 = · · ·
∂tT = · · ·

〈~v〉 =
∫

~vf

T =

∫
m~v2

2
f

· · ·

Microscopic Mesoscopic Macroscopic

Figure 2 – Schematic representation of the different possible scales of description. On the arrow
are the different functions linking two different scales.

With distribution functions, it is easy to construct macroscopic observables such as the mean

velocity 〈v〉 (~r) =

∫
~vf d3v and the temperature T (~r) =

∫
m~v2

2
f d3v. To obtain the associ-

ated evolution equation one must do some approximation valid within some regime; for example
fluid equations such as gyrofluid equations can be derived [BH07, SR00] from the Vlasov equa-
tion. In this thesis, we do not study this macroscopic behavior. In out-of-equilibrium systems
the velocity distribution is in general not simply a Gaussian and leads to counter-intuitive effect
like Landau damping (damping without dissipation) that could not be predicted by macroscopic
equations.

GOALS AND OUTLINE OF THE THESIS

The goal of this thesis is to study the behavior of out-of-equilibrium many body systems with
long-range interactions. It is divided in two very different parts. In the first Part, we study a real
experimental set-up and give theoretical and numerical predictions. In the second Part we focus
on the bifurcation technique developed by J.D. Crawford for kinetic equations.

Part One is devoted to the study of an experimental Magneto-Optical Trap (MOT). We col-
laborated with Guillaume Labeyrie and Robin Kaiser of the Non Linear Institute of Nice (INLN)
and Bruno Marcos of the Laboratory J.A. Dieudonné. The standard modeling for large MOT
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composed of neutral atoms predicts effective Coulomb like interactions between particles (via
photon rescattering). Therefore a kinetic description through the Vlasov-Fokker-Planck equa-
tion (Vlasov equation with friction and diffusion) is expected to be accurate. The goal of the
collaboration is to test experimentally the long-range nature of those effective forces, since the
literature still lacks an irrefutable experiment. The main idea was to observe plasma physics
effects such as the Debye length as an experimental proof. In Chapter I we present the stan-
dard modeling through atomic physics leading to a plasma like description of a large MOT.
We introduce then the basics of plasma physics through the Non Neutral Plasma (NNP) model.
Chapter II is dedicated to the introduction of the different observables and tools used to analysis
and probe a cold atom cloud. In Chapter III we present and discuss different realistic measure-
ments (theoretically and numerically) that could highlight plasma phenomena, and compare
them to the preliminary experiments realized by G. Labeyrie.

Part Two is devoted to bifurcations around steady states of kinetic equations. Kinetic equa-
tion such as the Vlasov one are nonlinear self-consistent partial differential equations, they have
a very rich dynamics such as an infinite number of stationary states, filamentation of the phase
space 8 , strong wave/particles resonances, non-entropic relaxation, etc., thus their mathematical
and physical understanding is far from being complete. The bifurcation study is a natural strat-
egy to simplify the dynamics in specific cases (e.g. neighboring of stationary states close to an
instability threshold). One hope is that these bifurcations might structure the whole dynamics;
another motivation is to obtain a classification of these bifurcations (by studying various kinetic
equations) as there is for standard (dissipative) systems (saddle-node, pitchfork, Hopf, etc.).
However, due to the previously mentioned difficulties standard bifurcation techniques such as
multiple-timescale analysis or center manifold fail [CH89, HC89, MH13, HM13].

In Chapter IV we present the unstable manifold technique introduced by J.D. Crawford in the
context of kinetic equations [Cra94a, Cra94b, Cra95a, Cra95b] which overcomes some of the
difficulties met by standard expansions. The price to pay is that this approach is not well sup-
ported mathematically and that the description of the bifurcation is incomplete but qualitatively
correct providing precious informations on the bifurcation nature. We shall use this technique
for the rest of the manuscript. Chapter V review quickly the standard results for the bifurca-
tion around homogeneous steady states of the Vlasov equation. In Chapter VI we present our
results on the bifurcation around inhomogeneous states obtained in collaboration with Y.Y. Ya-
maguchi. In this case, we also obtain with a center manifold approach a finite three-dimensional
reduction agreeing well with the numerical simulations. In Chapter VII, we perform a similar
analysis for homogeneous Vlasov-Fokker-Planck states, in particular we show how interplay
between a weak instability and weak dissipation gives rise to several regimes.

In Chapter VIII we introduce another kinetic equation based on the Kuramoto model de-
scribing coupled oscillator systems. It shares many similarities with the Vlasov equation and
was also studied by J.D Crawford. We then once again use in Chapter IX the unstable manifold
technique for the Kuramoto model with inertia and in Chapter X with delayed interactions (with
and without inertia).

As one can already tell from this outline the work of J.D. Crawford is very important in this
thesis since he has laid the foundation of the bifurcation study for both Vlasov and Kuramoto
equation. Therefore, the overall procedure will be similar every time but we will see that each
specific case has its own physical and technical issues. We will summarize in Chapter XI
our results, classifications and conjectures for the bifurcation analysis of the various kinetic

8. The filamentation refers to the highly oscillating behavior of the distribution function f(~r,~v, t) with respect
to the velocity variable.

Université Côte d’Azur 22



Introduction

equations studied.
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CHAPTER I

FROM MAGNETO-OPTICAL-TRAPS TO
PLASMA

A large part of low energy physics is concerned with set-up at cold temperature T .mK,
where lasers are used to manipulate atoms for their useful and interesting classical or quantum
properties. To reach weak temperature experiments the radiation pressure exercised by lasers is
used. It is the force felt by an atom when it absorbs a photon, possibly decreasing its velocity
via momentum transfer. That mechanism is at the origin of the "cold atom" field. A widely
used set-up because of its relative simplicity is the Magneto Optical Trap (MOT); its essential
components are

— Neutral atoms (such as Rubidium, Strontium)
— Two magnet coils set in anti-Helmholtz configuration (producing a magnetic field gradi-

ent),
— Six lasers (one pair for each spatial dimension),
— A vacuum chamber.

At low atom number N . 104, the physics is relatively well understood. Thanks to radiation
pressure of the six lasers the trapping and cooling of atoms is achieved. Moreover, in this
regime no interactions between atoms are considered and the particles dynamics is essentially
a Brownian motion. In metrology with atomic clocks [KHS+16], the low atoms speed is used
for high precisions measurements.

However, when N & 105, the physics sees several qualitative changes, some effective inter-
actions between atoms appear... Indeed, for MOTs with a large number of particles it has been
observed that the cloud size L increases with the number of atoms N , whereas for N < 104, the
size L was independent of N . So, there must be a repulsive process developing. Because of this
repulsion, the atom cloud cannot be compressed indefinitely, preventing for example Bose Ein-
stein condensation, that are since its first realization in the 90s [AEM+95] a very active topic.
With the advent of more powerful laser sources, it is now possible to prepare very large MOTs
(VLMOT) with 1011 atoms [CKL14], where collective effects are enhanced.
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The description of this collective behavior is far from being well understood. Neutral atoms
interact with the trap composed of lasers and a magnetic field and with each other through ab-
sorption and emission of photons with rules given by the energy levels of atoms of the trap (an
exact description should then depend on the atom species and it hyperfine structure). In 1988
Dalibard [Dal88] showed that absorption of the laser light in the cloud results in an effective
attracting force between atoms like one dimensional gravity: the so-call Shadow Effect. Dal-
ibard was the first to describe effective interactions between particles and formally his model
for VLMOT bears similarities with a galactic model of self-gravitating stars. However, this
description didn’t explain why in experiments when N is increased, the cloud L also increases,
in fact it predicts the opposite.

The current "standard model" to describe VLMOTs was then proposed in [WSW90] by T.
Walker, D. Sesko and C. Wieman (2001 Nobel prize winner), it includes an effective Coulombian-
like force between two level atoms, due to multiple scattering of photons. According to this pic-
ture, VLMOTs thus share similarities with a Non Neutral Plasma (NNP). In this plasma physics
model electrons are all interacting through Coulomb interactions in a neutralizing background
(as large positive ions).

The main question in this part is then can we observe plasma physics phenomenon in VL-
MOT? Is there any chance to observe Landau damping in a VLMOT? We will quickly answer
negatively to this question in the second part Bifurcations of this thesis making a bridge between
the two parts. Indeed, the friction range for the experimental MOT is too large to observe Lan-
dau damping. So, what else could we seek? Debye length? Instabilities and bifurcations? In
this thesis, we will search for the analog of Debye length which is characteristic of plasmas and
Coulomb interactions. More generally the goal is to search for evidence of long-range interac-
tions between atoms via direct correlation and response to an external potential measurement.

In this chapter, I will first retrace the standard modeling of VLMOTs. Then I will present
the Non Neutral Plasma model, introducing the different characteristic parameters in the MOT
units.

1 STANDARD MODEL FOR MOT

All the numerical values given here for the MOT are taken from [CKL14, GPLK10, Ste01].
For the French readers, I recommend the Collège de France lecture by J. Dalibard [Dal14],
to get a clear introductory picture of the cold atom field. Also, one can read the review of
Cohen-Tannoudji for his 1998 Nobel prize [CT98] on manipulation of atoms with photons.

1.1 The trapping

The idea behind Magneto-Optical-Trap is to trap atoms in the velocity and position space
thanks to one pair of magnet coils and six lasers in all of the six directions of space, as repre-
sented in Figure I.1.

For a two energy level atom, |g〉 ground state and |e〉 excited state trapping occurs via ab-
sorption and emission of photons from the Laser (see Figure I.2). Basically, absorbing a photon
coming from the left will push the atom to the right (see Section I.1.1.c).

The detuning δ = ωL − ωatom is the quantity that measures the energy difference between
a photon with frequency ωL and the excitation energy ωatom of the atoms. In practice, it can
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LASER beams

Atom cloud

Magnet coil

~ex

~ey

~ez

Figure I.1 – Schematic representation of a Magneto-Optical-Trap (MOT) with six Lasers and
two magnet coils creating a linear gradient of magnetic field.

ωL ωatom

|δ|

~~kL

|g〉

|e〉

Figure I.2 – Schematic representation of the transition |g〉 → |e〉 for an absorbed photon of
momentum and frequency (~~kL, ωL) with an atomic transition of natural frequency ωatom. The
detuning of the lasers δ = ωL − ωatom is negative here.
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be tuned 1 very well, in a typical range 0 Γd . |δ| ≤ 8 Γd, where Γd ∼ 10 MHz is the natural
width of the transition. For the Rubidium atoms used in experiments Γd = 2π × 6.06 MHz. In
short Doppler and Zeeman effects modify detuning to favor absorption of photon as a function
of speed and position for cooling and trapping atoms (see Section I.1.1.a and I.1.1.b).

1.1.a Doppler effect

The idea to cool neutral atoms with lasers was first proposed in 1975 by T. Hänsch and
A. Schawlow[HS75] (and independently by Wineland and Dehmelt [WD75] for ions). Due
to Doppler effect an atom with speed vi > 0 sees photons coming from the left (in the same
direction) with a shifted frequency ωleft = ωL − kLvi and from the right (opposite direction)
ωright = ωL + kLvi. The effective detuning with photon of opposite direction is then δ̃opposite =
δ + kL|vi|. To favor absorption of photons with opposite direction (to reduce the atom velocity
after absorption) the detuning δ must be negative (redshifted Laser).

1.1.b Zeeman effect

Zeeman effect is the energy split of an exited level due to the coupling of an external magnetic
field ~B with the total magnetic dipole moment of electrons ~µJ = ~µL + ~µS (J = L + S is the
total angular momentum, L is the angular momentum and S is the spin angular momentum).
Let’s take the example of a J = 0 → J ′ = 1 transition. Ground state |g, J = 0〉 with no
magnetic moment is not affected while exited state with |e, J = 1〉 sees an energy shift (for
weak magnetic field)

∆EZeeman = gJmJµBB(~r),

where mJ = 0,±1 is the quantum magnetic number and gJ is the Landé factor for the atom
considered and µB the Bohr magneton, a universal constant describing the magnetic moment of
an electron. Setting two counter propagating lasers with opposite circular polarization σ+ and
σ−, Figure I.3, will then select the transition with the me = +1 or me = −1 respectively.

The magnetic field created by the two anti-Helmholtz magnetic coils is

B(x, y, z) = |∆rB|
(
x~ex +

1

2
(y~ey + z~ez)

)
(I.1)

where |∆rB| ' 10 G·cm−1 is the value of the constant gradient imposed. In the end the effective
detuning depend on position δ̃ = δ −mJgJµB|∆riB|ri/~, we call µi = gJµB|∆riB|/~.

1. The lasers wavelength can be slightly modified with an acoustic-optic modulator.
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0

ri

mJ = −1

mJ = 0

mJ = +1

σ−σ+

ωL ωLωatom

−~kL+~kL

|g, J = 0〉

|e, J = 1〉

B = |∆riB| ri

Figure I.3 – Representation of the Zeeman effect in a MOT set up. The energy level 1 is de-
generate in three levels me = +1, 0,−1 (dotted lines) due to the magnetic field. The constant
magnetic gradient insures a linear spatial dependency upon the energy levels me = +1,−1.
Two counter propagating lasers (red lines) with opposite polarization σ+ and σ−, to select ab-
sorption of photons with levels me = +1 and me = −1 respectively.

1.1.c Radiation pressure

The first MOT was reported in [RPC+87] for Sodium atoms using the radiation pressure of
photons on atoms. We describe here the basic mechanisms for two level atoms.

— Absorption: atoms gain ~~kL
— There are two different mechanism for an atom to relax toward equilibrium
• Stimulated emission. Emission of the photon in the same direction, so the total mo-

mentum gain for the atom is zero, Figure I.4.
• Spontaneous emission Figure I.4. The atom is reemitted with a random direction.

In particular, the probability to be reemitted in direction ~~k′L is the same that the
probability to be reemitted in −~~k′L, so the momentum gain is on average ~

〈
~k′L

〉
=

0. In general, this probability is assumed to be isotropic. So, on average the total
process absorption+emission gives a gain of ~~kL + ~

〈
~k′L

〉
= ~~kL.

So, the total force in average is
~Frad = ~~kLre (I.2)

where
re = ΓdPe (I.3)

is the rate of spontaneous emission [Dal14], with Pe the probability to be in the excited state.
This population number is given by optical Bloch equations mixing a coherent process of in-
teraction atom-laser and incoherent process of spontaneous emission. It gives, if the laser is
not too powerful (i.e. that the Rabi frequency Ωr of one atom should be very small compared
to the optical frequency ωL ' 384 · 1012 Hz, which can be checked after the fact). The Rabi
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Figure I.4 – Schematic representation of the two different scattering processes stimu-
lated/spontaneous emission. The red color stands for the energy.

frequency 2 is the oscillation frequency between exited and fundamental state due to the laser
forcing

Ωr =
dpE

~
= Γd

√
I

2Isat

(I.4)

where E is the electric field of amplitude, dp the transition dipole moment for the transition
1 → 2. In experiments, we use the intensity of the laser I and the saturation intensity Isat

(define thought Eq. (I.4)). For our experimental regimes I ∼ Isat (see Section I.3.2 for typical
experimental values), hence we have indeed Ωr ∼ 107 Hz � ωL. When I/Isat = 1 sponta-
neous and stimulated emission are equally probable.

The saturation parameter

s =
I/Isat

1 + 4δ2/Γ2
d

(I.5)

is related to
Pe =

1

2

s

1 + s
. (I.6)

Hence, the radiation pressure is

Frad =
1

2
~kLΓd

s

1 + s
. (I.7)

Note that this approach, i.e. consider a mean force for all the photon absorptions/emission cy-
cles, is valid for a fixed saturation rate s. Hence the spatial and velocity dependency of s
(through Zeeman and Doppler effect) must be smooth in order that after a photon hit s(~r +
∆~r,~v + ∆~v) ≈ s(~r,~v). The recoil speed after one hit for an atom is

∆v =
~kL
m

Rb' 5.98 mm/s. (I.8)

2. Here we are just interested in the modulus of the Rabi frequency, a complex description includes a phase
term with the Laser.
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The condition is then

ωr = kL∆v =
~k2

L

m
� Γd (I.9)

which is known as the thick band condition. For Rubidium atoms this condition is satisfied
with ωr = 4.82 · 104 Hz and Γd = 3.80 · 107 Hz.

We will note the lasers propagating in the same direction as the axis I+ and the opposite one
I−.

In the weak saturation regime s0 = s(~r = 0, ~v = 0)� 1,

Frad ≈
1

2
~kLs(~r,~v).

Therefore, in one dimension 3 in a weakly saturated regime s0 � 1 adding the Doppler/Zeeman
detuning yields the radiation force

~Frad · ~ei =
I0

Is

~kLΓd
2




"left laser"=I+︷ ︸︸ ︷
1

1 + 4

(
δ − kLvi − µiri

Γd

)2 −

"right laser"=I−︷ ︸︸ ︷
1

1 + 4

(
δ + kLvi + µiri

Γd

)2


 . (I.10)

Expanding the denominator for small Doppler/Zeeman shifts gives a linearized force with a
friction and harmonic trapping term,

~Frad · ~ei ' −mγvi −mω2
0ri for

∣∣∣∣
kLvi
δ

∣∣∣∣� 1,
∣∣∣µiri
δ

∣∣∣� 1, (I.11)

where we define the coefficients below.
— The effective friction parameter

γ =
I0

Is

8~k2
L

m

(−δ)/Γd
(1 + 4δ2/Γ2

d)
2 .

Rough estimation gives γ ≤ 9.6× 103 s−1 for s0 ≤ 0.1.
— The effective pulsation of the trap

ω2
0 =

I0

Is

8~kLµ
m

(−δ)/Γd
(1 + 4δ2/Γ2

d)
2 =

µ

kL
γ.

In this configuration, the cloud is supposed to have cylindrical symmetry because µx =
2µy = 2µz, but experimentally this asymmetry is compensated via different intensities,
so in the following we will consider a spherical symmetry with µ = µx = µy = µz =
gJµB|∆rB|/~. Since gJ ∼ 1, µ = 8.8× 109 m−1s−1 so ω0 ≤ 3× 103 Hz.

From this force modeling one can define a quality factor Q = ω0/γ as for damped oscillators.

Here Q ≈ 0.3 lower than
1

2
meaning that atoms act like over damped oscillators.

From the small velocity expansion one can see that in this limit the lasers act as "optical mo-
lasses" inducing friction for atoms. Similarly, the magnetic field will act as harmonic trapping
on atoms.

3. In principle interference terms should be added when summing the effect of the six lasers. A rigorous
treatment [Dal14] shows that for s0 � 1 they can be neglected.
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Another important parameter of the model is the on resonant cross section

σ0 =
~ωLΓd
2Isat

, (I.12)

it is related to the probability of an incident photon to be absorbed by an atom. For nonzero
detuning the cross section is

σL =
σ0

(1 + 4δ2/Γ2
d)

2 .

For circular polarization σ±, [Ste01] gives σ0 ' 2.9× 10−9cm2.

1.2 Diffusion

The previous Doppler effect would in principle cool atoms to zero temperature. But there
are of course fluctuations setting a lower bound to the minimal temperature. The origin of those
fluctuations is the random speed due to the large number of absorption/emission cycle giving to
the atoms a random recoil force. It is natural to assume that atoms undergo a Brownian motion,
allowing us to define a diffusion coefficient Dp [GA80, Dal14],

Dp = ~2k2
LΓds0 (I.13)

so, at equilibrium, after a short time of equilibration 4 ∼ 1/γ (rememberQ < 1) the temperature
is given by

kBT =
Dp

mγ
=

~
2

δ2 + Γ2
d/4

|δ| . (I.14)

The temperature diverges at very small detuning, which of course is nonphysical since in this
regime the linear assumption of Eq. (I.10) is not valid.

The minimal possible temperature (in the Doppler limit) Tmin is for δ = −Γd/2,

kBTmin =
~Γd
2
. (I.15)

For Rubidium atoms, Tmin ' 145µK, which gives an order of magnitude for the real MOT
temperature and for the speed v0 =

√
kBT/m ' 11.9 cm/s with this speed we can check

self consistently 5 the Brownian motion assumption and the development made in Eq. (I.10).
Due to more complex structure than two energy levels, there exists systems with sub-Doppler
temperatures [MYMB10, CHB+14].

4. 1/γ =
m

~k2L
1

2s0
& 100µs for s0 = 0.1 (which we can consider to be the largest acceptable saturation

parameter in the small s0 limit).

5. The speed recoil is small in front of the mean speed
∆v

v0
= 2

√
ωr/Γd � 1 validating the Brownian

approach.
kLv0
Γd

=
√
ωr/Γd � 1 so the linearization is valid.
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1.3 Shadow effect: an effective attractive force between atoms

In 1988 Dalibard proposed the first model to describe effective interaction between atoms [Dal88].
Indeed, for atoms trapped in a harmonic potential. He considers the fact that the laser is ab-
sorbed as it crosses the cloud, so its entrance intensity I0 will be reduced at the cloud exit.
This position dependence of the laser intensity for a laser propagating on the z+−axis (other
direction lead to similar expressions) can be written as:

I+(x, y,z + dz)− I+(x, v, z) = absorption

= −


I+[f ](x, y, z)

∫

R
σ(z, v′z)f(x′, y′, z′, v′z)δ(x− x′)δ(y − y′) dv′xdv

′
ydv

′
z

︸ ︷︷ ︸
portion of absorbed photons


 dz

(I.16)

with I+(−∞) = I0 and the absorption section (depending on the detuning and thus on position
and velocity via the Doppler/Zeeman effect)

σ±(z, vz) =
σ0

1 + 4

(
δ ∓ kLvz ∓ µz

Γd

)2 . (I.17)

So
dI±
dz

(z) = −
(
I±[f ](z)

∫

R
σ±(z, v′)f(z, v′z) dv′z

)
(I.18)

and

~Frad · ~ei =
~kLΓd

2




I+[f ](ri)/Is

1 + 4

(
δ − kLvi − µiri

Γd

)2 −
I−[f ](ri)/Is

1 + 4

(
δ + kLvi + µiri

Γd

)2


 . (I.19)

with the formal solutions of Eq. (I.18),

I+[f ](z) = I0 exp

(
−
∫ z

−∞

∫

R
σ+(z′, v′)f(z′, v′z) dv′zdz

′
)

(I.20a)

I−[f ](z) = I0 exp

(
−
∫ +∞

z

∫

R
σ−(z′, v′)f(z′, v′z) dv′zdz

′
)
. (I.20b)

To quantify absorption in the cloud we use an experimentally rather accessible quantity: the
optical density (or optical thickness) b(δ) defined as

e−b = exp

(
−
∫ ∞

−∞

∫

R
σ+(z′, v′)f(z′, v′z) dv′zdz

′
)
. (I.21)

For the VLMOT used at INLN its value it typically b(δ = 0) ' 100.
If we suppose the absorption to be small for working regime −δ/Γd ' 4, we can expand the

exponential terms 6 to get a total radiation force of the form

~Frad = −mγ~v −mω2
0~r + ~Fs[f ](~r) + o

(∣∣∣∣
kLvi
δ

∣∣∣∣ ,
∣∣∣µiri
δ

∣∣∣ , b
)
, (I.22)

6. Note that in fact even for δ = −4Γd, b ∼ 1 which is not small, so the expansion might not be valid. But
since there is no better theory available in this regime we keep the expansion.
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where

~Fs[f ](~r) =
− I0
Isat

~kLΓd
2

σL
(
1 + 4 (δ/Γd)

2)2

[{(∫ x

−∞
−
∫ +∞

x

)
ρ(x′, y′, z′)δ(y − y′)δ(z − z′) dx′dy′dz′

}
~ex

{(∫ x

−∞
−
∫ +∞

x

)
ρ(x′, y′, z′)δ(x− x′)δ(z − z′) dx′dy′dz′

}
~ey

{(∫ z

−∞
−
∫ +∞

z

)
ρ(x′, y′, z′)δ(x− x′)δ(y − y′) dx′dy′dz′

}
~ez

]
.

(I.23)

The corresponding two body force is

(~Fs)int(x, y, z) · ~ex = I0
σ2
L

c
sign(x)δ(y)δ(z), (I.24)

where sign(x < 0) = −1 and sign(x > 0) = +1. Note that numerically one must introduce
some spatial extent to the Dirac functions as in [BMW14]. Writing the divergence of this new
force gives,

~∇ · ~Fs = −6I0
σ2
L

c
ρ(x, y, z). (I.25)

The computation of the divergence of a Newtonian force would give the same result! Explaining
the analogy between gravitational systems and MOT. Nevertheless, this force is different from
Newton force because it does not derive from a potential, indeed it is rotational, ~∇×~Fs 6= 0, and
~Fs 6= ~∇Vs for a Vs(~r). Therefore ~Fs = ~∇× ~As + ~∇Vs for some couple ( ~As, Vs). Physically the
system is driven out-of-equilibrium by the six laser, this non-potential force is the mathematical
translation of this fact, it induces particle flux in the system [BMW14] and complicates the
mathematical analysis (a Hamiltonian is not defined for these cases).

Remark I.1
Note that ∂x|x| = sign(x) ∝ (~Fs)int(x) which shows that in one dimension the shadow ef-
fect is a conservative force (it is exactly one-dimensional gravity). It is the additional spatial
dimensions that make the force non conservative.

1.4 Multiple scattering: an effective Coulomb force between atoms

The shadow effect is a first step for an effective interaction model between atoms, neverthe-
less this attractive force does not explain satisfactorily experimental observations that shows in-
compressibility of the MOT that results in a growing cloud size L [CKL14, GPLK10, WSW90].
This naturally leads one to think that in a VLMOT there is non-negligible repulsive interac-
tions between atoms. Two years after Dalibard’s paper, Walker et al. proposed the hypothesis
in [WSW90] that this repulsion comes from a multiple scattering effect; indeed, so far, we have
not considered what happened to a rescattered photon. There are two different possibilities for
a reemitted photon

— Stimulated emission. This process is forgotten since it does not contribute to the total
momentum change of atoms.

— Spontaneous emission. The atom is reemitted with a random direction. So, its probabil-
ity to encounter an atom at distance r is proportional to 1/(4πr2) which is the inverse

Université Côte d’Azur 36



1. STANDARD MODEL FOR MOT

surface of a r−radius sphere. The bumped atom is then pushed by this incident pho-
ton. Considering the large number of spontaneous emission cycles between two atoms,
one can justify 7 an effective repulsive force between atoms to be ~Fc ∝ 1/r2. So, if we
assume isotropic spontaneous emission, remembering the absorption rate ~re Eq. (I.3)
(emission rate should be equal), the average force ~Fc between atoms is

~Fc(~r) =
~kLΓd

2

I0

Is

s

1 + s

〈σR〉
4π

~r

r3

s�1
= I0

σL 〈σR〉
4πc

~r

r3
, (I.26)

where 〈σR〉 is the average cross-section of rescattered photon. It is expected that 〈σR〉 >
σL since some reemitted photons are very close to resonance, so their probability of ab-
sorption is increased. In fact, the reemission spectrum is quite involved to determine and
several photon frequencies are possible [Mol69]. Photons divide in to two contributions:
elastic scattering with a reemitted frequency centered in ωR = ωL and inelastic scattering
with ΩR = ωL ± ΩR, with ΩR a frequency shift that can be computed in some regimes.
The photons with ωL+ΩR have a detuning closer to zeros and a high absorption probabil-
ity resulting in a high σR that is the dominant contribution. The ratio of elastic scattering

over the total scattering is [Mol69, SCF92]
1

1 + s
.

1.5 Other quantum effects

Rubidium atoms or other atoms used in MOT are in general more complex than a two energy
level description, with hyperfine level leading to other cooling/trapping mechanism such as the
Sisyphus effect [DLN+94, DCT89]. Nevertheless, in general these effects are forgotten because
in regimes studied they are small (in general for small saturation parameter s0).

For Rubidium [DAC+00, Ste01] due to the coupling of total angular momentum of the elec-
tron J and nuclear magnetic momentum I which is much smaller, another energy splitting
occurs with a new quantum number F = J + I , describing the hyperfine structure of atoms.
The magnetic field B splits each F level into 2F + 1 levels which has a linear dependence for
smallB (more precisely if the shift induced byB is small in front of the hyperfine splitting). So,
the actual Landé factor for Rb87 should satisfy gF 6= gJ . For example, the two-level transition
used for trapping with Rubidium is Fg = 2→ Fe = 3.

In parallel to the hyperfine structure effects, there is the "dressed atom" approach that com-
putes the rescattering cross section 〈σR〉 [RHV11] and deals with the physics at large saturation
s0 [MS79, LPR+89]. For example, in [MYMB10] and [CHB+14] the effect of I0/Isat (small
or not) is clearly measured and compared with the Doppler prediction, leading to sub-Doppler
measurements.

7. A similar argument for writing the radiation pressure Eq. (I.7) should be used, verifying that the thick band
approximation is enough to write an average force between two atoms.
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2 SUM UP AND QUESTIONS

2.1 Sum-Up of the model

The standard model describing a MOT is then
— Radiation pressure of laser → Doppler effect favors cooling of atoms → friction force

~Ffr = −mγ~v
— Magnet coils → splitting of energy levels → favor absorption of confining photons →

position trapping (Zeeman effect)→ ~Ftr = −mω2
0~r

— The effective repulsive interaction between atoms (due to multiple scattering) is given by
a potential satisfying a Poisson equation ~Fc ∝ 〈σR〉σL~r/r3

— Due to attenuation of the lasers in the cloud, there is an effective attractive force ~∇·~Fs ∝
−σ2

Lρ.
One expects for VLMOT 〈σR〉 > σL, so the Coulomb like force is the dominant interaction
force. This mean that the Walker et al. model does indeed predict a cloud size growing with
the number of particles since the repulsion dominated. It means that up to some modification
(trapping, friction diffusion, shadow force) a VLMOT behave like a plasma of charged particles.
Of course, this conclusion is appealing as plasma physics is very rich and well investigated. But
due to the relative complexity of the various effects considered for the model it is also legitimate
to question this "to good to be true" vision of VLMOT. In the next Section, we review some
experiments linked with those questions.

2.2 Experimental confirmation?

The Doppler/Zeeman cooling and trapping have been observed since the beginning of MOTs
with for example temperature measurements and cloud size (e.g. [RPC+87, SF91, MYMB10]).
The shadow effect has also been observed in 1D or 2D MOTs (meaning the magnetic field is
very strong in two or one dimension leading to consider only the other(s) remaining dimension)
with respectively cigar or disc shapes. Indeed, in those asymmetric setting multiple scattering
is expected to be much weaker, the reason being that most of the rescattered photons escape the
trap in another dimension of the MOT.

A list of the experimental clues in favor of this form of long-range Coulomb force is the
following

— Scaling experiments [CKL14, GPLK10, Gat08] where L ∼ N∼1/3. A skeptic would say
as a disclaimer that other types of non long-range interactions can give the same scaling
e.g. imagine a set of tennis balls (hard spheres) bound together also have L ∼ N1/3.

— Coulomb explosion. [PSDJ00, Pru12] tested the expansion speed of a cloud when the
Zeeman trapping is turned off The result shows a good agreement with what is predicted
for a similar Coulomb gas.

— MOT instabilities. In the works [TMK10, LMK06], the authors tested some instability
threshold for the MOT due to the non linearity in the radiation pressure. If the instability
criterion is found using the Coulomb force for the multiple scattering, it is also not a
direct test of the force.

To the author’s knowledge these are the only experimental evidences agreeing quantitatively
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with the Coulomb nature of the repulsion. Of course, finding the Debye length in a MOT would
incontestably highlight the plasma like nature of VLMOT. That is what we will seek.

3 NON NEUTRAL PLASMA

We have seen in previous Section that if one forgets about the shadow effect, the VLMOT
description in term of forces is equivalent to a plasma formed by electrons pushing each other
via Coulomb force and trapped by a harmonic trap. This model is known as the Non Neutral
Plasma (NNP) model. NNP experiments are done with a Penning trap [DMF88, MDB+88] that
traps one charged species (e.g. electrons) with a magnetic and electric field. Another similar
model, that we will also refer to is the One Component Plasma (OCP). It is a plasma com-
posed with electrons embedded in a uniform neutralizing background of large positive ions
(see [DO99, Ich82, TLB99] for reviews on the subject).

The primary goal of the collaboration and this work is to highlight the similitudes between
VLMOT "standard model" and NNP with observables unilaterally characteristic of Coulomb
interactions (more selective than the scaling law L ∼ N1/3). At this point we had two ideas,
one was to look directly at the correlations in the system and compare them with those of the
NNP model. The other idea was to force the system with an external sinusoidal potential and
look at the response of the cloud, a dependence on the force nature (attractive/repulsive and
short/long-range) is then expected depending on the sinusoidal modulation.

After defining precisely NNP model and giving its essential parameters and features such
as the Debye length we will do a recap of the different expected experimental values for the
VLMOT comparing it with some true plasma in Table I.1.

Then we will present different relevant observables of an NNP adapted to a VLMOT.

3.1 Presentation of NNP model

3.1.a Standard NNP model

The NNP model is formed with a single charged species, in general electrons, trapped with
a harmonic force. The N electrons interact through long-range Coulomb force

~Fc =
C

r3
~r (I.27)

where here C = I0
σL 〈σR〉

4πc
≈ 10−34 N·m2. For electrons Celec = q2/(4πε0) ' 2 · 10−28 N·m2

(q the electron charge and ε0 the vacuum permittivity). So, there is an order 106 difference and
the effective repulsion between MOT’s atoms coupling is very weak.

The Poisson equation satisfied by the associated potential Vc is

∆Vc = −4πC δ(~r). (I.28)

The N evolution equations for the standard NNP systems are

~̇ri = ~vi, (I.29a)

m~̇vi = ~Ftrap(~r) +
∑

i 6=j

~Fc(~rj − ~ri) (I.29b)
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where ~Ftrap(~r) = −mω2
0~r. When N →∞, as we have seen in the Introduction we can write in

the mean field approximation the Vlasov equation

∂tf + ~v · ~∇rf +

(
~Fc[f ] + ~Ftrap

)

m
· ~∇vf = 0. (I.30)

3.1.b NNP model for the MOT

When adding the other forces present in a MOT to the NNP model, such as friction, diffusion
and shadow effect we get

~̇ri = ~vi, (I.31a)

m~̇vi = −γ~vi −mω2
0~ri +

∑

i 6=j

~Fint(~rj − ~ri) + ~ξ(t), (I.31b)

where ~Fint = ~Fc + ~Fs, ξ is a stochastic Gaussian variable accounting for the random noise 8

〈ξ(t)〉 = 0 (I.32a)
〈ξ(t1)ξ(t2)〉 = 2γkBTδ(t2 − t1) (I.32b)

Then again in the large N limit one gets the Vlasov-Fokker-Planck equation

∂tf + ~v · ~∇rf +

(
~Ftrap + ~Fc[f ] + ~Fs

)

m
· ~∇vf = γ~∇v

(
~vf +

kBT

m
~∇vf

)
(I.33a)

and the associated Poisson equations

~∇ · ~Fc = −∆φc = 4πCρ, (I.33b)

~∇ · ~Fs = −6σdρ. (I.33c)

The friction and diffusion model possess a return toward thermal equilibrium that the original
Vlasov equation does not have. In [RHV11] is considered the Fokker-Planck equation without
expanding the radiation pressure force, leading to a position and velocity dependent diffusion
coefficient and drift term. In our regime of low saturation and thick band, their model reduces
to our equation Eq. (I.33a).

After a fast time 9 1/γ, the velocity distribution relaxes to a Gaussian equilibrium leading for
the spatial density evolution to a Fokker-Planck equation (also called nonlinear Smoluchowski
equation)

γ∂tρ(~r) = ~∇ ·
(
ω2

0~rρ+
1

m
(~Fc + ~Fs)[ρ]ρ+

kBT

m
~∇ρ
)
. (I.34)

From now on we will formally forget about the Shadow effect. Indeed since it has the same
divergence as the Coulomb force (with an opposite sign) it suffices to rescale the Coulomb
parameter C to include its effect. The non potential part effects of the Shadow force will be then
neglected. Actually, simulations with the full Shadow effect were performed and in the regimes
relevant for the experiment, it did not add significant changes, justifying our assumption for a
first exploration of the long-range effects.

8. A Gaussian noise is motivated by the discussion Section I.1.2.

9. Indeed in standard experiments the quality factor Q = ω0/γ is in the over-damped regime Q <
1

2
.

Université Côte d’Azur 40



3. NON NEUTRAL PLASMA

Density profile for zero temperature

The most natural observable is the density profile of the cloud. Without correlation at zero
temperature, the density solution of Eq. (I.34) is expected to have "rigid" boundaries ρ(~r) =
ρ0(~r)Θ(L− r) where L is the cloud radius 10.

From Eq. (I.34) at T = 0 K one possible solution satisfies for ρ 6= 0

mω2
0~r + ~Fc[ρ] = 0.

Applying the divergence operator ~∇· gives a constant density profile for r < L,

ρ(~r) =
3mω2

0

4πC
Θ(L− r) (I.35a)

with the inside density

ρ0 =
3mω2

0

4πC
. (I.35b)

The cloud radius L can be computed from the normalization condition
∫

R3

ρ(~r) d3r = 4π

∫ ∞

0

r2ρ(r) dr =
4πL3ρ0

3
= N ; (I.36)

thus,

L =

(
NC

mω2
0

)1/3

. (I.37)

So L ∝ N1/3 for the NNP model. This was more or less observed in [CKL14].

Density profile for non-interacting cloud

The in this case analytically tractable limit of the model is when particles do not interact with
each other; they just feel the trapping due to the Zeeman/Doppler effect and the thermal motion.

From Eq. (I.34), one possible solution satisfies for each direction

mω2
0riρ+ kBT∂riρ = 0,

giving (with the normalization condition)

ρT (~r) =
N

2π3/2

(
mω2

0

kBT

)3/2

exp

(
−mω

2
0

kBT

~r2

2

)
, (I.38)

which does not display any N−scaling size. We can define the characteristic length (sometime
called Gaussian length or one particle length) for this system as

lg =

√
kBT

mω2
0

.

10. For non-zero temperature, this rigid boundary is softened and one expects ρ(r)→ 0 for r →∞.
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3.1.c Debye length

In the OCP model, the classic computation made by Debye and Hückel [HD23] shows the
existence of a typical correlation length between particles. This is the famous Debye length. In
the context of a plasma with electron and large positive ions, there is a simple interpretation.
The positive ions screen the long-range interactions between electrons for long distance, see
Figure I.5, so the effective sphere of influence for one electron is given by the Debye radius.
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Figure I.5 – Schematic representation of a neutral plasma (OCP model) exhibiting a Debye
length of effective interaction.

In the VLMOT model, the neutralizing background of positive ions (OCP model) is replaced
by the trapping potential (NNP model). Formally a Debye length is also expected. We will only
show the Debye-Hückel computation for this case.

Imagine the system is at statistical equilibrium with a constant density profile ρ0 and you add
a small perturbation, one particle at ~r = 0. The perturbed profile is given by the Boltzmann
factor

ρ(~r) = ρ0e−φtot(~r)/(kBT ), (I.39)

and the associated Poisson equation for the total potential is

∆φtot[ρ(~r)] = ∆φc[ρ(~r)] + ∆φtr(~r) = −4πCρ(~r)−mω2
0 − 4πCδ(~r). (I.40)

When the temperature is large with respect to the potential created (typically
φtot

kBT
� 1), it

is legitimated to expand

∆φtot = −4πCρ0 +
4πc

kBT
ρ0φtot + 3mω2

0 − 4πCδ(~r). (I.41)

Defining the Debye length 11 as

λD =

√
kBT

3mω2
0

, (I.42)

we get a total potential of the form
(

∆− 1

λ2
D

)
φtot = −4πCδ(~r), (I.43)

11. Note that lg =
√

3λD
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and solution is known as the Yukawa potential

φtot(r) = C
e−r/λD

r
. (I.44)

So, the typical potential created by a particle is screened (strongly attenuated) for distance larger
than the Debye length. For λD →∞, this potential is again the Coulomb potential as expected.

3.1.d Plasma parameter

The experimental set up is believed to be in a ’gas like phase’ quantified by the plasma
parameter Γ which is the ratio of the typical potential energy between two particles to the
typical kinetic energy of a particle

Γ =
C/a

kBT
=

C

kBT

(
mω2

0

C

)1/3

=
a2

3λ2
D

(I.45)

where a is the mean distance between particles

a =
L

N1/3
=

(
C

mω2
0

)1/3

. (I.46)

Note that in Γ � 1 regime we justify the derivation made for the Debye length in Eq. (I.43),
which means that for other regime Γ > 1 the Debye length is not physically relevant any more.
It becomes smaller than the inter-particles distance Eq. (I.45).

This is the unique parameter determining the system state for the NNP model (when the
system size is infinite or with periodic boundary conditions), it measures the correlation in the
system. For the standard OCP model, there is one phase transition from liquid phase to solid
phase (see the Los Alamos National Laboratory Plasma group website 12 for nice illustrations),

Fluid Solid
Gas-like | Liquid-like

Γ� 1 | Γ ∼ 1− 100 Γ > 175

For the finite sized MOT, we also consider

h = lg/L (I.47)

which quantifies in a way the finite size and temperature effects.
To have a gas like phase and a quasi-step function density profile we need

Γ =
a2

l2g
� 1 (I.48)

h =
lg
L
� 1 (I.49)

this regime is believed to be the one of the VLMOT of INLN.

12. http://www.lanl.gov/projects/dense-plasma-theory/research/one-component-plasma.php
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A last characteristic plasma parameter is the plasma frequency (also called Langmuir fre-
quency) defined for a MOT as

ωp =

√
4πρ0C

m
=
√

3ω0. (I.50)

It characterizes the fast oscillation of the atoms when small perturbations move aside a plasma
from a homogeneous distribution. In fact, those oscillations can be related to the Landau damp-
ing mechanism that we will study in details in Section V.4.

3.2 Some numerical values for experimental MOT

In our MOT, the plasma parameter is weak Γ ∼ 10−4, which means that the interactions are
weak in comparison with kinetic energy. Thus, one does not expect a liquid or crystal structure
in the atomic cloud but rather a gas like medium. This is the weak correlations regime.

Small MOTs size has been measured (e.g. [RPC+87]) to be of the order of 100µm. In
these MOTs we expect no Coulomb interactions between atoms. Hence the particles follow a
Gaussian distribution Eq. (I.38) with lg ∼ 100µm. Since lg =

√
3λD, we have an expectation

value for the Debye length, that in principle should remain true for very large MOTS with
repulsive interactions.

In Table I.1 we present some typical value for known weakly coupled (Γ � 1) plasma and
compare them with the VLMOT. Despite that the INLN MOT is far from known a regime of
plasma it shares some parameters with magnetic fusion plasma.

T (K) ρ0 (cm-3) L (cm) Γ h a (cm) λD (cm) ωp (rad/s)

Magnetic Fusion 108 1014 100 10−7 10−4 10−5 10−2 6 · 1011

Solar Wind 105 10 6 · 105 10−8 10−3 0.1 2 · 105 7 · 103

Galactic center 107 102 1017 10−10 10−14 0.08 3 · 103 6 · 105

VLMOT 10−4 1011 1 10−4 0.01 10−4 10−2 103

Table I.1 – Some typical parameters for weakly coupled plasma.

So far we have gathered a number of parameters to characterize the system. Here we try to
give an overview of them with some typical experimental values.

The number of atoms can be varied over several orders of magnitudes from N = 106 to 1011

for the INLN MOT. For N ∼ 1011 one has L ' 1 cm with a density ρ0 ∼ 1011 atoms/cm3.
The on resonance optical thickness is computed with the measured maximal density (which is
assumed constant along the cloud) and the cloud size L Eq. (I.21),

b0 = 2Lσ0ρ
0 ∼ 100.

It might seem large and completely invalidate the small b hypothesis needed to express the
shadow effect but it decreases quickly with the detuning since

b(δ) =
b0

1 + 4δ2/Γ2
d

, (I.51)

insuring that experimental working detuning b(|δ|) ∼ 1.
Here is a list of several other values
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— kL =
2π

780
nm−1 is the wavenumber of the laser

— m = mRd = 1.443× 10−25 kg is the atom mass (while melectron = 9.1 · 10−31 kg)
— Two energy level rubidium atoms ∆E = ~ωatom ' 1.589 eV, with the corresponding

wavelength λatom = 780.241 nm (in vacuum)
— Temperature ∼ 150µK
— I0 ≈ 1.2 mW/cm−2 lasers intensity
— Is = 1.67 mW/cm−2 [Ste01].
— Γd = 2π × 6.06 MHz natural width of the atomic transition for Rubidium atoms at

resonance at ωatom

— σ0 ' 2.9× 10−9cm2

— C = I0
σL 〈σR〉

4πc
≈ 2 · 10−34 N·m2 (while Celectron = 2 · 10−28 N·m2)

Also, to be useful the probing of the Debye length by a laser must satisfy λD/λL � 1
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CHAPTER II

THEORETICAL AND EXPERIMENTAL
OBSERVABLES

The analogy between the MOT and NNP model is now established. The aim of this Chapter
is to define the characteristic observable of the NNP model (and in general long-range systems)
that could be use in a real experiment. We will also introduce our numerical simulations to
illustrate those observable. In next Chapter, all those tools will serve the experimental proposal
to see long-range effects.

1 DENSITY

The most obvious observable is the one point density function ρ(~r) that depends directly
on the interactions. Due to the supposed isotropy of the system one can in general consider
only ρ(~r) = ρ(r). However experimentally, one cannot 1 access this 3D profile and only an
integrated profile ρx(x),

ρx(x) =

∫ L

−ε

∫ L

−ε
ρ(
√
x2 + y′2 + z′2) dy′dz′. (II.1)

It corresponds to what is seen when the cloud is observed with fluorescence on a slice −ε <
y = 0 < ε.

The fluorescence technique consists in changing brutally the detuning of the confining lasers
from the working experimental value to the largest detuning possible |δ| = 8Γd and observing
the photon emitted. The switch and measurement are fast enough so that the atom positions
do not change much. If single scattering events are diminished "∝ σL ↓" at large detuning,

1. In principle a tomography, which gives ρ(r), is doable but experimentally somehow painful to set up.
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scattering followed by rescattering on another atom ” ∝ σLσR � ” is furthermore diminished.
Therefore, photons on the CCD camera mainly come from single scattering events and so are
linked with the position of atoms. The resulting profile is more accurate than directly looking
at the emitted light from the cloud at smaller detuning [CKL14] where both types of scattering
are mixed.

So experimentally we will compare two things with the Coulomb model
— The shape of ρx(r)
— The scaling of the cloud radius with various quantities. Practically it is easy to change
• The detuning δ with the disadvantage that it changes both interactions and tempera-

ture.
• The number of particles N , that should be a well-controlled and predicted quantity.

The cloud size is experimentally measured as the Full Width at Half Maximum (FWHM) of the
fluorescence profile. Per the standard model Eq. (I.35),

ρx(x) ∝
√
L2 − x2Θ(L− r)

and L ∼ N1/3. [CKL14] gives
— approximatively the good N−scaling
— a density profile ρx(x) which is not very well fitted by the theory.

2 PAIR DISTRIBUTION FUNCTION

The pair distribution function g(2) is a direct measure of correlation in the system, it is defined
through the one and two point density function,

ρ(2)(~r2, ~r1) = g(2)(~r2, ~r1)ρ(~r1)ρ(~r2), (II.2)

where ρ(2)(~r2, ~r1) measures the probability of two atoms being at ~r2 and ~r1. If g(2) = 1, it means
there are no correlations, thus a particle at ~r1 will see a homogeneous density around it with no
particular exclusion zone. For a weakly correlated plasma Γ � 1 the pair correlation function
can be found by the Debye-Hückel theory (similar calculation to that of Section I.3.1.c) as

g(2)(~r1, ~r2 − ~r1|) ' g(2)(r) ' 1− aΓ

r
e−r/λD ' exp

(
−aΓ

r
e−r/λD

)
(II.3)

where we assumed the isotropy; the last equality an interpolation between g(2)(r = 0) = 0 and
the Debye-Hückel theory, its validity is discussed in [BH80]. For small r � λD it is very close
to zero, meaning two particles cannot collide (because of the interaction), then it goes quickly
to 1, meaning for r > λD one particle "sees" a homogeneous repartition of particles.

Theoretically and numerically this quantity is very interesting and accessible, but experimen-
tally it is not directly accessible. It would require position tracking for particles. Note that for
some "dusty" plasma experiment with heavy ions it is feasible [SVH+04].
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3 NUMERICAL EXAMPLES

The major issue with the simulation of a VLMOT is the number of particles. Due to the
machine limitations, the simulated particle number cannot be higher than aboutN ∼ 105. Thus,
obtaining both low h of Eq. (I.47) and Γ of Eq. (I.45) is difficult. The only way to decrease one
without increasing the other is to have a large N . In fact, to get h ∼ 102 and Γ ∼ 10−4 as in the
experiment we would need about N ∼ 109 particles...!

Nevertheless, we expect the main features we seek to remain. Thus, in Part One we will
perform molecular dynamics simulations with N = 16384 2.

The inter-particles distance a of Eq. (I.46) is relatively well known in experiments since both
the number of particles and the size of the cloud are controlled. It is thus natural to use a to
define dimensionless distances.

3.1 Numerical details

All MOT numerical simulations are performed via a 3D molecular dynamics (MD) code with
a parallel implementation on a Graphical Processing Units (GPU). I gratefully acknowledge
Bruno Marcos who provided the code in its original structure (for pure self-gravitating systems).
I added to the code friction, diffusion 3 and trapping. For some tests I also coded the Shadow
Force. The code performs a time integration for the N particles evolving through Eq. (I.31).

— The interaction force is coded in parallel: thanks to the block structure of GPUs the
force Fi felt by an atom i can be computed simultaneously for many is. Compared
with a standard Central Processing Unit (CPU) computation the number of operations is
still proportional to N(N − 1) but with a coefficient greatly diminished. The speed-up
depends on the number of particles, the problem and the GPU used, but here it is at least
100 times.

— The whole Langevin dynamics (with friction and diffusion) is coded according to a sec-
ond order Leapfrog algorithm [ISP10].

The advantage of this code is that it computes exactly all force terms. Indeed, other codes such
as GADGET [Spr05], make approximations using the long-range nature of the force to gain in
computation time. It is also a disadvantage because GADGET codes are much faster. In our
simulations we find a compromise between a large particle number and a reasonable simulation
time with N = 16384.

2. This number was chosen because it is a power of two and it is optimal for GPU computing.
3. The cuRAND library [CGM14] allows fast random Gaussian number generation on GPU.
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3.2 Numerics

For one snapshot the density is computed as

ρ(r) =
∑

~r1

δ∆r(|~r1| − r)
V}(r)

, (II.4)

where V} = 4π(r3 − (r − ∆r)3)/3 is the volume of a 3D ring between r and r + dr Then it
is averaged over at least 50 snapshots. Simulations are shown in Figure II.1(a), for different

0 10 20 30
0

100

200

300

400

r/a

ρ(r)

T = 1
T = 4
T = 20

L/a

(a) Density profile ρ(r). We noted the theoretical length
L given by Eq. (I.37).
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(b) Pair correlation function g(2)(r).

Figure II.1 – Density and pair correlation functions from MD simulations for three different
temperatures (see Table II.1 for parameters value).

dimensionless temperatures T . For h � 1 the profile is a step function while for h � 1 it
has a Gaussian shape. The length of the cloud L indicated on the Figure is well recovered in
simulation as well as the density ρ0 = 298. The pair correlation function g(2) is computed as
follows:

g(2)(r) =
1

Nz

∑

r1<ε

ρ(2)(r, ~r1)

ρ(r1)
=
∑

r1<z

∑

~r2 6=~r1

δ∆r(|~r2 − ~r1| − r)
V}(r)ρ(r1)

(II.5)

where

δ∆r(r
′ − r) =

{
1, |r′ − r| < ∆r

0, elsewhere.
(II.6)

Here ε is a parameter that should be smaller than the cloud radius but large enough to sample
many particles. Just a note, the large r limit of g(2) is supposed to be 1, but obviously for a
finite system it will go to 0. It does not matter since the correlation effects we seek are found
for small r.
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Figure II.2 – 1− g(2)(r) for three different temperatures in a simulation with standard Coulom-
bian interaction. Also, plotted is the analytical expression of g(2)(r) with the computed values
of λD, a and Γ (see Table II.1 for parameter values)

Numerical test

To see these correlation effects (i.e. when g(2)(r) 6= g
(2)
MF(r) = 1) we look at 1 − g(2)(r)

in Figure II.2. We compare the simulations with the theory of Eq. (II.3) with the theoretical
parameters (hence it is not a fit). The effect of temperature is clear: on one hand for high cor-
relations (low temperature) the theory is less accurate. On the other hand for high temperature,
fluctuations are higher which may also damage the precision.

T = 1 T = 4 T = 20

λD 0.0577 0.115 0.258

h 0.0245 0.0490 0.110

Γ 0.862 0.215 0.0431

Table II.1 – Parameters used in the MD simulations for different temperatures. We also have
temperature independent parameters: γ = 100, mC = 0.08, N = 16384, ω0 = 10 so L = 2.36,
a = 0.093, ρ0 = 298 for the three different temperatures.
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4 STRUCTURE FACTOR

If the pair correlation function was clear to interpret and density independent, it could not
be directly observed in experiment 4. However, the static structure factor S(~k) has the advan-
tage that it can be directly linked to the experimental diffraction profile (see Appendix A.1).
Following [HM06], we define the structure factor as

S(~k) =

〈
1

N
ρ(~k)ρ(−~k)

〉
=

〈
1

N

∣∣∣∣∣
∑

i

e−i
~k·~ri

∣∣∣∣∣

2〉
(II.7)

where the bracket stands for an ensemble average and we have used the empirical density Eq. (4a)
to obtain the last expression

ρ(~k) =

∫
ρ(~r)e−i

~k·~r d~r =

∫ N∑

i=1

δ(~r − ~ri)e−i~k·~r d~r =
N∑

i=1

e−i
~k·~ri . (II.8)

The ensemble average is crucial to see correlations, removing it carelessly would erase them.
Another formulation of the structure factor highlights their role

S(~k) =

〈
1

N

∣∣∣∣∣
∑

i

e−i
~k·~ri

∣∣∣∣∣

2〉
=

〈
1

N

N∑

i=1

N∑

j=1

e−i
~k·(~ri−~rj)

〉
= 1 +

〈
1

N

N∑

i=1

N∑

j 6=i
e−i

~k·(~ri−~rj)
〉

= 1 +

〈
1

N

N∑

i=1

N∑

j 6=i

∫ ∫
e−i

~k·(~r1−~r2)δ(~r − ~ri)δ(~r − ~rj) d~r1d~r2

〉

= 1 +
1

N

∫∫
e−i

~k·(~r1−~r2)ρ(2)(~r1, ~r2) d~r1d~r2

(II.9)

where we used the definition of the empirical two point density function. So, neglecting correla-
tions would correspond to considering ρ(2) = ρ(~r1)ρ(~r2). For an isotropic infinite homogeneous
media (N →∞), one can write

S(k) = 1 + ρ0

∫
e−i

~k·~r d~r + ρ0

∫
(g(2) − 1)e−i

~k·~r d~r = 1 + ρ0Vtotδ(k)− 4πρ0

∫
aΓ

r
e−r/λDe−i

~k·~r d~r

= Nδ(k) + 1− 4πaΓρ0

k2 + 1/λ2
D

= Nδ(k) + 1− λ−2
D

k2 + 1/λ2
D

= Nδ(k) +
k2

k2 + 1/λ2
D

(II.10)

where the 3D Fourier transform was directly obtained from the modified Poisson equation Eq. (I.43)
that is satisfied by the Yukawa potential. The Dirac function corresponds to the unscattered ra-
diation. Without interactions g(1) = 1, so one would expect

SMF = Nδ(k) + 1.

In our problem, the structure factor will be modified for large wavelength due to the finite
size effect, resulting in a spread peak reflecting the Fourier transform of the density profile, not
just a Dirac peak.

4. However if the media is infinite, homogeneous, and isotropic it can be computed via the structure factor.
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Numerical test

Computing S(|~k| = k) for a MD simulation of a trapped Coulomb cloud gives Figure II.3,
— The main peak in S(k = 0) = N correspond to the unscattered radiation.
— For small k ∼ 1/L, a large peak with many bump, reflecting the step function profile of

the cloud
— For large k, the structure factor goes to 1. This contribution is always present and stands

for a background noise.
— For intermediate k ∼ 1/λD, a small gap is formed and is deeper when the temperature is

smaller (thus it depends on λD). This is characteristic of the Coulomb correlations.
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Figure II.3 – Structure factor S(k) from MD simulations averaged in all ~k directions at a fixed
|~k| = k for three different temperatures. We indicated the position of the peak corresponding to
the cloud size 2πa/L. For other parameters see Table II.1.

We compare these simulations with the exact overcritical expression Eq. (II.10) for k � 1/L in
Figure II.4. Once again, the simulation/theory agreement is very good.

5 COMPARISON WITHOUT CORRELATIONS

We have a clear prediction for an experimental measurement of correlations: a "dip" in the
structure factor characteristic of Coulomb interactions with a functional dependence that leads
directly to the Debye length. Nevertheless, to be sure that this "dip" corresponds to correlations
we can compare it with the structure factor of a cloud with no correlations (see Figure III.1).
We propose two different ways to achieve this, one that will be useful for numerics and one that
shall be used in experiments.
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1 7

1

5

0.1

ka

S(k)

T = 1
T = 1 theory
T = 4
T = 4 theory
T = 20
T = 20 theory

a/λ1
Da/λ4

Da/λ20
D

Figure II.4 – Structure factor S(k) from MD simulations averaged in all ~k directions at a fixed
|~k| = k for three different temperatures. We plot the non fitted theoretical expression Eq. (II.10).
We indicated the position of the different Debye length. Theoretical values used are given in
Table II.1.

5.1 Random arrangement

Numerically we know the density profile, it is then easy to draw random particle positions
according to this profile. With this procedure, we have a cloud with the exact same density
profile but without any correlation between particles, in particular we expect g(2)(r) = 1. This
method is also very useful for the structure factor since the density profile plays an important
role, so keeping it constant allows us to distinguish the correlation effects without assuming an
ideal profile. This will be very useful when we study different interaction models (with a priori
different density shapes). However, we cannot apply this procedure in experiments.

5.2 Turning off the trap and interactions

In the experiment one cannot turn off interaction without turning off the lasers and thus the
whole trap. When it is done, particles evolve freely with constant speed and direction. After a
time tD = λD/ 〈|v|〉 (typical time to "escape" the Debye radius), we expect correlations to have
diminished greatly. Plotting the new structure factor 5 (Figure II.5) gives as expected a "closing

5. From now on we normalize the structure factor by S(0).

Université Côte d’Azur 54



6. DIFFRACTION AND STRUCTURE FACTOR: LINK WITH EXPERIMENTS

of the dip". Note that tD is estimated as

tD =
λD
〈|v|〉 =

√
kBT

3mω2
0√

8kBT

πm

=

√
π

24ω2
0

≈ 1 ms.

1

1

ka

S(k)

Trap ON
Trap OFF t = tD
Trap OFF t = 2tD
Trap OFF t = 3tD

Figure II.5 – Structure factor S(k) from MD simulations with the trap ON (interaction force
+ friction/diffusion + harmonic force) and after turning OFF the trap (evolution at constant
velocity ~v). We wait respectively tD, 2tD, 3tD and plot the associate structure factor to observe
the correlations disappearing.

.

Experimentally this method is well controlled. The escape time has tD small enough so the
density profile doesn’t change too much (and so the structure factor). However, an issue of this
method is that it cannot be simply transposed for the modulations experiment we will propose
Section III.2.

6 DIFFRACTION AND STRUCTURE FACTOR: LINK WITH
EXPERIMENTS

As explained in Appendix A.1, there is a simple link between the structure factor S(~k) and
the experimental diffracted intensity. However, the real diffracted intensity contains multiple
scattering (which is not contained in S(k)) events that can screen the effect we seek. These
events are typically measured by the optical thickness b(δ) Eq. (I.51). For large b, multiple
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scattering is very important, while for very small b the diffraction is mainly composed of single
scattering. We show in Figure A.1 that for b ∼ 1 these effects are small and thus can be forgotten
for this first exploration. A laser emits a wave ~Ein ∝ eikLz~ez. The wave is diffracted in direction

θk
~ki = kL ~ez

~kf ~k = ~ki − ~kf

Figure II.6 – Sketch of an incident beam ~ki diffracted on an atom with an angle θ.
.

~kf = kL(cosϕk sin θk, sinϕk sin θk, cos θk), see Figure II.6. In our regimes, it is natural to
consider elastic scattering |~kf | = |~ki| = kL|~ez|). The difference vector ~k = ~ki − ~kf appears
naturally (see Eq. (A.4)) in computation of the diffracted light, thus we will study S(~k) =
S(θk, ϕk).
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CHAPTER III

LOOKING FOR DEBYE LENGTH AND
OTHER PLASMA PHYSICS EFFECTS

The goal of the experimental collaboration is to highlight the repulsive long-range nature
of the effective forces between atoms as it was predicted by [WSW90]. As we have seen no
experimental measurement has yet confirmed with no ambiguities these forces.

In this Chapter, we come to what is the result of Part One: experimental proposals to measure
the Debye length or at least stress the long-range nature of the forces. We first briefly review
the direct diffraction response method with a more realistic Laser shape. However, in real
experiment this method might give a signal way too weak to be observed. The other experiment
idea is to force the MOT with an external potential and look at its response. This latter should
be characteristic of the nature of the effective interaction forces. The numerics and theoretical
prediction are compared to the preliminary experiment done by the INLN team. The theoretical
and experimental data are consistent nevertheless it remains difficult to draw conclusion
on the presence or not of long-range forces. Indeed, the effect sought might be cover by
density effects due to the existence of two diffraction regimes that crossover about where the
experiment probed.

1 DIRECT PROBING

1.1 With a Gaussian probing beam

In real experiments the probing Laser (in the z direction) is not an ideal plane waves EG ∝
eikLz but has a Gaussian envelope. Thus, we consider following expression for the probing
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Laser
ELaser ∝ eikLze−2x

2+y2

w2 ,

where w is the Laser waist 1. If the Laser waist w is smaller than the cloud’s size (typically in
experiments L ' 8 mm and w ' 2 mm) it has the advantage to soften borders. Figure III.1
clearly shows how in the diffraction response border effects are suppressed with a Gaussian
beam. We also compare this profile with an another one without correlations. This uncorrelated
cloud was obtained via the procedure explained in Section II.5.1 (we randomly drawn particles
along the density of the correlated cloud). Clearly the small dip disappears with correlations.
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Figure III.1 – Structure factor with a Gaussian probing beam SG(k) and with a plane wave S(k).
The "random" curve is obtained for a random drawing of particles as suggested in Section II.5.1.
We plot the non fitted theoretical expression Eq. (II.10) of the Structure factor. Theoretical
values used are given in Table II.1, here T = 4.

1.2 Comparison with experiments

The correlations of the Coulomb forces are characterized by a small dip in the diffracted
intensity as explained in Section II.5. We expect the background intensity to be of the order
1/Nd, where Nd is the number of diffracting atoms. If the probing beam is larger than the
cloud all atoms diffract so Nd = N and S(k → ∞)/S(0) = 1/N ∼ 10−10! Such contrast
leaves no hope to observe any dip near k = 1/λD (even with a Gaussian beam where Nd is
smaller the contrast would be too large). The best experimental resolution is about five orders
of magnitudes...

A mask was used to hide the central peak in order diminish the contrast but preliminary
experiments where pessimistic. Thus, this experiment was abandoned.

1. There is in principle also a dependence of the waist dependence on the longitudinal direction w(z) but for
the Laser used, this effect is very small since z < zR = 41 m, where zR is the Rayleigh length.
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2 RESPONSE TO AN EXTERNAL POTENTIAL

Since the dip characterizing the Debye correlation is very hard to detect in experiments, we
must change strategy. Going from a static measurement, to a response to an external forcing
measurement, increasing the signal to measure. Note that not only the measurement principle
is different but also the effect sought. In previous experiments, we wanted to analyze the posi-
tion of particles to find some special arrangement between them: correlations, characteristic of
Coulomb interactions. Here we no longer look directly for correlations between particles, but
rather for a response characteristic of Coulomb forces (or more generally long-range interac-
tions).

2.1 Experiment principle

We apply a modulation in one direction ~ex of the cloud and measure the response depending
on the modulation length. The modulating potential is made experimentally by focusing two
interfering laser beam on the cloud. It shape is

φext = A sin(kex)

where the angle between the two modulating Lasers determines the wavelength ke and A is the
modulation amplitude. The Fokker-Planck equation predicts the density response in stationary
regime

~∇ ·
[
(~Ftr + ~Fc[ρ])ρ− kBT ~∇ρ− ρ~∇φext

]
= 0, (III.1)

so around the constant profile ρ(~r) = ρ0 + δρ(~r), the linear response in A is (neglecting border
effects of the cloud)

∆δρ− κ2
Dδρ = − A

kBT
k2
eρ0 sin(kex), (III.2a)

so

δρ(x, y, z) =
A

kBT
ρ0 k2

e

k2
e + κ2

D

sin(kex) (III.2b)

with κD = 1/λD, where we used that ~Fc[ρ] + ~Ftr = 0. Hence the modulated profile has a
clear amplitude dependence on the modulation number ke and it is characteristic of Coulomb
interactions (another force would have given a different result). Hence if we measure this shape
it will prove the experimentally the Coulomb-like model of VLMOT [WSW90]. In next Section,
we will discuss this dependence in terms of long-range interactions.

Remark III.1
Here we have done a 3D computations assuming an infinite homogeneous unmodulated density.
Of course, the border effects (as finite size and temperature) might modify slightly the profile
and response, but it seems quite safe to assume that at first order and for k � 1/L they can be
neglected
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2.2 Fluorescence-like density profile

2.2.a The Response function

A direct observation of the modulation effects consists in looking directly at the density
profile ρx(x) via the fluorescence technique. In the Fourier spectrum, we expect a peak at
kx = ke with height proportional to the response function

B(k) =
k2

k2 + κ2
D

, (III.3)

there are also some density effects for k . 1/L since ρ0 is not a perfect infinite constant den-
sity profile. Without interactions between particles (thus with no Debye length), the response
function is B(ke) = 1. For other type of interaction forces this response function changes. The
interpretation here can be put this way

— For large scale k < κD, moving atoms on large distance will cost much (so the response
will diminish) since particles interact via long-range forces, moving on large scale will
imply moving a lot of particles and modify (N − 1) terms in their potential energy.

— On the contrary for large k > κD (small modulations), it will cost less to move on small
scale involving less.

For short range repulsion, the response has an opposite profile B(ke → 0) =cst (a particle
sees only its neighbors, hence for modulation larger than a given scale the response is constant)
while B(ke) will decrease for large ke.

For attractive long-range forces, we also expectB(large ke)→ cst, but for large scale pertur-
bation, we expect an instability to develop at a certain scale kJ , where kJ is the Jeans wavenum-
ber. This is the Jeans instability [Jea02, BT11] well known for galactic systems: when a self-
gravitating system is too large its kinetic pressure cannot compensate the gravitational force and
the system collapses.

2.2.b Numerical Simulations

In Figure III.2 we plot a simulation of the modulated density profile ρx(x) (for a fixed temper-
ature) for two different modulations. As expected the amplitude grows with ke. In Figure III.3
we plot the response to modulation (peak of the Fourier transform at k = ke) for several ke
and different temperatures and compare the result with the response function B(ke). The ratio
between the amplitude response for different temperatures agrees with the factor (kBT )−1 in
Eq. (III.2b). For small temperature, the simulations do not match perfectly the theory, this is
because is the regime A/T > 1 the linear theory is expected to fail. Nevertheless, we see that
the essential features of B(ke) remain, just the effective 1/λD seems shifted to the left, thus
there is a larger effective λD outside linear regime. Effective (λ1

D)eff and λ4
D seems to about the

same.
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Figure III.2 – Integrated density profile ρx(x) with and without an external potential with ampli-
tude A = 8 and wavenumber ke. When ke increases the response also increases. Here T = 20
and other theoretical values used are given in Table II.1.
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Figure III.3 – Amplitude of the Fourier transform FT|ρx|(ke). We plot the theoretical expression
of the response B(ke) = Eq. (III.3) for the theoretical parameters given in Table II.1. The
external amplitude is A = 8. The linear theory works better for A/T small.
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2.2.c Experiments

This method requires experimentally to be able to see the modulations in the fluorescence
profile and then deduce its Fourier spectrum. This set up can be seen more generally as testing
the long-range character of the interaction; an increasing response with ke would be a signature
of a long-range repulsion.

Unfortunately, it seems that fluorescence techniques are not accurate enough, less than 10%
changes are in the noise of the density profile. Our small modulations are thus not observed at
all. Also, larger modulation intensity seems not possible without completely destabilizing the
MOT.

2.3 Diffraction

Since the fluorescence technique is not accurate enough, an alternative way to measure the
density modulation is diffraction. It is very accurate, but interpreting the results is not straight-
forward, as we will now explain.

As explained in Sections II.4 and III.1, to predict the diffraction profile we must study the
perturbed structure factor

S(~k) = S0(~k) +

〈
1

N
δρ(~k)ρ0(−~k)

〉
+

〈
1

N
δρ(−~k)ρ0(~k)

〉
+

〈
1

N
δρ(~k)δρ(−~k)

〉
(III.4)

where S0 is the unmodulated structure factor (without external potential A = 0).
In this modulation experiment it is legitimate to neglect the correlations because here they

are very small as we have already painfully experimented, Section III.1. So, we can write for a
symmetric density profile

S(~k) = S0(~k) +
2

N
δρ(~k)ρ0(~k) + δρ(~k)2 + O (correlation) . (III.5)

The perturbed density Fourier transform can be easily related to the unperturbed Fourier trans-
form thanks to the shift in ~k induced by the sin function

FT [ρ(x) sin(kex)] (kx) =
1

2
(ρ(kx − ke)− ρ(kx + ke)) ,

where FT[ρ](kx) stands for the Fourier Transform of the density ρ.

2.3.a Expression of the ~k vector

The goal of this subsection is to introduce some effects that may not be intuitive for reader
concerning 1D and 3D diffraction calculus. For example, |~k − ~ke| 6= |k − ke| in 3D while it is
true in 1D. The diffracted wavenumber vector is (see Figure II.6)

~k = (kx, ky, kz) = (− cosφk sin θk,− sinφk sin θk, 1− cos θk),

and its norm is
k = 2kL sin(θk/2), (III.6)
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so θk = 2 arcsin(k/(2kL)). A simple calculus shows that

~k =


−k

√
1−

(
k

2kL

)2

cosϕk,−k
√

1−
(

k

2kL

)2

sinϕk,
k2

2kL


 . (III.7)

In experiments, we observe S(θk, φk). Two modulated density produces two diffraction
peaks in ϕk = 0 and π. The angle θk is directly linked with |~k|. Due to the modulation, we
expect a peak in S(~k) around k ∼ ke. The perturbed wave vector expression after the shift due
to the modulation is

|~k ± ~ke| =
√
k2
x + k2

y + k2
z + k2

e ± 2kxke =

√√√√
k2 + k2

e ∓ 2kke

√
1−

(
k

2kL

)2

cosφk. (III.8)

The minimum of this norm is reached around k = ke with φk = 0 or π (those will correspond
experimentally to the two-diffraction discs observed).

We expect the Debye length to be around 100µm so k ∼ 104 m−1, with kL =
106

0.78
m−1, so

ke/kL � 1. Hence, we can safely expand the square root in Eq. (III.8), to get with |k| ' ke and
φk = 0 (for example)

|ke ~ek − ke ~ex| =
k2
e

2kL
+ ke ×O

((
ke

2kL

)2
)

' kz 6= 0.

(III.9)

This computation shows that due to the 3D nature of the system, one must not a priori forget
about the longitudinal direction ~ez in the diffraction. It will be the origin of two regimes of
diffraction.

Therefore, the perturbed Fourier transform is at the peak k ' ke

ρ(ke) ' ρ0(ke) +
A

2kBT
B(ke)

(
ρ0

(
k2
e

2kL

)
− ρ0 (2ke)

)
. (III.10)

Here remember that ρ(k = 0) = N and also that the Fourier transform of the profile decrease
very quickly to 0 with k increasing (the more regular ρ(r) is the faster its Fourier transform tends
to 0). The dominant term in the structure factor 2 is for NA/(kBT ) � 1 (for 10% modulation
and N ∼ 1010 the approximation is safe) and ke & 1/L (for smaller ke the unperturbed term
becomes of the same order),

S(ke) ' 1 +
1

N

(
A

2kBT

)2

B2(ke)

(
ρ0

(
k2
e

2kL

))2

, (III.11)

where have neglected terms with large argument in ρ(k). Due to its fast variation around k ∼
1/L it is dangerous to replace the last term by ρ0(k = 0) = N . In next Section, we give a
simple illustration of this fact.

2. We keep the +1 background term which for large k is dominant.

63 Laboratoire Jean-Alexandre Dieudonné



CHAPTER III. LOOKING FOR DEBYE LENGTH AND OTHER PLASMA PHYSICS EFFECTS

2.3.b A simple example: existence of two diffraction regimes Raman-Nath/Bragg

In this Section, I will give a simple example where two different regimes are easily observer
in the diffraction response.

Let’s take a 3D cube of atoms ρ0(x, y, z) = ρ0Θ(L − x)Θ(L − y)Θ(L − z), modulated
such that δρ = Ãρ0 sin(kex) were we set a constant Ã = AB(ke) (for example with a trapped
non interacting cloud). It means that here we do not seek interaction effects just the regimes
of diffraction. The diffraction S(k) response is maximum (forgetting of course the undiffracted
peak in k = 0) for k ' ke. Standard calculation gives

δρ(~k) = 4ρ0Ã
sin(kzLz)

kz

sin(kyLy)

ky

(
sin((kx − ke)Lx)

(kx − ke)
− sin((kx + ke)Lx)

(k + ke)

)
. (III.12)

so, with Eq. (III.11) we have

S(~k)− S0(~k) ' 1

N

(
4ρ0Ã

2kBT

)2(
sin(kzLz)

kz

sin(kyLy)

ky

sin((kx − ke)Lx)
(kx − ke)

)2

(III.13)

where we have neglected correlation terms and cross termed terms in Eq. (III.5) which are neg-
ligible for k > 1/L.

— If kzLz � 1 (thin media) then the diffraction is independent of the density along the
longitudinal direction ~ez. The max of this function is reached for kx = ke and ky = 0.
So, the peak response is constant with ke and its amplitude is constant

S(ke) ∼
1

N

(
ρ2

0ÃLzLyLx

)2

.

— Now if kzLz � 1, the peaks of diffraction are still situated around k ' ke. We can still
set ky = 0, but this time we must also consider the additional dependence on kz 6= 0.

The peak response is now, remembering kz '
k2
e

2kL
,

S(ke) ∼
1

N




4ρ0ÃLyLx sin
(
k2
e

2kL
Lz

)

k2
e/(2kL)




2

.

So, in this simple example we have seen the existence of two diffraction regimes:
— kzLz � 1, response is constant with the modulation ke

No density effects: Raman-Nath regime of diffraction.
— kzLz & 1, response has a k−4

e dependence with the modulation
Strong longitudinal density effects: Bragg regime of diffraction.

It shows clearly that the diffraction response to modulation displays a slope change due only to
density effects without any link with the response function B(~ke). Of course, it is problematic,
because it will interfere with the slope change effect expected from the long-range interactions!

The criteria for these two regimes is in terms of a critical wavelength λ(c)
e (or wavenumber

k(c)
e ) of modulation

λ(c)
e = 2π

√
Lz
2kL

=
√
πLzλL or k(c)

e =

√
2kL
Lz

. (III.14)
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So, for a cloud of radius L ≈ 6 mm and a laser λL = 780 nm, the regime change is expected
at λ(c)

e ≈ 120µm... which is the worst case scenario since the Debye length is also expected
around 100µm!

Thus in the following, we will need to distinguish/separate the "density effects" from the
"long-range effects". To do so theoretically, we will often set B(ke) = 1, which corresponds
to a response without interaction, to compare with a case with interactions.

Remark III.2
One physical picture for those regimes is: considers at the cloud entrance a series of Gaussian
beams with a waist given by the size of diffracted object, which is here the density modulation
of size λe = 2π/ke. That beam will propagate and spread in perpendicular plane, Raman-Nath
regime corresponds to the situation where two adjacent beams do not superpose which is to say
the Rayleigh length

zR = π
λ2
e

λL
is smaller than the longitudinal size of the cloud Lz. When zR > Lz beams overlap: it is the
Bragg regime. In the context of ultrasonic light diffraction this criteria Eq. (III.14) between
Raman-Nath/Bragg is also known [KC67].

2.3.c Diffraction discs

In the previous Section, we have seen on a simple example that we expect for a homogeneous
distribution of particles with no interactions a diffraction profile with

— λe � λ(c)
e , S(λe) ∝ λ4

e,
— λe � λ(c)

e , S(λe) ∝ λ0
e.

Here we will show how measuring the total intensity of diffraction discs (λe) (and not only its
maximum) affects the scaling in adding a linear contribution λe

— λe � λ(c)
e , R(λe) ∝ λ5

e,
— λe � λ(c)

e , R(λe) ∝ λ1
e.

Indeed, in experiments is measured the total intensity of diffraction discs (to which we remove
the unmodulated profile). It is defined as follow

R(λe) =

∫ θe+εθ

θe−εθ

∫ ϕe+εϕ

ϕe−εϕ
(S − S0)(θe + ε′θ, ϕe + ε′ϕ) dε′θdε

′
ϕ (III.15)

where θe is the associated angle of the modulation Eq. (III.7) and (εθ, εϕ) are chosen large
enough to enclose the diffraction disc.

A simple calculation of the integral of (S−S0)(~ke+d~k) in two extreme cases (step function
and Gaussian) can give an idea of the effect on the response scaling of this computation.

— For the step function density profile Eq. (III.13), we expand around the peak at (θ =
θe + δθ, ϕ = 0 + δϕ), which gives a term like

' sinc2(keδϕ).

This term integrated give something proportional to
1

ke
∼ λe

— For a peak with Gaussian shape, one expects

e−w
2|~k⊥−ke~ex|2/8 = e−w

2(~k2
⊥+k2

e−2k⊥ke cosφ)/8
~k⊥∼~ke∝ e−w

2k2
eδφ

2/4e−w
2δk/8 (III.16)

this term integrated gives something proportional to 1/ke ∝ λe.
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In conclusion, it seems rather generic that for ke < kL, the total surface intensity of the diffrac-
tion peak R has an extra linear dependency with λe when compared to the peak maximum S.

2.3.d Comparison theory simulations

Simulations

The various components of this experiment and associated predictions are now theoretically
established with simple examples.

We show on Figure III.4 the result of the diffraction on simulated clouds for three differ-
ent temperatures. We do not plot the surface of the diffraction discs as suggested in Sec-
tion III.2.3.c, but rather the maximum of this diffraction disc (corresponding to k = ke and
φ = 0 or π). We do so just to get a first illustration of the Bragg/Raman-Nath regimes versus
long-range effects without additional "surface effects". Furthermore, we chose an infinite waist
(corresponding to a plane wave) to avoid other additional effects. In Section III.2.3.e we will
consider both effects.

The Figure III.4 shows indeed a regime change where it is expected at λe = λ(a)
e . Moreover,

the effects of the long-range interactions are clear for λe & λD: the response decreases. In
between the two crossover the response is almost constant which is expected. A cloud with no
long-range effects would have a constant response for large modulation λe � λD (instead of a
decreasing one); but for small modulation λe � λ(c)

e the response will be (as with interactions)
dominated by "density effects" (Bragg regime).
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Figure III.4 – Maximum response of the diffraction discs S(k) for simulated cloud with different
temperatures (Table II.1). The waist is infinite here and kL = 1800. The amplitude perturbation
is A = 8. We show the two diffraction regimes Bragg and Raman-Nath predicted by theory and
well observed here.
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Removing density effects

Here we have chosen this example so the crossover for diffraction does not occur where
long-range effects happen. But in the experimental set up both might happen at the same place
obscuring the result.

Thus, how could we see without ambiguities the long-range effects without any of these
density effects, keeping just the response function B(ke).

In equation Eq. (III.11) we can rewrite the density term to get

S(ke)− S0(ke) '
(
AB(ke)

2kBT

)2(
S0

(
k2
e

2kL

)
− 1

)
. (III.17)

Hence the response is linked with the unmodulated structure factor at small angles k2
e/(2kL).

So, in principle measuring theses small angles for the unmodulated structure factor S0 of the
same cloud would give the density contribution. Then dividing by this same term

S(ke)− S0(ke)

S0 ((k2
e/(2kL))− 1

'
(
AB(ke)

2kBT

)2

, (III.18)

just leaves the response function B(ke)
3.

To test this prediction, for the same simulations than in Figure III.4, we plot in Figure III.5 the
height of the diffracted peak S(λe)

4 by a probing beam larger than the cloud (so not a Gaussian
beam) divided by the corresponding diffraction response at small angles S(λ2

e/(πλL)). Finally,

we plot (with no fit) the remaining term predicted theoretically
(

A

2kBT

)2

B2(λe) forA = 8 and

T = 20 (where the linear regime is valid), with the simulation parameters, and it fits very well
the simulations! For other regimes where the response is nonlinear (A/kBT > 1), our method
still work to highlight long-range effects but the theoretical amplitude (not shown) is different
from simulations. The interest to perform such simulations is to check that even with an intense
laser the effects sough remain. For very small modulations the denominator of Eq. (III.18) is
very close to zero explaining the points out of range.

Once again if there were no long-range interactions B(λe) = 1, the response on Figure III.5
would be constant.

It is an excellent means to test our predictions with simulations. Experimentally one may
think that measuring the structure factor for small angles would be easy since one expect a large
response for small angles. The problem is that the signal might be too strong and varying too
much to be well captured. Also, measuring small angles requires to change the experimental set
up so that it might be hard to measure both small angles and large angles with one experimental
configuration.

3. All the +1 terms can be forgotten for the region of interest.
4. So in principle it is not exactly the disc area experimentally measured.
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Figure III.5 – Amplitude of diffracted peaks with respect to λe without the "density effects"
measured as in Eq. (III.18) where S0 and S where obtained from simulations for T = 1, 4, 20.
We compare with the theoretical expression of the r.h.s. of Eq. (III.18) for T = 20. It is the
same data that in Figure III.4.

2.3.e Comparison theory/experiments

Comparison

In order to compare theory and experiments we have to choose a density profile. We chose
a simple one that can be tracked analytically in Fourier space. In the perpendicular direction
of the probing we know that border effects will be "cut" by the Gaussian beam, while in the z
direction we expect a step like structure. Hence, we chose ρ(~r) = Eq. (A.5) and compute its
Fourier transform.

In Figure III.6 is plotted the result of one experiment for two different detuning δ = −4Γd,−3Γd.
We compare these results with the theoretical diffraction response via S(λe) − S0(λe) of the
profile Eq. (A.5). The parameters L,w,N are chosen to be the same that in the experiment. In-
deed, the waist and atom number is well controlled and the length can be easily extracted from
a density profile. The only adjusted parameter here is the vertical amplitude of the theoretical
response (in arbitrary units), that we set so it coincides with the experimental curves. On the
three theoretical curves, we change the value of the Debye length λD to observe its effect.

The conclusions of this comparison are
— Experimental crossover coincides with the one predicted Eq. (III.14)
— In the Bragg regime the theoretical prediction has a smaller response. The difference

could be explained by the fact that the density profile chosen differs certainly with the
real one, and in this region. Exact form of the density might play a role. For example, a
sharper density profile decreases slower in this region.

— Theoretically we observe oscillations in Bragg regime (it is to be expected for a step

Université Côte d’Azur 68



2. RESPONSE TO AN EXTERNAL POTENTIAL

function). The experimental profile also displays such oscillation (to a lesser extent)
around λe = 70µm. We will discuss this next paragraph.

— In the Raman-Nath regime the slopes of experiment and theory are both about 1 as ex-
plained in Section III.2.3.c (the response is not constant as in Figure III.4, because this
time we consider the whole disc of diffraction). For larger modulation we expect the
long-range effects to take place, which we see clearly for λD = 100µm. Unfortu-
nately, the theory agrees well with the experiment only for the non interacting case with
B(λe) = 1 and to some extend with the λD = 300µm case. Hence at this point it is not
possible to be conclusive on the presence of long-range interactions.

For a Debye length, larger than 300µm (blue dashed line), the long-range effects are rather
hard to see in the measurement range. Thus, differentiate between the case without interaction
(dashed doted black line) for large Debye length is difficult! One could be tempted to extent
the measurement range to conclude but finite size effects of the waist k ∼ 1/w will become
dominant.
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Figure III.6 – Power of the diffracted discs with a Gaussian beam in G. Labeyrie’s experiments
(crosses) and in theory (lines). The detuning is δ/Γd = −3 and −4, N ∼ 1010, L = 7.41 mm,
w = 2.2 mm. We compare the theoretical model with the same parameters L,w at various
Debye length λ = 100, 300µm. The "rigidity" of the step function Eq. (A.5) is chosen arbitrary
at l = 100µm (it does not change much the results). We indicate the theoretical Bragg/Raman-
Nath regime change by the tick λ(c)

e ' 135µm. We also show the theoretical extreme case with
no interactions B(λe) = 1. The vertical dotted line shows the separation of the two diffraction
regimes. The vertical dashed lines show at which λe the diffracted discs plotted Figure III.7
and III.8 were taken.
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Split bump

In the experiment, some split diffraction discs have been observed, Figure III.7(b), corre-
sponding to the small oscillation in the experimental response near λe ' 70µm. Can we
explain this observation? To explain simply their origin, one has to remember that the response
has a dependence with the longitudinal profile Eq. (III.10), so around a peak k = ke + δk, the
response is

S(k) ∝ S0

(
k2
e + 2keδk

2kL

)
.

If this small angle happens to correspond to a "hole" in the Fourier profile (as in Figure II.3 for
ka < 1), then the diffracted discs can be split in two parts. We illustrate that with our theoretical
model with parameters provided by the experiments (thus with no adjustment to fit). We can
see in Figure III.6, (dashed lines) that a split bump is also expected around λe = 76.5µm. We
show this disc Figure III.8(b). It very close in term of λe to the experimental observation!

In Figure III.7(a) we show an experimental diffraction disc at λe = 64.2µm (see the left
vertical dashed line of Figure III.6) where no split is expected. There is indeed no particular
asymmetry and the disc is circular. The corresponding theoretical expectation is also, Fig-
ure III.8(a), not split. It is quite reassuring to have a theory able to explain and describe with

(a) λe = 64.2µm (b) λe = 75.7µm

Figure III.7 – Experimental diffraction discs for λe = 75.68µm in the experiment

rather good precision this non trivial/intuitive experimental observations.

3 CONCLUSIONS

We suggested different experiments to "see" and measure the Debye length in VLMOT.
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Figure III.8 – Theoretical diffractions discs S(θ, φ), L = 7.51 mm.

Static diffraction experiment

The first experiment (see Section III.1) is a direct diffraction measure on a static MOT. It has
the upside of directly measuring the correlations in the system. The downside is that the effect
sought is very small and hard to observe. However, with a Gaussian beam, it is possible to "in-
crease" the effect by reducing the contrast between the background and the non-diffracted beam
(see Figure III.1). A well-disposed mask should help to reduce the central peak contribution
and its tail but so far has not yielded anything.

Modulation experiments

Modulation experiments (section III.2) have the advantage that the effects foreseen are much
bigger than correlations. They do not try to directly measure the correlations of the particles but
rather the influence of long-range interaction in the cloud’s response.

Density response via fluorescence

The fluorescence experiment (section III.2.2) is well controlled theoretically and numeri-
cally. Furthermore, the expected effect is clear: we want to observe a response in the amplitude
of the modulated density as B(λe) = Eq. (III.3). With a precise signal, we could even extract
the Debye length value.

A less demanding result would be to simply observe a decreasing response when λe grows.
This would be enough to conclude on the presence of long-range forces.

However, since the amplitude modulation of the density is small and the fluorescence imag-
ing is mysteriously (of what I have heard) not really accurate, the hope to see any modulation is
thin.
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Diffraction response

The diffraction experiment (Section III.2.3) is more sensitive since experimental signals have
been seen and measured. However, the result interpretation is less direct. The measurement is
plagued by two regimes of diffraction that cross over near the supposed Debye length. Nev-
ertheless, after simple estimations we believe that we discovered the essential features of this
measurement; it seems that the experimental profiles measured are quite well understood.

The remaining problem is that no long-range effects are seen unequivocally since experi-
ments and theoretical predictions for λD = 300µm and λD → ∞ match up to λe ' 800µm
where the size of the waist could modify the response. Hence several possibilities occur:
• There are no repulsive long-range effects (or they are very weak and not the dominant

contribution) thus there is no Debye length in VLMOT. The repulsion mechanism is
provided by a non long-range force. An extreme case would be that there are only contact
interactions. Note that in this case the scaling L ∼ N1/3 observed in [CKL14] would
still be valid. Another possibility could be a Yukawa interaction between particles due
for example to a very fast reabsorption of rescattered photons. This could be the case of
the photon emitted at resonance in the Mollow triplet [Mol69]. Numerical tests of these
cases have been started.
• The Debye length is too large for our experimental window (meaning our estimation
λD ∼ 100µm is wrong). We can either enlarge this window, or reduce the Debye length
by increasing for example the trap pulsation ω0 or reducing the temperature.
• There are attractive long-range effect dominant for large modulation screening the effect

of the repulsive force, which might be of shorter range than expected.
• Another pessimistic possibility is that we did not interpret correctly the theory and thus

experimental data, or that we neglected a serious phenomenon (like multiple scattering).
Thus, our inconclusive interpretation is wrong.

So far, we did not consider the full Shadow effect (Section I.1.3). In the case where the Coulomb
description is false and the true repulsion is of shorter range, the attractive Shadow force could
dominate at long-range. Either way (Coulomb forces or not), the first order derivation 5 (at
small optical thickness b � 1 Eq. (I.21) and Eq. (I.22)) of this effect could be wrong in the
experimental regime where b ∼ 1, bringing additional attractive effects that could possibly
explain the data.

So, to conclude this Part, a serious theoretical proposal has been made with consistent ex-
perimental data. Nevertheless, strong long-range effects as expected with the standard model
for MOT do not seem to appear. More experiments should be made with different parameters
as well as simulations with various type of interactions. If some more accurate fluorescence
technique is developed to observe the modulated density profiles, one could directly measure
the amplitude response and compare it with the response function B(λe).

5. Even the numerical simulations of this force are considering only the first order expression.
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ADDENDUM

Additional comparisons between the experimental data and the Coulomb simulations were
done and presented for my Ph.D. defense. I summarize here these results.

We studied experimental static (without modulations) density profiles measured by fluores-
cence (see Section II.1) for different detuning. The more the detuning is large the more we ex-
pect repulsive interactions between atoms to be weak. Hence, for large detuning the cloud size
should be smaller and its shape should be Gaussian. We superposed these data with the ρx(x)
obtained by Coulomb simulations (see Eq. (II.1)) for well-chosen parameters on Figure III.9.
The first thing to notice is that the fits work quite well for the various detuning, meaning the
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Figure III.9 – Experimental density ρx(x) obtained by fluorescence for−δ/Γd = 4, 6 compared
with MD simulation (lines) of a tapped Coulomb gas. The inset shows the extrapolated Debye
length λD and the cloud radius L. (The density plots for −δ/Γd = 5, 8 are not shown here).

trapped Coulomb gas model is coherent with experiments. Knowing the simulation parameters
allow us to extrapolate the experimental parameters, in particular the Debye length (which is
linked to the size of the distribution tails). However, for the fits to work we have set the Debye
length around 1 mm which is much larger than our 100µm expectation 6. This "measurement"
of a very large Debye length is consistent with the modulation results (see Section III.2) where
we did not observe long-range effects around 100µm. Instead the experimental response pro-
files were matching the theory uniquely for very large Debye (see Figure III.6).

6. Remember that this number is related with the size lg =
√

3λD of small MOTs. For example see [RPC+87]
for cloud measurements.
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Therefore, these results offer a more conclusive statement than before: the Coulomb model
with a Debye of the order of 1 mm are consistent with experiments. We look at the Debye
length expression Eq. (I.42) to understand the difference between the "measurements" and the
expectation. Either the temperature T is 100 times larger which is unlikely or either the trap
pulsation ω0 is ten times weaker. This latter possibility sounds fair since the trapping effect is
being attenuated by the cloud thickness. This will be the object of new investigations.
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CHAPTER IV

INTRODUCTION TO BIFURCATION

As we have seen in the Introduction the Vlasov equation describes the violent relaxation,
i.e. the evolution over timescales τv � τc = O

(
N δ
)

(see Figure 1) of particle systems inter-
acting with long-range interactions before the collisional relaxation takes over and drives the
system toward statistical equilibrium. Thus, this "out-of-equilibrium" process can be arbitrar-
ily long (e.g. galaxies have N ≈ 1011 so collisional effects can be ignored over lifetime of
∼ 1010 years [BT11]) and their study is relevant by the Vlasov equation. Also for purely out-
of-equilibrium systems, such as coupled oscillators, where each oscillator is driven at its own
rhythm, there is no defined Boltzmann equilibrium so only the kinetic description can give in-
formation on the system state. The dynamics of kinetic equations like the Vlasov is very rich
due to advection, nonlinearity and self-consistent mean-field force. It leads to numerous effects
such as filamentation of the phase space, strong resonance phenomena, infinite number of sta-
tionary states, BGK modes [BGK57], echo plasma effect [MWGO68], etc. We are not going to
focus on a specific physical system. Rather we will try to advance the general understanding of
bifurcation in the Vlasov equation and other related models, with the hope it may be useful for
various situations: tokamaks, galaxies, synchronization, etc.

To study dynamical evolution of those systems a natural starting point is to consider the
linear evolution of f = f 0 + g around a reference state f 0,

∂tg = L g + N [g] (IV.1)

where L and N are respectively a linear and nonlinear operators acting on a function space
for infinite-dimensional systems or Rn for finite-dimensional systems.

The stability of the reference state depends on the spectrum of the linear operator. Eigen-
values λ are defined with their associated eigenspace of eigenvectors Ψλ

1 through the equation

L Ψ = λΨ. (IV.2)

1. The subscript λ will be dropped in most of the manuscript.
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From Eq. (IV.1) the linear evolution of a solution g = A(t)Ψ parallel to an eigenvector will be
determined by the sign of Reλ (where λ is has the largest real part, which we suppose is simple)

Ȧ = λA ⇒ g ∝ eλt, (IV.3)

— Reλ < 0 the system is said to be (spectrally) stable, because small perturbations of the
reference states are damped to zero. However even if the system is linearly stable for
large initial perturbations nonlinear effects could take over.

— Reλ > 0 the system is said to be (spectrally) unstable, after an exponential growth
regime, nonlinear effects can
• Saturate the perturbation. Typically, we have a negative cubic term of the form

Ȧ = λA− |c3||A|2A+ O
(
|A|4A

)
(IV.4)

is expected for symmetric systems A←→ −A.
• Amplify the perturbation which typically yields

Ȧ = λA+ |c3||A|2A+ O
(
|A|4A

)
. (IV.5)

In physical systems, the perturbation eventually saturates with higher order terms at
some level O (1).

— Reλ = 0 the system is said to be neutrally stable. The perturbation is purely oscillating
and will neither grow or damp. We say it is a neutral mode.

When the system depends on a parameter µ, which could be temperature, coupling, initial
velocity distribution width, etc., it can undergo a bifurcation going from a stable state to an
unstable state i.e. Reλµ<µc < 0 to Reλµ>µc > 0. For a good introduction, quite complete
and suitable, to bifurcation theory see [Cra91b]. The goal of bifurcation theory is to describe a
qualitative change in a system structure occurring when some parameter is varied. It can be how
a homogeneous plasma (with a zero-total electric field) can go unstable, meaning the electron
distribution will develop some structure producing an electric field. Biological systems also
display bifurcation, e.g. an asynchronous crowd of clapping people synchronizing. As we shall
see later to quantify this structure change we will define the concept of order parameter.

A particularity of the kinetic equations we study is that they possess an "infinite number
of neutral modes" 2 called a continuous spectrum. This infinite structure is directly linked
with the dimensionality (and difficulty) of the problem. In the simplest bifurcation analysis
with one positive mode λ� 1 and other negative modes ν < 0, one can easily separate the two
timescales: during time |ν|−1 � λ−1, the system goes quickly on the unstable manifold, so a
description of the instability will only require one to describe the unstable direction associated
with λ > 0 and the problem dimension will be reduced from two to one. Here with one neutral
mode (or a continuum) one could be tempted to do the same, but removing such modes which
are never damped could be very risky. In fact, as we will see, these modes are responsible for
stronger nonlinear effects.

We provide a detailed example of such neutral mode effects on a simple tractable example
of finite dimension, following [Cra91a]. We will introduce the unstable manifold reduction
technique used later and which already exhibits its limitations, and compare it with the more
standard central manifold technique. The goal of the center/unstable manifold technique is
always to reduce the dimension of the problem to get a simpler expression of the dynamics
close to the bifurcation. Thus one obtains the nonlinear generalization of the eigenvector

2. Strictly speaking this denomination is abusive.
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associated with neutral/unstable eigenvalue. Of course, in finite dimension we know how
to deal with neutral modes and their effect is known; it suffices to include them in the center
manifold (which for many neutral mode might be not satisfactory), but their effect on the un-
stable manifold is less known. In the following finite-dimensional example, we aim to show the
features of such unstable expansion with one neutral mode. Because bifurcations are in general
classified in "universal categories" (e.g. saddle-node, transcritical, pitchfork, Hopf bifurcation),
it makes sense to study a simpler case hoping to gather a general understanding.

Then we introduce the formalism for the infinite-dimensional case, present a rigorous defi-
nition for the spectral problem and provide a tractable example where the continuous spectrum
leads to damping.

1 A BIFURCATION EXAMPLE IN FINITE-DIMENSION

This example is taken from [GH13, Cra91b]. Let’s consider a system that can be reduced to
a two-dimensional system of o.d.e.

ṙ = λr + a1zr + a2r
3 (IV.6a)

ż = νz + b1r
2 + b2z

2 (IV.6b)

with an eigenvalue λ ∈ R associated with the amplitude r(t) and ν ∈ R associated with the
mode z(t). ν ≤ 0 will be fixed while λ will be crossing 0 to become unstable.

1.1 Exact solution

We want to study the behavior of the system when λ > 0 and ν ≤ 0. One question is, what is
the dependence of the bifurcated solutions around (r0, z0) = (0, 0) on the instability parameter
λ? A set of stationary solutions close to the origin can be found to be





r2
∞ =

λ(νa1 − λb2)

b1a2
1

(1 + O (λ, ν)),

z∞ = −λ+ a2r
2
∞

a1

.
(IV.7)

— First we see that to exist the solution needs b1a1 < 0 or if ν = 0 b1b2 < 0 ("saturating
conditions"). In practice, we want both b1a1 < 0 and b1b2 < 0 to study (r∞, z∞) with
fixed parameters and varying ν.

— The solution scaling is

r2
∞ ∼

ν

b1a1

λ, when λ→ 0 and ν < 0 (IV.8)

— The solution scaling is

r2
∞ ∼ −

b2

b1a2
1

λ2, when λ→ 0 and ν = 0 (IV.9)

This latter scaling is different from the usual "pitchfork scaling" (also called here Hopf
scaling) r∞ 6= O

(√
λ
)

.
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CHAPTER IV. INTRODUCTION TO BIFURCATION

The modification provoked by the presence of a neutral mode on the imaginary axis is clear- it
changes the final scaling of the solution. The solution with neutral mode is much smaller than
without one. Therefore, when neutral modes couple with unstable modes one expect nonlinear-
ities to be much stronger (saturating the perturbation at much weaker amplitudes).

1.2 Center manifold approach

Now imagine that we cannot guess directly solutions, what can we say about the evolution of
the systems and the scaling of its steady states near the origin? The center manifold approach is
a dynamical expansion around a stationary point of the full model Eq. (IV.7). For this example,
we have (r0, z0) = (0, 0). We separate the contributions of fast and slow modes. The fast
manifold will regroup the contribution of eigenvalues with a finite negative real part. These
modes will be quickly damped and thus will not contribute to the "slow" dynamics. On the slow
manifold, we consider modes around the imaginary axis (with Reλ ≈ 0). For example, here
ν < 0 is on the fast manifold and the λ ≈ 0 is on the slow manifold. The center manifold treats
the λ mode as a perturbation of a neutral mode. It is described by writing Eq. (IV.6) as

(
ṙ
ż

)
=

(
0 0
0 ν

)

︸ ︷︷ ︸
L 0

(
r
z

)
+

(
λr + a1zr + a2r

3

b1r
2 + b2z

2

)

︸ ︷︷ ︸
N λ

. (IV.10)

— If ν < 0, the dynamics will go quickly (as ∼ 1/|ν|) close to the center manifold W c, so
it is legitimate for small λ to parametrize this center manifold as

(r, z) ∈ W c then (r, z) = (r, hλ(r)), (IV.11)

with hλ(r) a regular function for r close to r0. Actually, rigorous mathematical re-
sults [HI10] exist to justify that indeed for any initial condition sufficiently close to
(r0, z0), the dynamics will be well described by this λ-dependent manifold. The cen-
ter manifold is the nonlinear extension of the eigenspace associated with neutral modes.
The expansion of hλ(r) in a series of r, gives then an expression of the dynamics ṙ = · · ·
at every order. The saturation scaling also gives

r2
∞ ∼

ν

b1a1

λ, λ→ 0 and ν < 0

as in the exact asymptotic solution. So, we have successfully reduced the dimensionality
from 2 to 1.

— If ν = 0, Eq. (IV.11) is no longer the center manifold and thus has no reason to describe
well the dynamics. Actually, in this case, the center manifold is of dimension 2 at criti-
cality. So, no further reduction is possible now! The system dimension is still 2 and the
scaling is not clear.
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1. A BIFURCATION EXAMPLE IN FINITE-DIMENSION

1.3 Unstable manifold approach

The unstable manifold is based on the idea that only unstable modes Reλ > 0 are important.
It does not consider eventual slow modes (e.g. ν = 0 or modes close to the imaginary axis). Of
course these slow modes can be important to describe the full dynamics, hence leaving them
aside could lead to an incomplete or wrong reduction. In our example the linear operator has a
positive eigenvalue λ and the ν mode,

(
ṙ
ż

)
=

(
λ 0
0 ν

)

︸ ︷︷ ︸
L λ

(
r
z

)
+

(
a1zr + a2r

3

b1r
2 + b2z

2

)

︸ ︷︷ ︸
N

. (IV.12)

In the unstable manifold picture modes different from λ quickly relax and thus the remaining
"slow" dynamics is one-dimensional. The unstable manifold W u in Eq. (IV.6) appears then as a
one-dimensional manifold tangent to the r direction near (r, z) = (0, 0):

(r, z) ∈ W u then (r, z) = (r, h(r)) (IV.13)

with h(0) = h′(0) = 0 (deduced by symmetry r → −r). We can build as previously the
unstable manifold for λ 6= 0 and then takes λ → 0. In the ν < 0 case similar mathematical
results as for the center manifold hold, while for ν = 0 there is no result insuring that this
manifold is attractive and thus that it describes well the dynamics close to it.

Let’s construct it! From ż = h′(r)ṙ and Eq. (IV.6b) we get

h′(r)
(
λr + a1h(r)r + a2r

3
)

= νh(r) + b1r
2 + b2h(r)2. (IV.14)

The following expansion holds for regular maps 3 (which is assumed to be true near the origin)

hn(r) =
n∑

j≥1

αjr
2j, (IV.15)

with 



α1 =
b1

2λ− ν
αn =

−2a2(n− 1)αn−1 +
∑n−1

j=1 (b2 − 2ja1)αjαn−j

2nλ− ν n ≥ 2.

(IV.16)

The one-dimensional equation is then

ṙ = λr + (a1α1 + a2)︸ ︷︷ ︸
c3

r3 + α2︸︷︷︸
c5

r5 + O
(
r7
)
. (IV.17)

So, at leading order

r2
∞ ∼

λ(ν − 2λ)

a1b1 + a2(2λ− ν)
(IV.18)

—
r2
∞ ∼

ν

b1a1

λ, λ→ 0 with ν < 0 (IV.19)

which is the same scaling as the exact asymptotic solution.

3. The even symmetry can be demonstrate using the r → −r transformation or by computing every odd
coefficients of h(r) and finding zero.

81 Laboratoire Jean-Alexandre Dieudonné



CHAPTER IV. INTRODUCTION TO BIFURCATION

- 0.010

- 0.008

- 0.006

- 0.004

- 0.002

0.000
0.00 0.01 0.02 0.03 0.04 0.05 0.06

r

z

Full dynamics
h1(r)
h150(r)

(a) ν = −0.35. The double arrows show that the dy-
namics is quickly attracted on the unstable manifold. It
follows a slow one-dimensional dynamics on this mani-
fold.

- 0.012

- 0.010

- 0.008

- 0.006

- 0.004

- 0.002

0.000
0.000 0.005 0.010 0.015

r

z

Full

h1(r)

h5(r)

h150(r)

(b) ν = −0.01 = −λ. The unstable manifold is no
longer attractive and does not describe completely the
full dynamics.

- 0.015

- 0.010

- 0.005

0.000
0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014

r

z

Full
h1(r)
h5(r)
h150(r)

(c) ν = 0. The unstable manifold is no longer attractive and
does not describe completely the full dynamics.

Figure IV.1 – Phase space (r, z), for λ = 0.01, a1 = 1, a2 = −1, b1 = 0.1, b2 = 0.1 with
(r(0), z(0)) = (10−5, 10−6). The full line is the exact trajectory computed through the full
dynamics Eq. (3). Dashed lines are the unstable manifold hn(r) computed at orders O

(
r2n
)
.

The points represent the equilibrium.

— For ν = 0, the unstable manifold still exists and we can look at the limit λ → 0 as it
should tend toward the previous two-dimensional center manifold. It gives

r2
∞ ∼ −

2

b1a1

λ2, λ→ 0 with ν = 0 (IV.20)

which is different from the exact asymptotic solution, but still possesses the same scaling
and sign. A first observation is that higher orders are not negligible. Indeed when ν = 0,
at the saturation level is r∞ ∝ λ, furthermore αn ∝ 1/λ2n−1, so

O (λr∞) = O
(
c3r

3
∞
)

= O
(
c5r

5
∞
)

= O
(
c2n+1r

2n+1
∞

)
= O

(
λ2
)
, (IV.21)

which prevents in principle any truncation!
A crucial remark is that this unstable manifold expansion with neutral modes induces diverg-
ing coefficients. Which does not appear in classical dynamical equations (here with ν ≤ 0).
Nevertheless, the first nonlinear coefficient is enough to obtain the right scaling. To appreciate
those assertions, we plot on Figure IV.1 the phase space trajectory for one initial condition and
compare it with the result given by the unstable manifold. We compute the unstable manifold
hn(r) at various orders O

(
r2n
)

to see its convergence towards the full dynamics.

Université Côte d’Azur 82



1. A BIFURCATION EXAMPLE IN FINITE-DIMENSION

— For |ν = −0.35| � λ = 0.01, we are in a regime where the unstable manifold should
describe well the dynamics. Indeed, in Figure IV.1(a), we clearly see that the end points
are almost the same even at the quadratic order in h(r). We can verify numerically that
other initial condition close to the origin (r0, z0) are also attracted by the manifold h(r).

— For |ν = −0.01| ∼ λ = 0.01 Figure IV.1(b) and ν = 0 Figure IV.1(c), the timescales
associated with the r and z direction are not dissociable anymore and we don’t expect
the unstable manifold to be attractive. We see that the effects of the neutral mode are
to fold the dynamics and to saturate the end point r∞ at a lower level (thus nonlinear
effects are stronger). This folding behavior can’t be captured by the unstable manifold
expansion Eq. (IV.15) which is a function (thus can’t have two images). Furthermore, a
one-dimensional dynamics can’t fold and oscillate. However it is interesting to see that
the unstable manifold hn(r) converges with n "as closely as possible" to the "branch
point singularities". This phenomenon is the translation of the infinite series Eq. (IV.21).

1.4 Conclusion

This simple example highlighted the effect of a neutral mode coupled with an unstable mode
on the bifurcation analysis resulting in

— Nonlinear effects are much stronger with a neutral mode.
— The center manifold expansion works when ν < 0 but for ν = 0 the dimensional re-

duction is limited by the number of neutral modes. Hence it is legitimate to think that in
general with a continuous spectrum it will not be of any help.

— The unstable manifold expansion predicts the correct scaling but does not describe the
effective dynamics e.g. a spiral behavior. Furthermore, no mathematical theorem insures
us that it is attractive with respect the dynamics close to the origin.

— The unstable manifold expansion is plagued with a diverging coefficient. At the satura-
tion level, every order O

(
c2n+1r

2n+1
)

contributes the same.
— It reduces the dimension of the problem.
For a system with a continuous neutral spectrum one expect those effects to be stronger!

We will see that it is the case for Vlasov systems but that for the standard Kuramoto system
despite the continuous spectrum the nonlinear saturation expansion behaves "normally" and the
unstable manifold describes well the dynamics... However, when adding for example a second
harmonic coupling, diverging coefficients c2n+1 appear. So, there is more to understand and say
than the "continuous spectrum induces singular behavior" 4....

This example should motivate using unstable manifold expansions for more complex prob-
lem where there is not only one neutral mode but an infinity and where exact solutions are
hopeless (and thus dimensional reduction more than needed). So, using that expansion will
possibly provide us with the right scaling for the bifurcation but one does not expect to get a
true dimensional reduction in the sense of going from an infinite-dimensional system to a 1D or
2D unstable manifold. That is to say the expansion won’t capture the full dynamic but will tell
us if the bifurcation is discontinuous or continuous with its saturation scaling, which is a big
qualitative argument.

4. This will be the running mystery of my Ph.D.
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2 INFINITE-DIMENSIONAL SYSTEMS

2.1 Spectral problem

In this Section, we briefly review some functional analysis result about spectral analysis of
infinite-dimensional operators that are different from the finite-dimensional case.

The mathematical framework to study the spectrum of linear operator for partial differential
equation is more involved than the one used to study ordinary differential equation. The first
difference is the dimension of the problem which is respectively infinite and finite. To get
an easy vision of finite/infinite dimension one can look at the initial conditions for those two
problems

— For a system of n ordinary differential equation (o.d.e.), the initial condition is a vector
belonging to Rn

— For a partial differential equation, the initial condition is a function, for example we can
choose initial distributions f 0 such that f 0(q, p) ∈ L2([−π, π[×R) ∩ C∞([−π, π[×R).

In this work we choose 5 to use only this following functional space B = L2([−π, π[×R) ∩
C∞([−π, π[×R). It corresponds to continuous quadratically integrable functions with regular
derivatives. The partial differential equations will be decomposed in a linear L and nonlinear
N operator. These operators will act on the function space e.g.

L : B −→ B. (IV.22)

An operator L is bounded (continuous) if

∀u ∈ B, ‖L u‖ ≤Mu,

for some norm on L2 and M > 0. In our context, we study the spectrum of an unbounded
operator L acting on a f ∈ B. The choice of the function space B is important and can change
the spectrum.

The resolvent set of an operator L is

ρ(L ) = {λ ∈ C, (L −λI) is bijective and (L −λI)−1 is bounded},
where denote I the identity operator. For every λ ∈ ρ(L ) we can define the resolvent

operator as
Rλ(L ) = (L −λI)−1. (IV.23)

The complementary set σ(L ) = C/ρ(L ) is called the spectrum of L . It is not just the set
of its eigenvalues as in finite dimension, it is also composed of two other types of spectrum: the
continuous and the residual spectrum that are regrouped in essential spectrum denomination.

— The point spectrum is composed of eigenvalues defined as

σP (L ) = {λ ∈ C, (L −λI) is not injective},
meaning that there is a non zero vector Ψ defined on B such that

L Ψ = λΨ. (IV.24)

Its physical interpretation as characterizing the modes of a system still holds.

5. Some of our results may extend to broader functional spaces.
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— The continuous spectrum consists of

σC(L ) = {λ ∈ C, (L −λI) is injective and with a dense image but not surjective}.

One can show that the densely defined inverse operator (L −λI)−1 is not bounded
(sometime this latter assertion is chosen as the definition for σC(L )). As we will see
later when highlighting its physical role this spectrum is a key ingredient in the Vlasov
dynamics.

— The residual spectrum consists of

σR(L ) = {λ ∈ C, (L −λI) is injective but has not a dense image}.

Its physical interpretation is not clear at all 6. In all of the manuscript, we will forget this
type of spectrum.

2.2 Free transport example

The continuous spectrum has mixing properties. In the Vlasov context the mixing occurs
in the velocity space with oscillations at scale thinner and thinner in time. It is something
referred as filamentation of the phase space. Here following [Vil10, BMT13] we show how
the continuous spectrum of the advection operator is responsible for this phase mixing and a
damping while there is no dissipation mechanism (such as friction), it is sometime referred as
non-entropic relaxation. There are other informative examples with continuous spectra like the
Baker’s transformation [RS80]. Other cases of continuous spectrum and mixing are known in
the context of fluid mechanics [SW51, Mie92, PQ02].

The advection equation is

∂tf(q, p, t) + p∂qf(q, p, t) = 0, (IV.25a)
L f = −p∂qf, (IV.25b)

L k fk = −ikpfk, (IV.25c)

where we have rewritten its advection term as a linear operator Eq. (IV.25b) and its spatial
Fourier transform Eq. (IV.25c). It is one of the simplest partial differential equation one can
think of, for example, we know its solutions. Thus this makes a good example to study the effect
of a continuous spectrum, indeed the advection operator spectrum is composed exclusively of a
continuous part with no "true" eigenvalue.

Trying to solve the eigenvalue problem gives for an eigenvector (Ξλ)k(q, p) = (ξλ)k(p)e
ikq

(λ+ ikp)(ξλ)k(p) = 0.

For Reλ 6= 0, this equation has no solutions except the null vector, so σP (L ) is empty over
C/iR. What about Reλ = 0? Since the operator

(L k−λI)−1g(p) =
g(p)

λ+ ikp

6. One reason could be that in quantum mechanics where spectral theory of infinite-dimensional operative
appeared first in physics, operators are often self-adjoint and one can show that this type of operator has an empty
residual spectrum.
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is clearly unbounded for λ ∈ iR, by definition λ is in the continuous spectrum, λ ∈ σc(L k).
To every λ on the imaginary axis is associated a generalized eigenvectors

(Ξλ)k(q, p) = δ(λ+ ikp)eikq.

We talk about generalized eigenvectors because they are not defined in the space of solution B,
but can be defined in a larger functional space that includes distributions like the Dirac Delta
function. The conclusion is thus that there is a continuous spectrum on the whole imaginary
axis for the advection operator 7.

In addition, the exact solution of the equation is known as

f(q, p, t) = fi(q − pt, p) =
∑

k

(f̂i)k(p)e
−ikpteikq (IV.26)

where f(q, p, 0) = fi(q, p). To highlight the role of the continuous spectrum generalized
eigenspace we can write

fk = (f̂i)k(p)e
ik(q−pt) = (f̂i)k(p)

∫

Reλ=0

δ(λ+ ikp)eikq+λt dλ = (f̂i)k(p)

∫

Reλ=0

(Ξλ)k(q, p)e
λt dλ,

(IV.27)
where we used the Fourier representation of the exponential.

Another way to treat this problem and see the damping due to phase mixing is go to the
Fourier transform in both space q → k and velocity p→ η. It gives

FT(q,p)[f ](k, η, t) = FT(q,p)[fi](k, η + kt),

where we used the definition of the Fourier transform and indexes change to get this expression.
The Riemann-Lebesgue lemma says that the more a function is regular the more its Fourier
transform decays quickly. For analytic function in p the decay is exponential in η, so

FT(q,p)[fi](k, η + kt) = O
(
e−|η+ckt|) =





cst for k = 0,fixed η
O
(
e−c|k|t

)
for k 6= 0,fixed η

cst for η = −kt
(IV.28)

where c is a constant. It means the zeroth spatial modes is unchanged. All other k 6= 0 modes
are damped exponentially fast. The answer to the question where does the initial energy go

or why is entropy conserved 8 given the last term of Eq. (IV.28): the energy
∫
p2f dp is trans-

ported in time to higher and higher velocity modes η = −kt (cascade from low to high velocity
modes). This is the mixing (filamentation) phenomena: at some point the phase space distribu-
tion seems completely homogeneous and the high frequency oscillations in the velocity space
become "invisible" 9. Mathematically,

f(q, p, t)
weakly−→
t→∞

f∞(p) =

∫
fi(q, p) dq, (IV.29)

7. If the velocity variable was confined on a subset of R, the spectrum of L k would not fill the whole imaginary
axis.

8. It is preserved since it is just advection.
9. In practice even a very small dissipation process (physical or numerical) provides a cut off for those high

velocity modes as we will see later in the Vlasov-Fokker-Planck Chapter VII.
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meaning the initial distribution will relax to a spatially homogeneous distribution f∞(p). Here
the weak convergence (as opposite to strong convergence) means that to make sense the dis-
tribution has to be integrated against some test function. The physical meaning becomes clear
with this example, the function converges in time for every k 6= 0 and η, but not for η = −kt.
So, the mixing phenomena only can produce damping/relaxation, therefore even though the
equation is reversible, the observables (integrated quantities over the velocity) act as if there
were dissipation. For example, the space density

FT(q,p)[fi](k, kt) =

∫
fi(q − pt, p) dp

converges strongly to its end state. Since η = 0 there are no oscillations in velocity space
anymore, just the damping, so this velocity integration produces a loss of information over the
localization of energy.

2.3 Nonlinear analysis for bifurcation

The analysis of linear infinite-dimensional systems relied mainly on their spectrum. We talk
about bifurcation when a system goes from spectrally stable (or neutrally stable) to spectrally
unstable. In this case, we need to consider the effects of nonlinear terms. To study the nonlin-
ear problem there exists several different methods, like the center manifold [Van89, VI92], the
Lyapunov-Schmidt reduction, multiple scale analysis... In finite-dimensional cases or in some
infinite-dimensional cases these techniques work fine and provide an accurate reduced descrip-
tion of the full dynamics close to the bifurcation. However in presence of a continuous spectrum
these methods are not trivially transposable since the slow manifold (part of the spectrum close
to or on the imaginary axis) is of infinite-dimension. In these cases, to the author knowledge
there are not many examples where a rigorous bifurcation analysis was performed. For the stan-
dard Kuramoto model (that we will examine in Chapter VIII) the first rigorous mathematical
treatment was made by H. Chiba [Chi13, CN11] in a quite technical paper. One of his key idea
is to use larger function space where the continuous spectrum is no longer on the imaginary
axis. Another demonstration more generic and closer to the work of C. Mouhot and V. Villani
also using larger function space was provided by H. Dietert [Die16b]. We will come back on
those results in Section VIII.4.

However, this standard Kuramoto case may be very unique (because of its nonlinear struc-
ture) so that for other systems (e.g. the Vlasov equation) this idea of larger function space might
not be enough to deal with the bifurcation analysis. Moreover, in addition to the continuous
spectrum difficulty, a wave/particles resonance occurs for Vlasov systems making for example
the multiple time scale analysis fails (see discussion in [CH89]).

Hence we will not try to generalize the previously cited, well-established methods to our
cases but we will rather stick 10 to one efficient but incomplete method: the unstable manifold
technique. It has the advantage to be formally doable even with a continuous spectrum and
resonances (that appear as singularities). This method has so far always proven to give qualita-
tively correct informations (scaling and bifurcation nature). However, as in the finite example
case with a neutral mode ν = 0 (see Figure IV.1(c)) it will not a priori provide the complete
dynamics (like oscillations of the order parameter).

In next Chapters we will use the same procedure to deal with the each different case i.e. treat
the linear analysis and construct the unstable manifold. However note that each case has its

10. With one exception where the center manifold is doable (see Section VI.9).

87 Laboratoire Jean-Alexandre Dieudonné



CHAPTER IV. INTRODUCTION TO BIFURCATION

own difficulties and solving the eigenvalue/eigenvector problem as well as building the unstable
manifold will require different techniques almost every time.

3 PHYSICAL MOTIVATIONS

At the beginning of the 20th century the Boltzmann equation was the standard equation used
to describe the evolution of particle systems in position-velocity phase space. In 1938 A. Vlasov
showed 11 that the Boltzmann equation was not suited to describe plasma and that due to the
presence of long-range forces the collisions term should be removed and replaced by a self-
consistent term acting as a mean field potential for every particle. The resulting kinetic equa-
tion was then studied by Landau [Lan46]. He showed by formal calculus that plasma excitations
should be damped (if some stability criterion was satisfied) even though there are no dissipation
terms in the equation (energy and entropy are conserved in time). The Landau damping is non
intuitive since it is based on the previously seen phase mixing and Landau’s demonstration used
mathematical tools such as the analytic continuation, obscuring the physical result. Reality of
Landau damping has since then been established numerically [CK76, Man97, ZGS01] (I up-
loaded an example on my website 12) and experimentally [CP70, MW64]. Quite recently his
result was completed by C. Villani and C. Mouhot [MV11], they showed that Landau damping
can also occur when keeping nonlinear terms of the equation, with some mathematical maxi-
mum bound for the perturbation. I recommend the lecture notes of C. Villani [Vil10] on this
topic compiling a lot of mathematical and physical knowledge on the Vlasov equation. For a
discussion on the Landau damping in the Vlasov-gravity case see [Kan98].

Plasma stability was therefore understood, but it has been observed that some cold homo-
geneous plasma with a bump in their velocity distribution could become unstable and form
some small non homogeneous structures resulting in a non zero electric field E, this is called
the bump-on-tail instability. Various plasma instabilities were discovered such as two stream
instabilities. The initial instability is caused by the resonant interaction between fluctuation
(perturbation) of the initial zero electric field and particles with the same phase velocity. Then
at the nonlinear level particles are trapped by the wave created by the now nonzero electric field.
Mathematically to understand this process, we consider first the linear instability and the asso-
ciated exponential growth and then the nonlinear saturating effects. This analysis could provide
the final electric field amplitude E∞ after a perturbation with respect to some small instability
parameter |µ− µc|. At this point two contradictory results emerged in the literature: one predi-
cating E∞ ∝

√
|µ− µc| (called Hopf scaling) [SR76, JR81, BMWZ85, Den85] while the other

finding a much smaller amplitude E∞ ∝ |µ−µc|2 (called trapping scaling) [OWM71, Dew73].
In the Hopf scaling group for example, Simon and Rosenbluth [SR76] lead a multiple scale ex-
pansion producing some singular terms that were regularized with ad hoc prescriptions. In the
other group the trapping scaling was found with some adiabatic approximation or introduced as
an ansatz. Careful numerical simulations [Den85, SRS88] and even experiments [TDM87] con-

11. Although he was not the first one to write it, he correctly recognized that for long-range interaction as
mentioned in [PCMM15] the Boltzmann interaction term was inadequate [Vla68] "or a system of charged particles
the kinetic equation method which considers only binary interactions – interactions through collisions – is an
approximation which is strictly speaking inadequate, so that in the theory of such systems an essential role must
be played by the interaction forces, particularly at large distances and, hence, a system of charged particles is, in
essence, not a gas but a distinctive system coupled by long-range forces."

12. http://cnls.lanl.gov/~metivier/html/video.html
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firmed that the correct scaling was the "trapping scaling". J.D. Crawford tried a heavy approach
without any approximation on the characteristic time of the nonlinearity τNL; he developed a
theory considering all the eigenvalues and continuous spectrum [CH89], deriving an infinite
system of coupled o.d.e. for the amplitude evolution of each mode. Nevertheless, this heavy
computation was useless to predict anything. In 1994 he published a paper [Cra94a] where
he only considered the unstable mode and the unstable manifold reducing drastically the di-
mension of the problem. Despite the singularities present in his analysis (like in IV.1) he was
able to predict a bifurcation with a scaling consistent with numerics and experiments. His re-
sult is very powerful because the method is very generic (as we shall use it for the rest of the
manuscript). More recent works by D. del-Castillo-Negrete [dCN98b, dCN98a] later general-
ized in [BMT13], also confirmed this result by this time finding an infinite dimensional normal
form 13 for this bifurcation (in the spirit of T.M. O’Neil, J.H. Malmberg and J.H. Winfrey) called
the Single-Wave-Model (SWM). Actually, this SWM proved to describe a lot more systems than
bifurcation around homogeneous Vlasov states since it also accounts for bifurcation of a large
class of Hamiltonian systems such as Shear flow and the XY model.

In Chapter IV we review in detail the classic results on Landau damping and on the unstable
manifold used by J.D. Crawford. Since all other Chapters will be based on this method we will
explain the computation in full details.

A natural sequel to this well-known case is to consider bifurcation around steady non ho-
mogeneous states with E0 6= 0. To illustrate this we will switch from plasma to astrophysical
systems (the formalism is the same) where these non homogeneous situations are more frequent.
Consider the self-gravitating system evoked in the introduction with a steady radial distribution
of stars, how will it bifurcate? Does Landau damping still exist? Is an unstable manifold expan-
sion or SWM still possible? How does the resonance phenomena survive? In Chapter VI we
briefly review the formalism and results used for non homogeneous Landau damping obtained
by J. Barré, A. Olivetti and Y.Y. Yamaguchi. Then we present our study of the unstable manifold
for the bifurcation around inhomogeneous states obtained in collaboration with J. Barré and Y.Y.
Yamaguchi. This work was published in [BMY16] and holds for generic potentials. A poten-
tial astrophysical application will be considered. As we will show the effect of wave/particles
resonances is weaker, nevertheless we can still talk about Landau damping (with certain mod-
ifications) and trapping scaling E∞ − E0 ∝ |µ − µc|2. However, this time it is not because
of a "resonant trapping" thus a SWM is not expected... Moreover we present recent results
(not published yet) where a three-dimensional reduction of the bifurcation is achieved without
any singularities in the coefficients (contrary to the unstable manifold) as well as a convincing
agreement with simulations. This reduced systems known as the Triple Zero bifurcation could
be very generic for degenerate 14 Hamiltonian systems (with weak resonances).

In Part One we used the Vlasov-Fokker-Planck equation to describe atom evolution in an
optical molasses with Coulomb like interaction. From a theoretical point of view, how the
infinite-dimensional properties (continuous spectrum, Landau damping, Casimir invariant, etc.)
of the Vlasov equation are modified in the presence of small friction? In Chapter VII we answer
these questions and give the different regimes of bifurcation with respect to friction. For small
friction, the solution will behave as the pure Vlasov equation with trapping scaling while for
large friction we will get a more standard Hopf scaling. This question is very important since in
a sense it allows the linking of the different approaches mentioned above (predicting different
scaling) and the understanding the role of friction in the nonlinear terms.

13. A normal form can be seen as the simplest way to describe a given bifurcation highlighting its essential
features.

14. Degenerate in the sense of the Poisson brackets [MH13, HM13]
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CHAPTER V

VLASOV SYSTEMS AROUND
HOMOGENEOUS EQUILIBRIUM

In this Chapter, we retrace known results obtained mainly by L.D. Landau and J.D. Craw-
ford on the bifurcation around homogeneous states of the Vlasov equation. Historically in the
early 20th century the Vlasov equation was used to describe the physics of plasmas where the
interaction potential is the Coulomb one VCoulomb(r) = C3/|r| or astrophysical systems using
Newton interactions. In this Part, we restrict to the one dimensional Vlasov equation referred
with the abbreviation 1D (one spatial dimension + one velocity dimension). A lot of essential
features survive in 2D or 3D systems such as Landau damping while 1D has the advantage of
keeping the analysis rather simple. Despite this, in in 3D new types of bifurcation might appear
but the essential physical mechanism of the 1D case should remain.

A way to generalize the Coulomb/Newton potential in other dimensions is to use the Poisson
equation it satisfies as a definition, for attractive systems this gives

V3D(r) = −G3/|r|, (V.1a)
V2D(qx, qy) = G2 log(|q2

x + q2
y|), (V.1b)

V1D(q) = G1|q|. (V.1c)

To avoid heavy generic computations, we will restrict in this manuscript to a particular interac-
tion potential between particles, the so-called Hamiltonian Mean Field potential [AR95]. It is
defined through the first mode of the Fourier series of the 1D potential

V1D(q) = G1|q| = −2G1

∞∑

k=1

cos(kq)

k2
, (V.2)

so
VHMF(q) = − cos q. (V.3)
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In fact, it is also the potential term of a pendulum and because of its simplicity we will carry out
a lot of explicit computations. Here this choice is only motivated by simplifying the formalism.
Moreover, this choice allows direct comparison with numerics (we only use a Vlasov-HMF
solver) and an easy physical picture. Another motivation is that this potential is also used in
the Kuramoto model studied later in Chapters VIII, IX, X so the comparison between the two
models will be easier. Lastly, although it was originally used to study toy models some physical
systems display HMF interactions [SJM15]. Nevertheless, the following bifurcation problems
were also solved for more generic potential with the same results, see [Cra95a, BMY16].
Throughout this Section, we will keep track of what is generic and what is not.

In order to apply the unstable manifold techniques for kinetic equations with a continuous
spectrum (after the finite dimensional example of Section IV.1) in different cases, it will be
useful to redo Crawford’s original calculations [Cra94a, Cra95a] for what will be considered as
the "standard-case" of this thesis.

1 INITIAL PROBLEM

For the HMF interaction potential the microscopic equations for particles on a 1D ring 1,
(q, p) ∈]− π, π]× R are for the ith particles

q̇i = pi, (V.4a)

ṗi = − 1

N

∑

i 6=j
sin(qj − qi), (V.4b)

where we set the particles mass mp = 1. The associated Vlasov-HMF equation giving the
evolution of the density F (q, p, t) is

∂tF + p∂qF − ∂qφ[F ]∂pF = 0 (V.5a)

φ[F ](q) =

∫ ∞

−∞

∫ π

−π
VHMF(q − q′)F (q′, p′, t) dq′dp′ = VHMF ?q

∫ ∞

−∞
F dp (V.5b)

∫ ∞

−∞

∫ π

−π
F dqdp = 1 (V.5c)

where ?q is the convolution in space (this formulation makes easy the Fourier transform).
From now on we will omit the integration bounds. For the HMF potential the mean field poten-
tial φ[F ] becomes

φ[F ](q) = −Mc[F ](t) cos q −Ms[F ](t) sin q = −|M | cos(q − ϕM) (V.5d)

M [F ] = Mc[F ] + iMs[F ] =

∫∫
Feiq dqdp, (V.5e)

where M is in general referred as the magnetization of the system and ϕM the phase of the
potential (defined as the phase of the magnetization). Eq. (V.5a) describes the time evolution of
the density F (q, p, t) in the phase space (q, p); Eq. (V.5b) defines the self-consistent mean field
potential φ[F ](q) (for real systems it is a relevant macroscopic observable like the electric field

1. Since the potential is periodic it is a natural choice to have periodic boundary conditions.
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of a plasma); Eq. (V.5e) defines the HMF order parameter called magnetization and Eq. (V.5c)
is the normalization condition, true for all time t. For M = 0 the system is unmagnetized
(spatially homogeneous), for |M | = 1 the particles distribution is a delta Dirac function (fully
magnetized). Without loss of generality we choose in the following ϕM = 0 so that the energy
minimum is situated in q = 0. In this Section the initial magnetization M(t = 0) = M0 = 0 is
zero which means that the system is spatially homogeneous (unmagnetized).

The basic question we ask here is what is the fate of a perturbation around a homoge-
neous stationary state? We decompose the solution as

F (q, p, t) = f (0)(p) + f(q, p, t),

where we have the following normalization conditions
∫∫

f (0) dqdp = 1,

∫∫
f dqdp = 0.

To perform the unstable manifold analysis we rewrite the problem in terms of a linear L and
nonlinear N operator

∂tf = L f + N [f ] (V.6a)
L f = −p∂qf + ∂qφ[f ](f 0)′(p) (V.6b)
N f = ∂qφ[f ]∂pf. (V.6c)

2 SPECTRUM OF THE HOMOGENEOUS VLASOV OPERATOR

The latter term of Eq. (V.6b) is a compact perturbation of the advection operator Eq. (IV.25b)
(because it is of rank two) so it doesn’t change the essential spectrum [Kat95] that is the con-
tinuous spectrum. Therefore, the mixing phenomenon studied in Section IV.2.2 is expected to
remain, the difference is that now there might be some eigenvalues where for the advection the
spectrum was only composed of the continuous one. A complete analysis of the spectrum of
Eq. (V.6b) is given in [Deg86].

2.1 Eigenvalue problem

Let’s look at the spectral problem for an eigenvalue λ associated with an eigenvector Ψk.
From the linear Vlasov operator Eq. (V.6b) we get in the Fourier space

L k fk(p) = −ikpfk(p) + 2πik(VHMF)k

∫
fk(p

′) dp′ × (f 0)′(p) (V.7)

where (VHMF)k = −(δ1,k + δ−1,k)/2.
For k = 0 it is direct to see that L 0 = 0 so λ = 0 is an eigenvalue and any function

Ψn = ψ(p) 6= 0 is an associated eigenvector. So, there is always an 0 mode with an eigenspace
of infinite-dimension. It is related to the infinite number of possible stationary states. Without
spatial structure the mean field force is zero. As we shall see later, adding dissipation breaks
this structure.
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For k 6= 0 we take Ψk = ψk(p)e
ikq, we find

(λ+ ikp)ψk = −ikπ(f 0)′(δ1,k + δ−1,k)

∫
ψk dp. (V.8)

It gives for Reλ 6= 0

ψk(p) = −ikπ (f 0)′(p)

λ+ ikp
, (V.9)

where have chosen the normalization
∫
ψk dp = 1. (V.10)

The normalization condition gives us the dispersion relations 2 Λk(λ) whose roots are the eigen-
values

Λk(λ) = 1 + ikπ

∫
(f 0)′(p)

λ+ ikp
dp, (V.11)

for k = ±1. For generic potential, each k 6= 0 has its dispersion relation but it just changes the
prefactor in front of the integral. It is easy to observe by taking the complex conjugate (Λk(λ))∗

that if λ is an eigenvalue for Λk so is λ∗ for Λ−k. Similarly, if λ is an eigenvalue for Λk so is
−λ for Λ−k. It already gives precious information which is that if there is one stable eigenvalue
there is also one unstable. Therefore, a marginally stable equilibrium requires that there are no
solutions to Eq. (V.11), which says that only the continuous spectrum relaxes the system with
no additional damping of a negative eigenvalue. The stability criterion is obtained by taking the
limit λr = Reλ→ 0+, one has to be careful performing this limit and use the Plemej formula

lim
ε→0

∫
g(p)

p− iε dp = PV

∫
g(p)

p
dp+ iπg(0). (V.12)

This formula is counter intuitive since it gives a finite imaginary part to the limit while one could
have expected that it should go to zero. In fact, this formula can be obtained by deforming the
integration path in the complex plane as in Figure V.4(a) to avoid the singularities as ε → 0.
Thus, we get the following stability criteria

I[f 0] = Λ(0+ + iλi) = 1 + π

(
PV

∫
(f 0)′(p)

p+ λi/k
dp+ iπ(f 0)′(−λi/k)

)
. (V.13)

For I[f 0] > 0, f 0 is spectrally stable [Oga13] meaning that there is no eigenvalues (neither
positive nor negative). At criticality, both Re(V.13) = Im(V.13) = 0 which implies that
(f 0)′(−λi/k) = 0. Hence for an initial Gaussian distribution λi = 0 and the eigenvalue is
real. For a Coulomb repulsive potential one can obtain a similar criterion, the difference being
that due to the change of sign in front of the integral Gaussian distribution are always stable.
Unstable distributions have bump(s) on their tail(s) and are associated with a complex pair of
eigenvalues.

Remark V.1
Unless specified we will always assume that the eigenvalues of L k are simple Λ′k(λ) 6= 0 in all
the manuscript. However there might be some confusion here indeed the full dispersion relation

2. This denomination is abusive since the dispersion relation is strictly defined by the relation Λk(λ) = 0.
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of L is given by Λ(λ) = Λ1(λ)Λ−1(λ), so a real eigenvalue will be of multiplicity two for the
full operator L ,

Λ′(λ) = Λ′1(λ) Λ−1(λ)︸ ︷︷ ︸
=0

+ Λ1(λ)︸ ︷︷ ︸
=0

Λ′−1(λ) = 0

but simple with respect to L k and the dispersion relation Λ′k(λ) 6= 0. However, in [CH89] with
spectral deformation technique is shown that at criticality λc ∈ iR is simple.

2.2 Continuous spectrum

Now that we know the eigenvalues we want to characterize the continuous spectrum over
the imaginary axis, see Figure V.1, finding its associated generalized eigenvectors. Looking for
Ξk(q, p) = ξk(p)e

ikq associated with λ ∈ iR gives

(λ+ ikp)ξk = −ikπ(f 0)′(δ1,k + δ−1,k)

∫
ξk dp. (V.14)

Dividing by (λ+ ikp) gives a singular contribution (in the distribution sense) [VK55, Cas59],

ξk(p) = −ikπ PV
(f 0)′(p)

λ+ ikp
+ δ(λ+ ikp)A(λ), (V.15)

for some function Ak(λ) and k = ±1 where we have imposed
∫
ξk dp = 1.

These are the van Kampen modes are all excited during phase mixing [Bra98, BMT13]. The
normalization condition gives

A(λ ∈ iR) = 1 + ikπ PV

∫
(f 0)′(p)

λ+ ikp
dv. (V.16)

3 ADJOINT PROBLEM

In linear algebra, the notion of scalar product with projection and basis is crucial. It al-
lows for example to decompose a vector in the basis formed by eigenfunctions. What about
infinite-dimensional systems with a continuous spectrum? Does such decomposition still hold?
In [Cas59], K.M. Case shows the completeness of the basis formed by the eigenvector and gen-
eralized eigenvector. We first need to define a scalar product and what is called a dual (adjoint)
space of functions upon which to project (as the bra and ket in quantum mechanics or line and
column vector in finite-dimensional systems).
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Im λ

λ
Reλ

Continuous spectrum

Figure V.1 – Spectrum of the linear homogeneous Vlasov operator with one continuous spec-
trum on the imaginary axis. Here we show an unstable case with two eigenvalues λ,−λ real (in
a stable case these two would disappear but not the continuous spectrum).

3.1 Adjoint operator construction

We denote B∗ the dual functional space of our space B (which is different in general). We
define the "scalar product" over the two space for f ∈ B and g ∈ B∗ as

(g, f) =

∫
〈g, f〉 dq (V.17a)

where

〈g, f〉 =

∫
g∗f dp. (V.17b)

The dual (adjoint) operator L † is then defined by the relation

(g,L f) =
(
L † g, f

)
. (V.18)

Similarly, to what has been done previously, we can look for the eigenvalues and eigenvectors
for this operator. Let’s make explicit the derivation of L †,

(g,L f) = −
∫∫

g∗p∂qf dqdp−
∫∫

g∗(q, p)f 0(p)

(∫∫
∂q cos(q − q′)f(q′, p′) dq′dp′

)
dqdp

=

∫∫ (
p∂qg

∗ + φ[g∗(f 0)′]
)
f dqdp =

(
L † g, f

)

(V.19)

where we have use integration by part in the first member and integral exchange in the second
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one to write the second line. So

L † g = p∂qg + φ[∂qg(f 0)′] (V.20a)

L †
k gk = ikpgk + φk[∂qg(f 0)′]. (V.20b)

3.2 Eigenvalue problem

We denote by a tilde the adjoint eigenvectors (not to be mistaken with the ∗ for the complex
conjugate). We have to solve

L † Ψ̃k = λ∗Ψ̃k (V.21)

which gives for Ψ̃k = ψ̃k(p)e
ikq/(2π) and Reλ 6= 0

ψ̃k(p) =
1

(Λ′k(λ))∗
1

λ∗ − ikv , (V.22)

where we have chosen the normalization factor so that
(

Ψ̃k,Ψk

)
=
〈
ψ̃k, ψk

〉
= 1. (V.23)

Indeed, the derivative with respect to λ of the relation dispersion Λ′k(λ) appears naturally in the
normalization, one can check that

〈
ψ̃k, ψk

〉
= − ikπ

Λ′k(λ)

∫
(f 0)′(p)

(λ+ ikp)2
dp =

Λ′k(λ)

Λ′k(λ)
= 1. (V.24)

Remark V.2
This "functional" link between scalar product of an eigenvector with its adjoint

〈
ψ̃k, ψk

〉
(λ)

and the first derivative of the dispersion relation Λ′k(λ) is something apparently very generic,
similar relations were found for every linear problem treated in this manuscript and eventually
"proven" for very generic linear operator in a quite surprising way (see Chapter X). I am not
aware of similar results, such result can for example predict directly the right normalization
choice.

It can be proven that the eigenvalues associated with Ψ̃ satisfy the dispersion relation Eq. (V.11)
thus the point spectrum of L † is the same than L .

4 LINEAR LANDAU DAMPING

The Landau damping (sometime called resonant relaxation in the astrophysics community or
non-entropic relaxation) of stable equilibrium is a phenomenon directly linked with the phase
mixing seen previously, IV.2.2. The standard historical way to derive it is to study the linear
initial value problem, solve the problem with the Laplace transform in time and then get back
to the real problem with the inverse Laplace transform. At this point to evaluate the integral
one has to deform the integration contour and the damping is given by the roots of the analytics
continuation of the dispersion relation, these are called resonances. The term resonance here
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has not the usual physical sense (of two components with the same frequency), here it really
just denotes a root of the analytical continuation of the dispersion relation.

There exists simpler and stronger ways to show Landau damping via Volterra equation, see
the well explained thesis of H. Dietert [Die16a], here we focus on the Landau approach to
highlight among other things the analytical continuation method for the dispersion relation that
will serve us in Section VII.2.3.

To observe the Landau damping as L.D. Landau found it, we solve the initial value problem
considering F (x, v, 0) = f 0(v) + f(x, v, 0) = f 0(v) + f i(x, v). We set ourselves in the stable
case so Λ(λ) does not have any roots. The Laplace transform is defined by

f̂(ω) =

∫ ∞

0

f(t)e−ωt dt (V.25)

where Reω > 0 for the integral to be well defined. The inverse Laplace transform is defined
through

f(t) =
1

2πi

∫ +i∞+σ0

−i∞+σ0

f̂(ω)eωt dω (V.26)

where σ0 ∈ R is large enough to be at the right of every singularity of f̂(p).
Inserting the Laplace transform directly in

∂tfk = L k fk (V.27)

gives for k = ±1

(ω + ikp)f̂ = −ikπ(f 0)′(p)

∫
f̂k(p

′, ω) dp′ + (f i)k(p) (V.28)

since Reω > 0 we can safely divide. We get eventually

2φ̂k[f ](ω) = −
∫
f̂k dp′ =

−1

Λ(ω)

∫
(f i)k
ω + ikp

dp =
1

Λ(ω)
ϕik(ω) (V.29)

where again the division by Λ(ω) is safe since we have assumed to be in the stable case. Now
we want to get back to the real time ω → t, taking the inverse Laplace transform gives

φk[f ](t) =
1

4πi

∫ +i∞+σ0

−i∞+σ0

ϕik(ω)

Λ(ω)
eωtdω. (V.30)

When ending up with such integral one wants to use complex analysis results to deform the
integration contour toward the left part of the complex plane (so that e−ωt goes to zero with
Reω → −∞) and just look for the pole contribution. That was the strategy of Landau when
facing this integral. We assume that the initial condition fi is regular enough to be analytically
continued in the left part of the plane then so is ϕik (with Plemej formula). Moreover, we assume
that the continuation of f i has no pole in the left plane. Now what about Λ(ω)? We know it
is not continuous from the right plane to the left, but we can construct an analytic continuation
ε(ω) analytic on the all complex plane as follow

ε(λ) =





Λ(λ), Reλ > 0

1 + kπ PV

∫ ∞

−∞

(f 0)′(p)

p− iλ dp+ iπ2(f 0)′(iλ), Reλ = 0

1 + kπ

∫ ∞

−∞

(f 0)′(p)

p− iλ dp+ 2iπ2(f 0)′(iλ), Reλ < 0.

(V.31)
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This is continuous by construction see Eq. (V.13). Another method is to write

1

λ+ ip
=

∫ ∞

0

e−(λ+ip), Reλ > 0

so, that

ε(λ) = 1 + iπ

∫ ∞

−∞

∫ ∞

0

e−(λ+ip)(f 0)′(p) dp, ∀λ ∈ C. (V.32)

This new function can have roots ωd on the left plane, they are called resonances (but they do
not have the traditional physical sense of resonance, see Section V.6).

Reω

Imω

ωdm

Γσ0Γσ

Figure V.2 – Deformation of the contour of integration Γσ0 → Γσ in the left plane avoiding the
resonances. ωdm has is the resonances with the largest real part.

We know that deforming the integral contour does not change the result of the integral, so
we have

φk[f ](t) =
1

4πi

∫ +i∞+σ0

−i∞+σ0

ϕik(ω)

Λ(ω)
eωtdω = lim

σ→−∞

∫

Γσ

ϕik(ω)

ε(ω)
eωtdω (V.33)

where Γσ0 is the deformed contour as in Figure V.2, that avoid the poles of 1/ε(ω) produced by
the root of ε(ω). According to the residue theorem we have

φk[f ](t) =
1

2πi

∑

d

Rd(ω)eωdt
t→∞∝ e−|Reωdm |t → 0 (V.34)

where Rd are the residues and Reωdm < 0 is the resonance with the largest real part that
will dominate for large times the damping. This is the Landau damping, the perturbation is
damped in time with no dissipation mechanism. Note that once again as in IV.2.2 the full
distribution f(q, p, t) will be highly oscillating and will only converge to zero in a weak sense.
In fact, we could have looked as in Section IV.2.2 at the velocity Fourier transform and get
similar result, with the advantage of keeping the information over velocity (here we just look
at the integrated density). That is the direction taken in [MV11] to prove nonlinear Landau
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damping, that we have no time to develop here. Another method would have been to decompose
a function over the basis formed by the generalized eigenvectors observe the linear Landau
damping, see [VK55, Cas59].

The classical physical picture for this damping is that the perturbing wave φk[f ]eikq + c.c.
which has a frequency ωi = Imωdm , loses energy to the resonant particles p ∼ ωi. On
my personal website 3 one can find a Vlasov-HMF simulation of Landau damping, see "Lan-
dau_Damping.mp4". The filamentation of the velocity space is clearly visible thanks to the
good resolution.

5 NONLINEAR EXPANSION

Now that we have reviewed the case where a homogeneous state is stable and small pertur-
bation are damped thanks to Landau damping, we will review the case treated by J.D. Craw-
ford [Cra94b, Cra95a] for unstable steady states. Close to the onset of the bifurcation we sup-
pose that only one eigenvalue λ (or a pair of complex conjugate λ, λ∗) emerges in the right
complex plane from the continuous spectrum. That will be our unstable mode. As we have seen
also appears a negative eigenvalue −λ.

— In the astrophysical context, instabilities can develop when a distribution of stars have a
kinetic energy too weak to support the pressure applied by the potential energy. In terms
of distribution for example,

f 0(p) =
√
µ
e−µp

2/2

(2π)3/2
,

the system goes unstable when the parameter µ (related to the inverse of the temperature)
is varied over a certain value µc. In astrophysics, this type of instability leads to a collapse
and it is known as the Jeans instability.

— In plasma physics as already mentioned, an unstable distribution could be for example as

f 0(p) =
e−p

2/2

(2π)3/2
+ µ

e−(p−p0)2/2

(2π)3/2
,

leading to the bump-on tail-instability for a certain bump size µ > µc and frequency p0.
The idea is the same as in the example IV.1, we want to construct the unstable manifold

associated with the unstable eigenvalue λ (or λ, λ∗) close to the bifurcation Reλ → 0. We
hope to get a dimensional reduction from infinite to one or two, which would simplify a lot the
description of the bifurcation. But as we have seen in the example due the continuum of neutral
modes, the constructed manifold will a priori not be attractive and will not describe for example
oscillating behavior. Nevertheless, we hope to get precious qualitative information such as the
sub/super-critical nature of the bifurcation and in the latter case the scaling of saturation.

Remark V.3
In the Fourier space, the unstable modes will be associated with k = ±1, for more generic
potential, we should also consider other modes but in practice the mode k = ±1 are always
the first to be unstable so other k−modes are not associated with eigenvalues just continuous
spectrum.

From now on the subscript k to Ψk,Λk, etc. will be dropped (as it is k = ±1 and there are
not ambiguities).

3. http://cnls.lanl.gov/~metivier/html/video.html
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5.1 Symmetries

Before starting building the unstable manifold it is worth looking at the symmetries of the
system. Let’s define the rotation Sθ ∈ SO(2) : (q, p) → (q + θ, p) and reflexion SR ∈ O(2) :
(q, p)→ (−q,−p) symmetries. If f 0 is even (reflexion symmetry) then the eigenvalue λ is real
Eq. (V.13) associated with a eigenspace of dimension two Ψ,SRΨ = Ψ∗. Conversely if f 0 is
not even the reflexion symmetry is broken, there are two complex eigenvalues λ = λr + iλi
and λ∗ associated respectively with Ψ and Ψ∗. Therefore, in both cases the unstable space is of
dimension two.

Remark V.4
An unstable space of dimension four is possible if reflexion symmetry still holds and eigen-
values λ, λ∗ are complex (as in the plasma case with the two-stream instability) associated
respectively with Ψ,SRΨ and Ψ∗,SRΨ∗. We will not study this case in this thesis.

Remark V.5
In [CH89, HC89] authors studied the spectral properties of the Vlasov linear operator. They
highlight another difference between the infinite and finite-dimension system that we will ex-
plain. Let consider an unstable plasma composed of two pair of complex conjugate eigenvalues
(one pair with Reλ = λr > 0 the other one with Reλ = −λr < 0). Their real part grows with
the instability parameter µ− µc > 0.

— In finite-dimensional system at criticality µ = µc, both "negative" λr → 0− and "posi-
tive" λr → 0+ join on the real axis. Thus both λµc = 0 + iλi and λ∗µc = 0 − iλi are
associated with a eigenspace of dimension two [VDMvdM85, CMM90]. Therefore, we
shall have a 2 × 2 dimensional description of the bifurcation with a two dimensional
center manifold for example; a one dimensional description would lead to singular coef-
ficient in the bifurcation expansion, as in the example Section IV.1. Note that in this case
the merging of "positive" and "negative" eigenvalues is translated by Λ′(0 ± iλi) = 0 at
µ = µc.

— In infinite-dimension (for the Vlasov equation) J.D. Crawford and P.D. Hislop [CH89]
showed that at criticality these eigenvalues were simple. It is related to the fact that
the dispersion relation is not analytic 4 and Λ(0± ± iλi) 6= 0 in general. Therefore, the
description of the bifurcation should be only 2 dimensional (for λ, λ∗).

For real eigenvalues, the discussion and conclusion are similar.

We can decompose the perturbation close to f 0 in the direction along the unstable eigenspace
(for λ complex or not) and its orthogonal

f(q, p, t) = A(t)Ψ(q, p) + A∗(t)Ψ∗(q, p) + S(q, p, t) (V.35)

for (Ψ̃, f) = A and S such that (Ψ̃, S) = 0. A plays the role of the order parameter. It is
directly proportional to the magnetization M(t) since

M(t) = (eiq, f) = A (eiq,Ψ)︸ ︷︷ ︸
=2π

+O
(
A2
)
.

We can write the time evolution of Eq. (V.35) by projecting the on (Ψ̃, f) and I − (Ψ, f)Ψ

Ȧ = λA+
(

Ψ̃,N [f ]
)

(V.36a)

∂tS = L S + N [f ]−
((

Ψ̃,N [f ]
)

Ψ + c.c.
)
. (V.36b)

4. Technically "negative" and "positive" eigenvalues are joining the real axis on different Riemann sheet.
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Note that this system is still exact and infinite-dimensional, we have just brought out the unsta-
ble mode.

The key point is now to decompose our perturbation density f not on the infinite variety
induced by S but along the finite-dimensional unstable manifold W u. It means that we describe
now the evolution of functions belonging to the unstable manifold f ∈ W u where (A,A∗, S) =
(A,A∗, H(A,A∗)) as schematically represented on Figure V.3. Note that because the unstable
manifold is the nonlinear generalization of the eigenvector we have by construction at least
H = O

(
(A,A∗)2

)
.

(A,A∗, H(A,A∗))

S

f 0

Ψ

(A,A∗)

Ψ∗

W u

Figure V.3 – Schematic representation of the unstable manifold W u near f = f 0 in the infinite-
dimensional space.

One can check that the distribution f is invariant by rotation in the Vlasov equation Eq. (VI.15).
Since we want to construct the unstable manifold with a rotational invariance we impose for
f ∈ W u Eq. (V.35), Sθf ∈ W u. It implies (because of the form of Ψ ∝ eikq)

SθA = Ae−ikθ.

Similarly, the Fourier coefficient Hk of H will be constrained as SθHk = Hke
−ikq, thus

H0 = |A|2h0(p, |A|2) (V.37a)
H1 = A|A|2h1(p, |A|2), (V.37b)

Hk = Akhk(p, |A|2), k ≥ 2 (V.37c)
H−k = (Hk)

∗, (V.37d)

Now our goal is to construct the dominant order of H in order to get a dynamical equation

Ȧ = λA+ c3(λ)|A|2A+ O
(
|A|4A

)
(V.38)

with potentially a diverging c3(λ) coefficient as in the example IV.1. Note that the form of the
expansion Eq. (V.38) is constrained by the rotational symmetry furthermore terms as |A|2j have
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to be zero because of the rotational symmetryA↔ −A. As we will see in the non homogeneous
case this symmetry is not preserved and the quadratic term is non zero.

To summarize the symmetries, constrain a lot the unstable variety and provide precious in-
formations, as that the 0th and 2nd Fourier mode will be the terms of lowest order O (H0) =
O (H2) = O

(
(A,A∗)2

)
.

5.2 Temporal equations

Now we drop the index k = 1. The temporal evolution on the unstable manifold is

Ȧ = λA+
(
ψ̃,N f

)
(V.39)

dH

dt
= L H + N [f ]−

[(
ψ̃,N f

)
ψ + c.c.

]
. (V.40)

We define Ȧ = A%(σ, t). The goal is to get the different order of |A|2, by construction %0 = λ.
Since by construction H is a function, it can be expanded for small A as

hk(p, σ) =
∞∑

j=0

hk,j(p)σ
j, (V.41)

where σ = |A|2. The task is to evaluate the hk,j at different order. To remove the temporal
evolution, we write on one hand

dHk

dt
= Ȧ∂AHk + Ȧ?∂A?Hk (V.42)

using Eq. (V.37a), Eq. (V.37b), Eq. (V.37c) gives

dH0

dt
= A?Ȧ(h0,0 + O (σ)) + AȦ?(h0,0 + O (σ)) = σ(%+ %?)(h0,0 + O (σ)). (V.43)

So, for k ≥ 0,

dH0

dt
= 2λrσh0,0 + O (σ) (V.44a)

dH1

dt
−L 1H1 = Aσ[(2λ+ λ∗)−L 1]h1,0 (V.44b)

dHk

dt
−L kHk = Ak[kλ−L k]hk,0. (V.44c)

On the other hand, from Eq. (V.40),

dH0

dt
= N 0[f ] (V.45a)

dH1

dt
−L 1H1 = N 1[f ]−

(
Ψ̃1,N [f ]

)
ψ (V.45b)

dHk

dt
−L kHk = N k[f ]. (V.45c)

So, by equalizing Eq. (V.44) and Eq. (V.45), we eliminate the temporal dependence allowing us
to compute every order of H .
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For the HMF potential

N k fk =2πi (A(t)∂pψδk−1,1 + A(t)?∂pψ
?δk−1,−1 + ∂pHk−1)φ1 [A(t)ψ +H1]

− 2πi (A(t)∂pψδk+1,1 + A(t)?∂pψ
?δk+1,−1 + ∂pHk+1)φ−1 [A?(t)ψ?1 +H−1] .

(V.46)

In particular

N 0[f ] = iπσ (∂pψ
∗ − ∂pψ) + O

(
σ2
)

(V.47a)

N 1[f ] = iπAσ (∂ph0,0 − ∂ph2,0) + O
(
Aσ2

)
(V.47b)

N 2[f ] = iπA2∂pψ + O
(
A4
)

(V.47c)

where we used the normalization of φ[ψ] = 1/2.

5.3 Cubic order

Combining Eq. (V.45) and Eq. (V.47), gives

h0,0(p) = iπ
(∂pψ

∗ − ∂pψ)

2λr
(V.48a)

h2,0(p) =
iπ

2

∂pψ

λ+ ip
. (V.48b)

So, with
(

Ψ̃1,N [f ]
)

=
〈
ψ̃1,N 1[f ]

〉
= Aσ iπ

〈
ψ̃, ∂p (h0,0 − h2,0)

〉

︸ ︷︷ ︸
c3(λ)

+O
(
Aσ2

)
, (V.49)

it just remains to compute two scalar products. Let’s evaluate the term containing h2,0,

−iπ
〈
ψ̃, ∂ph2,0

〉
=

π2

2Λ′(λ)

∫
∂pψ

(λ+ ip)3
dp =

3iπ3

2Λ′(λ)

∫
(f 0)′(p)

(λ+ ip)5
dp

= −3π2

48

Λ(4)(λ)

Λ′(λ)
.

(V.50)

Let’s evaluate the term containing h0,0,

iπ
〈
ψ̃, ∂ph0,0

〉
= − π2

2λrΛ′(λ)

(∫
∂pψ

∗

(λ+ ip)2
dp−

∫
∂pψ

(λ+ ip)2
dp

)
=

= − π2

λrΛ′(λ)

(∫
ψ∗

(λ+ ip)3
dp−

∫
ψ

(λ+ ip)3
dp

)

= − iπ3

λrΛ′(λ)

(∫
(f 0)′(p)

(λ∗ − ip)(λ+ ip)3
dp−

∫
(f 0)′(p)

(λ+ ip)4
dp

)
.

(V.51)

At this point of the computation, one can take the limit λr → 0 and look at the scaling. A clever
way proposed by J.D. Crawford was to expand the integrand in simple fraction, it has both the
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advantages to highlight directly the λr dependence and the remaining integral has the form of
Λ(n)(λ) derivative. The simple fraction is

1

(λ∗ − ip)(λ+ ip)3
=

1

8λ3
r (λ+ ip)

+
1

4λ2
r (λ+ ip)2 +

1

2λr (λ+ ip)3 +
1

8λ3
r (λ∗ − ip) (V.52)

which directly gives

c3 =
−π2

λrΛ′(λ)

(
(Λ(λ))∗ − 1− Λ(λ) + 1

8λ3
r

+
Λ′(λ)

4λ2
r

− Λ′′(λ)

4λr
− Λ′′′(λ)

6
+

Λ(4)(λ)

16

)
. (V.53)

Since the first (Λ(λ))∗ = Λ(λ) = 0 (λ is an eigenvalue) we find the asymptotic coefficient as
in [Cra94a]

c3 ∼ −
π2

4λ3
r

+ O
(
γ−2
)
. (V.54)

Note that this result is independent of the initial distribution function (f 0)′(p).
Therefore, since c3 is always negative the bifurcation Eq. (V.38) towards a magnetized system

is always supercritical (meaning continuous or to use the equilibrium statistical mechanics term:
second order) and the scaling of the saturated states Asat is as announced

|Asat| ∝ λ2
r,

it is the trapping scaling.

5.4 A note on pinching singularities

To check that the Λ(n)(λ) do not bring any additional singularity, one can consider integral
of the type

lim
ε→0

∫
f(p)

(p− imε)k(p+ inε)l
dp (V.55)

for a regular function f(p). For l = 0 we have a function proportional to the derivative of
the dispersion relation. Once again there are different ways to see the potential divergences

— One could show that the simple fraction expansion leads to divergences in 1/ε only if
m = n.

— Use the Plemej formula. A graphical interpretation of the result can be seen in Figure V.4.
When two poles or more (whatever the order k, l) approach the real axis from both side
at a different velocity p one can always deform the integration path to make the limit
finite. However, when two singularities approach the real axis at the same velocity p, the
contour cannot be deformed to avoid the singularity. This case is referred to a pinching
singularity.

In practice divergence, will come from scalar product containing terms as
〈
ψ̃, ψ∗

〉
, while terms

like
〈
ψ̃, ψ

〉
will not diverge. This can be interpreted as singular projection over one unstable

mode.
Hence, from this calculation the divergence of the coefficient c3 has its origin from this

pinching singularity, but what does it means physically? The divergence occurs for p ' −λi.
It can be physically translated as particles with velocity (frequency) around the frequency −λi
of the unstable mode have a "singular" behavior. Once again, these particles are called resonant
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+imǫ

−inǫ

p = −∞ p = ∞

(a) m 6= n

+imǫ

−imǫ

p = −∞ p = ∞

(b) m = n

Figure V.4 – Integration path with poles approach the real axis.

particles. As we will see later these particles are in fact trapped with the unstable wave whose
amplitude isA. This singularity is what make the dynamical expansion of the Vlasov bifurcation
so "unique", it is not a mathematical artifact and any regularization would lead to a standard
Hopf scaling ∝

√
λ, corresponding to remove the trapping mechanism.

Remark V.6
These pinching singularities do not appear only in the kinetic context, for example in Perturba-
tive Quantum Chromodynamics such singular integrals with pinching singularities occur. They
physically stand for a long-distance sensitivity in the perturbation theory [Ste96]...

5.5 Higher orders

For every expansion of the previous type a safety check consist to compute and estimate
higher order terms of Eq. (V.38). If they are negligible the dimensional reduction of the system
at the bifurcation from the infinite Eq. (V.36) to one dimension Eq. (V.38) becomes exact.

Here we will not detail the computation of higher orders since a more generic treatment was
done by J.D. Crawford in [Cra94a]. It brings quite some technicalities and the main insight was
already provided by the cubic coefficient. The Crawford result is as follows:

c2j+1 ∝
1

λ4j−1
r

, j ≥ 1. (V.56)

What is further more remarkable is that he computed exactly c5 ∼ 13/64λ−7
r which as c3,

does not depend on the distribution f 0. It is then natural to conjecture that at leading order the
unstable manifold is always the same for the Vlasov dynamics around homogeneous states (so
all c2j+1 coefficient have a fixed value).

This result implies that around the saturated solution Asat ∝ λ2, the series expansion of the
one dimensional dynamics becomes singular since as in the example Eq. (IV.21),

O (λ|Asat|) = O
(
c3|Asat|3

)
= O

(
c5|Asat|5

)
= O

(
c2n+1|Asat|2n+1

)
= O

(
λ3
)
. (V.57)

This divergence means once again that the perturbative treatment fails at times larger than
O (1/λ). After this time particles are trapped with the created wave (whose amplitude is A)
and an oscillation behavior starts (which cannot be described by the one dimensional dynami-
cal equation), see Figure V.6 and V.5.
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6 RESONANCE PHENOMENON

As we have seen in the computation the damping or growing of stable/unstable perturbation
is dominated by the contribution of particles resonating with the wave created self consistently
by the perturbed distribution. These particles have a frequency (velocity) close to the frequency
of the perturbation.

— In the stable case we observe the Landau damping. The wave is damped according the
resonances of the dispersion relation (once again here resonance has the mathematical
meaning). Thus, this damping occurs thanks to the particles with a velocity close to
frequency of the wave. The Malmberg and Wharton experiment [MW64] showed indeed
that a plasma without those particles did not display damping.

— In the unstable case resonances come from pinched singularities of pole. For a perturba-
tion with zero frequency ω = 0, M(t) sin q, resonant particles are found around v ' 0.
Particles with large velocity p are not much affected by the perturbation in their phase
space trajectories, {

q̇ = p

ṗ = −M(t) sin q
(V.58)

while resonant particles go from a straight line to a closed orbit in phase space Figure V.5.
The period of closed orbit is given by the nonlinear time τNL ∼

√
M
−1 ∼

√
A
−1

. Hence
there is a competition in between trapping time τNL and linear instability τλ ∼ λ−1.
Saturation occurs when both are comparable

τNL ∼ τλ ⇒ Asat ∼ λ2,

this yield the "trapping scaling".
Trapped particles are much more affected by the perturbation since their trajectories change
from a straight line to a close orbit. Because the crucial point of the expansion comes from
this nonlinear layer where particles are trapped, it was then natural for O’Neil et al. [OWM71]
followed by del-Castillo Negrete [dCN98a, dCN98b] to perform an exact asymptotic multiscale
expansion of the model considering these two different regions with a third region in between.
The region with cycling orbit is called the inner critical layer, it is where the scaling of the
expansion is not standard. In the Outer region, the time expansion is regular, then a match-
ing of those two layers is done. It leads to the Single Wave Model (SWM), nicely reviewed
in [BMT13]. A normal form is obtained and in fact it is shared with various Hamiltonian sys-
tems such as XY model and Euler 2D. The normal form is for our problem (simplified normal
form from [BMT13])

∂tf + p∂qf + ∂qϕ∂pf = 0, (V.59a)

ϕ(q, t) = Aeiq + A∗e−iq, (V.59b)

iȦ(t) =

∫
f1(p, t) dp. (V.59c)

It does look as the Vlasov equation with the difference that the perturbing wave ϕ is only along
the unstable Fourier mode k = 1 and it does not depend directly on the distribution as the
previous mean field term φ[f ] did. This description has the advantage to display universality.
The drawback of this reduction is that it is still of infinite-dimension, thus the end behavior is not
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Figure V.5 – Density plot of F (q, p, t) in the phase space (q, p) for different times t =
0, 30, 50, 60, 70, 90, 110, 130, 170. Fermi distribution defined in Eq. (VI.37a) with M0 = 0,
β = 10, µ = 0.277361, ε = 10−4, λ = 0.0729. The associated video can be found by clicking
here homogeneous_unstable.mp4.
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Figure V.6 – Magnetization associated with the Figure V.5. The circles represent the times of
the snapshots. Fermi distribution defined in Eq. (VI.37a) with M0 = 0, β = 10, µ = 0.277361,
ε = 10−4, λ = 0.0729.
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7. OPEN QUESTIONS

direct. Moreover, in the construction of the model the trapping scaling giving the characteristic
size of the critical layer is set as an ansatz that turns out to work (where traditional Hopf scaling
would fail) whereas in Crawford method it is found as a result.

7 OPEN QUESTIONS

The partial success of the unstable manifold technique plagued by singularities raise many
questions:

— How general is this unstable manifold expansion?
— Can it be applied around non homogeneous systems?
— Are bifurcation around non homogeneous states similar to the homogeneous case

— Trapping scaling
— SWM normal form
— Universal coefficient cn
— Singular series expansion at saturation or exact dimensional reduction?

— How with a small dissipation the critical layer is modified to give an exact one dimen-
sional reduction with a

√
λ scaling as one found in regular expansion.

In the Chapter VI we will perform a similar analysis for the non homogeneous case and
answer to some of the previous questions. In Chapter VII we will study the same homogeneous
system as here adding a small dissipation. Since for every newt Chapter we will use the same
methodology we will start each Chapter by highlighting the differences with respect to this
homogeneous Crawford model.
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CHAPTER VI

BIFURCATIONS AROUND NON
HOMOGENEOUS STATES

Now that we are familiar with the bifurcation problem around a homogeneous state, we
consider the same question around an already magnetized (non homogeneous) state and present
our original results. We will still consider the HMF model and highlight the differences with
generic potential in this Chapter. In [BMY16], we prove that results of the unstable manifold
approach remain with generic potentials; we also develop a self-consistent approach in addition
to the dynamical one with similar predictions about the final states.

The unstable manifold analysis is then performed for a non oscillating perturbation (the
unstable eigenvalue λ is real). The main results and physics of this study reveal that

— The wave particles/resonance is weaker than in the homogeneous case for a non oscil-
lating perturbation since few particles resonate. Thus, the pinching singularities are also
weaker.

— Nevertheless a singularity still appears in the bifurcation expansion for another physical
reason.

— The bifurcation is now asymmetric with respect to the initial magnetization perturbation
(see Figure VI.1) measured by A ∝M∞ −M0,

Ȧ = λA+ c2A
2 + O

(
A3
)

with c2 ∝
1

λ
.

O(λ2)O(λ2)

A = 0

A

(a) Homogeneous case: symmetric supercritical bifur-
cation

O(λ2)

A = 0

A

(b) Inhomogeneous case: asymmetric transcritical bifur-
cation

Figure VI.1 – Bifurcation diagram for homogeneous and inhomogeneous case

111



CHAPTER VI. BIFURCATIONS AROUND NON HOMOGENEOUS STATES

In bifurcation theory, this type of bifurcation is called transcritical (with here an unusual
scaling). In one case, we recover the trapping scaling Asat ∝ λ2 while for the opposite
initial condition the perturbation grows to be Asat ∝ O (1).

— In fact if a singularity arises, it is not as in the homogeneous case because no finite-
dimensional reduction is possible (thanks to strong resonances). It is because with the
unstable manifold expansion we do not consider all the slow modes that contributes near
the critical point i.e. −λ → 0− and 0, as in the finite-dimensional example (see Sec-
tion IV.1). Hence describing the problem with a three-dimensional 1 manifold yields this
time to what seems to be an exact dimensional reduction. The reduction obtained is
known as the Triple Zero normal form. Preliminary predictions are compared directly
with numerics, providing for example almost exactly the amplitude and frequency of os-
cillation of the saturated states whereas the unstable manifold just provides "a qualitative"
scaling.

Technically the problem is more difficult since the angle-action variable change is necessary.
However due to a broken rotational symmetry the nonlinear computation stops at the quadratic
order c2, which does not require any calculation of the unstable manifold H .

In the first part, we will introduce the non homogeneous formalism defining the angle-action
variable more suited for the problem. Then we will quickly describe the known result for
Landau damping in the non homogeneous case.

1 STEADY STATE

The particles motion in the mean field limit is associated with the following Hamiltonian
(also called one particles Hamiltonian),

H[F ](q, p) =
p2

2
+ φ[F ](q) +Mc[F ] =

p2

2
+Mc[F ](1− cos q)−Ms[F ] sin q, (VI.1)

where we use the same definitions of the magnetization M and mean field potential φ[f ] that in
Eq. (V.5). We shifted the energy so that its minimum is zero. Hamilton’s equations are

dq

dt
= ∂pH, (VI.2a)

dp

dt
= −∂qH. (VI.2b)

Following the temporal evolution of the trajectories in the phase space gives the Vlasov
equation for the distribution of particles

dF

dt
= ∂tF + ∂pH∂qF − ∂qH∂pF = 0 = ∂tF + {H[f ], F}, (VI.3)

where we used the Poison bracket

{u, v} = ∂pu∂qv − ∂qu∂pv. (VI.4)

For the homogeneous state finding a time independent solution was direct, here thanks to
this Hamiltonian structure one can verify that any function of the one particle Hamiltonian

1. Originally we thought that a two dimensional reduction was enough but it led to inconsistencies.
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2. ANGLE-ACTION VARIABLE

f 0(H(q, p)) is a solution of the Vlasov equation. This fact is related to the Jeans [BT11] theo-
rem that states that:
"Any steady-state solution of the Vlasov equation depends on the phase-space coordinates only
through integrals of motion in the given potential, and any function of the integrals yields a
steady-state solution of the Vlasov equation". To recover homogeneous stationary state one has
to set Mc = Ms = 0.

Here the energy is an obvious integral of motion, in higher dimensions other integral of
motion must be considered to describe steady states.

2 ANGLE-ACTION VARIABLE

If we want to proceed further in the unstable manifold analysis and solve the linear problem
we are quickly stopped since the linear operator is here

L f = −p∂qf + ∂qφ[f ](q)∂pf
0(q, p) + ∂qφ[f 0](q)∂pf(q, p) (VI.5)

where the last term was previously zero. So, the spatial Fourier transform of L f already
involves different Fourier modes fk, fk−1, fk+1. In other terms the spatial modes are mixed at
the linear level, the problem is not diagonal which make it difficult to solve. We will thus have
to change basis to diagonalize the problem.

From now on we choose a symmetric initial distribution f 0(q, p) = f 0(−q, p) so (M0)s[f
0] =

0. As we will explain later this choice should not affect any of our results, moreover we have
done some simulation with (M0)s[f

0] 6= 0 without any of our conclusion affected. So, the initial
potential writes

φ[f 0] = −(M0)c cos q = −M0 cos q, (VI.6)

where we choose in the following (without loss of generality due to the symmetry of the prob-
lem) (M0)c = M0 > 0.

2.1 Angle-action definition

The natural change of variable to diagonalize is to go from position-velocity (q, p) to the
angle-action (θ, J) variable. Their definition is

J =
1

2π

∮
p dq (VI.7a)

and the angles variable are obtained through a generator W (q, J) of the canonical transforma-
tion (q, p)→ (θ, J)

W (q, J) =

∫ q

p(q′, J) dq′, (VI.7b)

θ = ∂JW (q, J), (VI.7c)

where
∫ q

designates the primitive (anti-derivative). In what follows it will be useful to define

the parameter κ,

κ =

√
H

2M0

, (VI.8)
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CHAPTER VI. BIFURCATIONS AROUND NON HOMOGENEOUS STATES

where H = H(J) is the energy of one trajectory of action J . We define its complementary
κ′ =

√
1− κ2. This parameter is useful since it separated the two different types of orbit. For

κ < 1 particles have elliptic orbit (blue zone in VI.2). For κ > 1 particles have librating orbit
(with p < 0 or p > 0). The separatrix is the limit orbit with κ = 1. To avoid confusion between
the different variable we designated f 0(q, p) = F0(H) = F 0(J) = f̄ 0(κ).

For HMF potential it is possible to obtain an explicit expression for these variables, the
starting point is to write

p = ±
√

2 (H +M0(cos q − 1)) = ±2
√
M0

√
κ2 − sin2(q/2) (VI.9)

and to compute the integral Eq. (VI.7) in the three different cases κ < 1,= 1, > 1. Therefore,
the definition of the angle-action variables is a priori different for three regions of space [BOY10]
as show in Figure VI.2. J = Jc is the action associated with particles on the separatrix. It is
easy to understand the different zones for angle-action variable with a pendulum:

— For small initial energy (J < Jc) a pendulum oscillates. For very small oscillations it is
well known that the period is isochronous.

— At the separatrix J = Jc, it takes an infinite time to travel cycle.
— For large initial energy (J > Jc) the pendulum describes a complete circle

q

p

θ = π

θ = π θ=−π

θ=−π

θ = 0

θ = 0

J

Jc

Figure VI.2 – Angle-action variables (θ, J) representation in the phase space (q, p). Three
trajectories (arrows show the stream direction) are shown with associated angle variables. The
action variable is increased along the dotted lined. The blue zone is bounded by the separatrix
curve which separates close orbit from librating orbits.

These considerations lead naturally to the "analog" of the velocity p in angle-action variable
which is the frequency defined by

Ω(J) =
dH
dJ

. (VI.10)

As previously mentioned with the pendulum analogy we can already guess without any compu-
tations that

— Ω(J → 0) = Ω0 6= 0 (isochronicity)
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2. ANGLE-ACTION VARIABLE

— Ω(J = Jc) = 0 (infinite period)
— Ω(J � Jc) ∝ J (orbits no very different from straight lines so frequency is proportional

to the momentum).
One can find

J(κ) =
8
√
M0

π

(
E(κ)− (κ′)2K(κ)

)
, κ < 1 (VI.11a)

J(κ) =
4
√
M0κ

π
E(1/κ), κ > 1 (VI.11b)

Ω(κ) =
π
√
M0

2K(κ)
, κ < 1 (VI.11c)

Ω(κ) =
π
√
M0κ

K(1/κ)
, κ > 1 (VI.11d)

whereK(κ) andE(κ) are respectively the complete elliptic integral of the first and second kind,
defined in the Appendix B.1. In particular, Ω0 =

√
M0 and around the separatrix Ω(J → Jc) ∝

Ω(J)

Ω0

Jc

J

Figure VI.3 – Frequency’s orbit Ω(J).

| ln−1(|J − Jc|)| so the convergence towards zero is logarithmically slow, see Figure VI.3.

2.2 Fourier basis of the HMF potential in angle-action variable

Before moving on solving the linear problem we define the Fourier transform according
to the angle variable of the potential basis (cos(q(θ, J)), sin(q(θ, J)))

TFθ−→ (cm(J), sm(J)).
Indeed, the cost of the diagonalization is that the potential will not have a simple form in the
angle Fourier space, in particular it will have component for every angle mode m (while in
q−Fourier it had components only on k = ±1). The Fourier coefficients are defined through

cm(κ) =
1

2π

∫ π

−π
cos(q(θ, κ))e−imθ (VI.12a)

sm(κ) =
1

2π

∫ π

−π
sin(q(θ, κ))e−imθ. (VI.12b)
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A convenient result of this thesis was to explicitly compute these coefficients for every m. So
far only c0 was known and for m 6= 0 they had to be computed numerically 2. The details
are given in Appendix B.1, we had to use results of S. C. Milne 3 [Mil02], where he derives
explicitly a lot of series expansion of Jacobi Elliptic Functions (and associated), in particular
the Fourier expansion of sn2, sn× cn, sn× dn.

In [BM17b] authors used those explicit expressions to compare simulations to a semi analyt-
ical theory.

3 LANDAU DAMPING AND RESONANCES

3.1 Landau damping

The Landau damping around inhomogeneous states has been studied for generic and HMF
potential by my predecessor 4, my advisor J. Barré and Y.Y Yamaguchi in [BOY10, BOY11].
The result of the study showed Landau damping with an algebraic damping for long times

δMc ∝
{
e−|ωdm |t, for t� ν−1

e−2iΩ0t/t3, for t→∞.

Remark VI.1
The spectrum of the inhomogeneous linear operator is modified with respect to the homoge-
neous case. Indeed, one can look at its expression in (q, p) variables Eq. (VI.5) and see that the
"perturbation" added to the advection operator are not compact since they are spanned by an
infinite-dimensional operator 5. So a priori the essential spectrum is modified and it depends on
both the initial distribution f 0(q, p) and the interaction potential V (q).

In the homogeneous case the spectrum did not depended on the initial distribution f 0(v) and
interaction potential V (q). The result found by Crawford [Cra95a] on the nonlinear expansion
and by Balmforth et al. [BMT13] on the single wave model also exhibited some universality.
Despite that it might be unrelated, we might expect not to find universal coefficient c3, c5 for the
bifurcation analysis as in the homogeneous case due to this new sensibility of the continuous
spectrum. Moreover, we will not expect a universal reduction as the single wave model.

2. With a great numerical cost around κ ' 1.
3. In what seems to be a colossal work, we see that some number theory in the spirit of Ramanujan is used to

finally serve our physical problem!
4. Alain Olivetti was the previous PhD student of Julien Barré.
5. It depends on a function f0(q, p) where previously it was a constant w.r.t. to the position variable f0(v).
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3. LANDAU DAMPING AND RESONANCES

3.2 Resonances

3.2.a Non oscillating perturbation Imλ = 0

Previously the number of resonant particles R was given by the number of particles with a
velocity around the frequency of the perturbing wave. This is for a non oscillating wave p = 0,

RH =

∫ ε

−ε

∫
f 0(p) dqdp ∼ 4πεf 0(v = 0)

for a homogeneous initial distribution regular in velocity. For inhomogeneous case, for non
oscillating perturbation, resonant particles will have a frequency Ω(J) < ε. For small ε, the
frequency around the separatrix is

Ω(J) ∼ − π
√
M0

2 ln(Jc − J)
< ε, for J < Jc.

So

RNH =

∫

Ω(J)<ε

∫
F 0(J) dθdJ = 2π

(∫

J<Jc
Ω(J)<ε

+2

∫

J>Jc
Ω(J)<ε

)
F 0(J)dJ

where we supposed that F 0 is regular in J = Jc and we have separated the different region of
integration (the two outside the separatrix regions contribute the same). Going to the κ variable
gives at leading order in ε,

RNH = 2π

(∫

κ<1
Ω(κ)<ε

+2

∫

κ>1
Ω(κ)<ε

)
f̄ 0(κ)

dJ

dκ
(κ)dκ ∝M0

e−π
√
M0/ε

ε
f̄ 0(κ = 1). (VI.13)

Therefore, there are a lot less particles resonating around the separatrix

RH ∝ ε and RNH ∝
e−π

√
M0/ε

ε
� RH,

thus we expect the resonant phenomena leading to pinching singularities to be a lot weaker.
Moreover, if that resonant trapping of particles in a critical layer was the cause to the impossi-
bility of a finite-dimensional description of the bifurcation (see Single Wave Model [BMT13]),
maybe here we can achieve some reduction.

3.2.b Oscillating perturbation Imλ 6= 0

If we seek the number of resonant particles for oscillating wave we find that for both homo-
geneous and inhomogeneous cases

RH ∝ RNH ∝ ε,

because the frequency distribution Ω(J) is regular in all region J 6= Jc.
This contrast leads us to conjecture that there for stable inhomogeneous distribution, the

damping always oscillates because there are no resonances with non oscillating modes. In
other words, if there is an analytic continuation to the dispersion relation Λ(λ ∈ R+) in for
λ < 0 it has no root. An argument that goes with this reasoning is that for λ ∈ R, Λ(λ)
is continuous (see later Eq. (VI.25) and Eq. (VI.43)) and infinitely differentiable in λ = 0 with
∂2n
λ Λs(0) = ∂2n+1

λ Λc(0) = 0. So, a conjecture could state that since there is no need for analytic
continuation in this case non oscillating damping will never happen.
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4 LINEAR PROBLEM

4.1 Dispersion relation

Since the variable change from (q, p)→ (θ, J) is canonical (in the three regions), the Vlasov
equation in these variables is straightforward

dF

dt
= ∂tF + {H[F ](J), F (θ, J)} = 0, (VI.14)

where the Poison bracket is written here for the angle-action variable.
Around the stationary solution F 0(J) = f 0(q, p) the linear operator is with F = F 0(J) +

f(θ, J):

∂tf = L f + N f (VI.15a)
L f = {f,H[F 0]}+ {F 0, φ[f ]} (VI.15b)
N f = {f, φ[f ]} (VI.15c)

The eigenvalue problem for λ /∈ iR and Ψ is

λΨ(θ, J) = L Ψ = −Ω(J)∂θΨ(θ, J) + ∂θφ[Ψ](q(θ, J))∂JF
0(J) (VI.16)

going to angle Fourier transform gives

λψm(J) = −imΩ(J)ψm + imφm[Ψ]∂JF
0(J). (VI.17)

we have

ψm(J) = im
φm[Ψ]∂JF

0

λ+ imΩ(J)
, ψ0 = 0 (VI.18)

where
φm = −Mc[Ψ]cm −Ms[Ψ]sm. (VI.19)

The dispersion relation is less trivial to obtain than before where eigenvectors had only one non
zero Fourier component (the normalization was enough to deduce Λ(λ)). Here to get a closure
we have to project the eigenvector Eq. (VI.18) along cos q and sin q

Mc[Ψ]

2π
=
(cos q

2π
,Ψ
)

= −Mc[Ψ]
∑

m

∫
im|cm|2∂JF 0

λ+ imΩ(J)
dJ −Ms[Ψ]

∑

m

∫
imc

∗
msm∂JF

0

λ+ imΩ(J)
dJ

(VI.20a)
Ms[Ψ]

2π
=

(
sin q

2π
,Ψ

)
= −Mc[Ψ]

∑

m

∫
ims

∗
mcm∂JF

0

λ+ imΩ(J)
dJ −Ms[Ψ]

∑

m

∫
im|sm|2∂JF 0

λ+ imΩ(J)
dJ

(VI.20b)

were we used for the projection (scalar product) the Parseval theorem that allows to write the
angle integral as a Fourier sum. This last equality can be written in a matrix form as

Λ(λ)

(
Mc[Ψ]
Ms[Ψ]

)
=

(
Λc(λ) 0

0 Λs(λ)

)(
Mc[Ψ]
Ms[Ψ]

)
= 0 (VI.21)
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where we have eliminated the diagonal terms due to the symmetries (see Eq. (B.4) and Eq. (B.6))

c2m+1(κ < 1) = 0, (VI.22a)
s2m(κ < 1) = 0, (VI.22b)

sm(κ > 1, p < 0) = −sm(κ > 1, p > 0), (VI.22c)
cm(κ > 1, p < 0) = cm(κ > 1, p > 0). (VI.22d)

These relations gives for any generic Gm(J) function that has the same definition on the two
outer regions (J > Jc, p ≶ 0) a zero contribution when integrated,

∫
Gm(J)cms

∗
m(J) dJ =

∫ Jc

0

G<
m(J) s∗mcm︸ ︷︷ ︸
=0 for m odd and even

(J) dJ +

∫ ∞

Jc

G>
m(J)s∗mcm(J) dJ

−
∫ ∞

Jc

G>
m(J)s∗mcm(J) dJ = 0.

(VI.23)

The dispersion function Λ(λ) is given by the two dispersion relations

det Λ(λ) = 0 = Λc(λ)Λs(λ) (VI.24)

with

Λc(λ) = 1 + 2π
∑

m 6=0

∫
im∂JF

0(J)

λ+ imΩ(J)
|cm|2(J) dJ (VI.25a)

Λs(λ) = 1 + 2π
∑

m 6=0

∫
im∂JF

0(J)

λ+ imΩ(J)
|sm|2(J) dJ. (VI.25b)

If λ is a root of Λc(λ) or Λs(λ) is an eigenvalue of the whole system. Since the system is
diagonal these two type of eigenvalues are associate with different eigenspaces. One can prove
using m→ −m in Eq. (VI.25), that if λ is a complex eigenvalue Λ(λ) = Λ(λ∗) = 0. Moreover
if λ is a complex eigenvalue Λ(λ) = Λ(−λ) = 0. So as before if the system has a stable
eigenvalue it has automatically an unstable one, meaning that once again relaxation in stable
case will be due to the continuous spectrum (Landau damping).

Remark VI.2
— For generic potential e.g. for full 1D gravity V1D = |q|, the potential basis has an infinite

number of non zero components. The dispersion matrix can be derived formally the same
way, but in general it is an infinite matrix with no zero elements. So manipulating it, is
only formal and one cannot explicitly compute the roots λ of its determinant. One has to
truncate at some large mM .

— For the homogeneous case M0 = 0, even for generic potential, the matrix Λ(λ) =
diag(Λk) is diagonal since there are no spatial modes mixing. Thus, the dispersion rela-
tion can be explicitly computed in this case (since we are interested in the first Fourier
mode to go unstable k = 1).

— From Eq. (VI.21), we can find back Eq. (V.14) with M0 → 0. One can check that κ ∼
p/(2M0), Ω(κ)

M0→0−→ v, etc., in particular cm = (δm,1 + δm,−1)/2.
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CHAPTER VI. BIFURCATIONS AROUND NON HOMOGENEOUS STATES

— In the homogeneous case we had an eigenvalue associated with an infinite-dimensional
eigenspace. Here in Eq. (VI.17) this phenomenon still occurs. Indeed for λ = 0 we can
find two types of eigenvectors

Ψn =




ψ0(J)
φm[Ψn]F 0

Ω(J)


 and Ψn =

(
ψ0(J)

0

)
. (VI.26)

It means that for any ψ0(J), Ψn is an eigenvector associated with λ = 0.

4.2 Self-consistent equation for the magnetization

To find a steady state solution a function f 0(q, p) = F 0(J) = F0(H) = f̄ 0(κ) has to satisfy
the normalization condition and a self-consistent equation for the magnetization

1 =

∫∫
F0

(
p2

2
−M0(1− cos q)

)
dqdp, (VI.27a)

M0 =

∫∫
F0

(
p2

2
−M0(1− cos q)

)
cos q dqdp. (VI.27b)

In practice, to find numerically M0 and the normalization, we use the transformation dqdp →
dθdJ and then integration over angle and the change of variable J → κ giving

1 = 4πM0

(∫ 1

0

+2

∫ ∞

1

)(
κ
f̄ 0(κ)

Ω(κ)

)
dκ, (VI.27c)

M0 = 4πM0

(∫ 1

0

+2

∫ ∞

1

)(
κ
f̄ 0(κ)

Ω(κ)
c0(κ)

)
dκ. (VI.27d)

4.3 Eigenvector and eigenvalue

4.3.a Along the sin direction

The problem is spatially invariant, so that if F (q, p, t) is a solution of the full non homoge-
neous Vlasov equation then so is F (q + q0, p, t). The generator of this spatial translation is ∂q,
so we expect to always have an eigenvector as

Ψs(q, p) = ∂qf
0(q, p), (VI.28)

associated with an eigenvalue λs = λ = 0 which corresponds to the Goldstone mode. Let’s
check that assertion. In Eq. (VI.25b), with λ = Reλ→ 0 we obtain

Λs(λ = 0) = 1 + 2π

∫
∂JF

0(J)

Ω(J)

∑

m6=0

|sm|2(J) dJ. (VI.29)

The Parseval identity here gives [Oga13],

2π
∑

m 6=0

s
2
m =

∫
sin(q(θ, J))2 dθ (VI.30)

where we used s0 = 0.
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Remark VI.3
Here we have replaced λ = 0 in all integral at the limit. It might be very dangerous and bring
singularities. In fact, in homogeneous case this limit was obtained with the Plemej formula
because ∫

(f 0)′(p)

p
dp (VI.31)

is not integrable in general. Here because the logarithmic divergence induced by the resonating
particles is integrable, the limit is well defined and we can replace λ by 0.

However, if λ is complex, this statement is no longer true since
∫

∂JF
0

λi +mΩ(J)
dJ

is no longer integrable, indeed for every J (i)
m 6= Jc root of the denominator, we can expand

λi +mΩ(J) = m(J − J (i)
m )Ω(J (i)

m ) that has the same divergence as Eq. (VI.31).

Using that H = p2/2 + M0(1 − cos q) and dH = pdp + M0 sin q dq (since q and p are
independent variable dq/dp = 0) we have

∂pf
0(v)

p
=

dF0

dH =
∂JF

0(J)

Ω(J)
=

∂qf
0

M0 sin q
. (VI.32)

We may write angle-action integral as a space velocity integral (remember the canonic transfor-
mation insure dθdJ = dqdp) to have

Λs(λs) =1 +

∫∫
1

p
∂pf

0 sin2 q dqdp

= 1 +

∫∫
dF0(H(q, p))

dH sin2 q dqdp

= 1 +
1

M0

∫∫
∂qf

0 sin q dqdp = 1− 1

M0

∫∫
f 0 cos q dqdp

= 1− M0

M0

= 0

(VI.33)

where we have used the definition of the magnetization, integration by part and the different
expressions of the energy derivative.

From Eq. (VI.18) we get the eigenvector associated with the neutral mode λs = 0,

Ψs =
∑

m6=0

∂JF
0

Ω(J)
sme

imθ =
∂JF

0

Ω(J)
sin q = M0∂qf

0(q, p) (VI.34)

which correspond to what was expected from the symmetry of the problem.
Therefore, there is always a neutral mode along Ψs, whatever the parameters and the function

f 0. Since it is associated with a translation we don’t expect it to play any role in the instability
in the weakly nonlinear regime. However, we cannot exclude that it couples with the instability
for strongly nonlinear regimes (which is not the case studied here). Hence we always suppose
that Ms[F ] = 0 (which is supported by numerics) moreover we always choose perturbation
along the cos direction.
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4.3.b Along the cos direction

From Eq. (VI.20), we find the eigenvector associated with the eigenvalue root of Λc(λ),

Ψc =
∑

m6=0

im∂JF
0

λ+ imΩ(J)
cme

imθ. (VI.35)

Eigenvectors are defined up to a multiplicative non zero constant, here we choose 1, so

Mc[Ψc] = (cos q,Ψc) = −1 (VI.36)

thanks to the relation dispersion Eq. (VI.25a). The reverse reasoning is possible, set a nor-
malization for the eigenvector and find the associated dispersion relation. Moreover, we have
Ms[Ψc] = 0 = Mc[Ψs].

4.4 Stability criteria

We introduce as before the parameter µ that corresponds to a tunable parameter of the initial
distribution f 0 = f 0

µ . For example, one can have

F0
µ(H) = N−1

F /[1 + eβ(H−µ)] (Fermi distribution), (VI.37a)

G0
µ(H) = N−1

G H2e−µH, (VI.37b)

NF and NG are the normalization factors. The Eq. (VI.37a) is a Fermi distribution of energy
(looking like a step function), its stiffness is controlled by the β−parameter. It is a decreasing
function of energy. The G−function Eq. (VI.37b) has an energy minimum in H = 0 and then
reach a maximum forH∗ = 2/µ, thus it a non-monotonic function of energy.

We define µc to be the value for which the system goes unstable i.e. (Λc)µ(λ = 0) = 0. For
example, for the function F0

µ(E) we plot, in Figure VI.4, the phase diagram of the Fermi dis-
tribution (µ,M0). The line corresponds to a steady state solution satisfying the self-consistent
equation Eq. (VI.27c). The transition stable/unstable occurs at points a = (µc = 0.669, 0.336)
and l = (µc = 0.254, 0). In this thesis, we will numerically test the neighborhood of point a,
where a solution becomes unstable. In principle, we could also test what happens for weakly in-
homogeneous and unstable solution, dashed black line around l. We can establish as in [Oga13],
the stability criteria. As mentioned earlier the Ψs direction is always neutrally stable. For a
monotonic function of energy S. Ogawa showed that the eigenvalue associated with Eq. (VI.25a)
is always real. In this Section, we focus on non oscillating perturbation λ ∈ R. However, we
let the initial distribution be monotonic or not. In our numerical tests, we use F0

µ(H) which is
monotonic and G0

µ(H) which is not Eq. (VI.37). As we motivated earlier in Section VI.3.2 and
remark VI.3, the choice λ ∈ R has important consequence on the number of resonant particles
and how the limit λ → 0 is computed. By replacing λ by zero in Eq. (VI.25a), Ogawa shows
that the system is spectrally stable if and only if

I [F 0] = 1 + 2π

∫
∂JF

0

Ω(J)
(g0(J)− c0(J)2) dJ ≥ 0 (VI.38)
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Figure VI.4 – Phase diagram of the Fermi distribution F0
µ with β = 40. Dotted lines correspond

to unstable stationary solutions and solid lines to stable ones. In the neighborhood of point a,
a branch of stable inhomogeneous M0 6= 0 stationary solutions becomes unstable. At point l, a
branch of stable homogeneous stationary solutions (M0 = 0, red solid line) becomes unstable;
the unstable homogeneous case was treated in Chapter V.

where we defined and computed g0
6 thanks again to [Mil02] and Eq. (B.2b),

g0(κ) =
1

2π

∫
cos2(q(θ, J(κ))) dθ =





1

3

(
4 (1− 2κ2)E(κ)

K(κ)
+ 4κ2 − 1

)
, κ < 1

1

3

(
4 (1− 2κ2)κ2E(1/κ)

K(1/κ)
+ 8κ4 − 8κ2 + 3

)
, κ > 1

(VI.39)
The transition occurs at I [F 0] = 0.

4.5 Adjoint problem

The adjoint linear operator is obtained with respect to the scalar products Eq. (V.19) as,

L † Ψ̃c = Ω(J)∂θΨ̃c −K†(q(θ, J)) (VI.40)

where

K†(q(θ, J)) =

∫ ∫ (
∂θΨ̃c∂JF

0
)

(q′, p′)VHMF(q′ − q) dq′dp′. (VI.41a)

K†m(J) = −Mc[∂θΨ̃c∂JF
0]cm(J)−Ms[∂θΨ̃c∂JF

0]sm(J). (VI.41b)

6. Thanks to the Parseval theorem, we were able to explicit compute a q−elliptic series
∑

n>0

n2csch2

(
nπ

K(k′)

K(k)

)
=

8K(k)2

3 (2π2)
2

( (
k2 − 1

)
K(k)2 − 2

(
k2 − 2

)
K(k)E (k) − 3E(k)2

)
. It was un-

known (and surely not sought too) to my knowledge.
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The adjoint eigenvector of Ψc is thus:

Ψ̃c(θ, J) = − 1

(Λ′(λ))?

∑

m

cm(J)

λ? − imΩ(J)
eimθ (VI.42)

where we have set the normalization such that (Ψ̃c,Ψc) = 1. So once again we find a re-
lation between this scalar product and the derivative of the dispersion relation. Keeping the
Mc[∂θΨ̃c∂JF

0] term would have led self consistently to a dispersion relation. Let’s compute
Λ′c(λ) to check our normalizations choice. On one hand, we have

Λ′c(λ) =− 2π
∑

m6=0

∫
im∂JF

0(J)

(λ+ imΩ(J))2
|cm|2(J) dJ

=− 8πλ
∑

m>0

∫
m2Ω(J)∂JF

0(J)

(λ2 + (mΩ(J))2)2
|cm|2(J) dJ

(VI.43)

on the other hand

(Ψ̃c,Ψc) = − 1

Λ′c(λ)

∑

m6=0

∫
im(f 0)′(J)

(λ+ imΩ(J))2
|cm|2(J) dJ = 1. (VI.44)

For monotonic function of energy ∂JF 0(J) ≤ 0, it is clear that Λ′c(λ ∈ R) ≥ 0.

Remark VI.4
We notice that because of the spatial mode mixing (m positive and negative) Λc(λ) ∝ λ → 0
with λ → 0. In fact, it is expected because the two roots λ,−λ merge in 0, and Λ(λ) is
differentiable in 0. However, that was not the case for the homogeneous case, where Λ′(0+)
was a non zero constant and Λ(λ) was in general not continuous in 0 (because of the singular
behavior of 1/p).

In [BMY16], we give a proof that this normalization factor diverges as 1/λ for generic a
potential.

5 NONLINEAR EXPANSION

Now that the linear theory is clear we move on to what happens to a perturbation when
unstable. The basic idea is the same that for homogeneous case, decomposing the solution
along unstable vector and the unstable manifold. But as we will see due to symmetries the
computation will be in fact easier.

Regarding the symmetries of the problem the O(2) (rotation/reflexion) symmetry is broken,
so for a real eigenvalue the associated unstable manifold will be of dimension one (instead of
two for the homogeneous case).

We decompose the f function on the unstable direction Ψc associated to the eigenvalue λ > 0
and its orthogonal direction.

f(θ, J, t) = A(t)Ψc(θ, J) + S(θ, J, t) (VI.45)

with A = (Ψ̃c, f) and (Ψ̃c, S) = 0. S is assumed to be at least of order A2 because it is associ-
ated with the nonlinear part. The order parameter A is related to the magnetization perturbation
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δM = M(t)−M0, indeed by definition

(Ψ̃c, f) = A+O
(
A2
)

and δM = M−M0 = (cos q, f) = A (cos q,Ψc)︸ ︷︷ ︸
=−1

+O
(
A2
)

(VI.46)

so A ∝ δM for small A (which is the weakly nonlinear regime we study).
Applying the projection (ψ̃, .) on Vlasov equation Eq. (VI.15), we get

Ȧ = λA+ (Ψ̃c,N f) = A%(λ,A) (VI.47)

So, the goal is now to get the first order in A of %(A, λ). While for homogeneous case the
SO(2)-symmetry insured A→ −A ⇒ c2 = 0, here we have to consider c2 6= 0. This yield

Ȧ = λA+
(

Ψ̃c,N
(
AΨ + O

(
A2
)))

= λA+ c2A
2 + A3c3 + O

(
A4
)
.

(VI.48)

From Eq. (VI.15c),
N f = A2{Ψc, φ[Ψc]}+ O

(
A3
)
. (VI.49)

In the homogeneous case, this term was zero, so we had to jump to the cubic order and construct
the unstable manifold H . Here the quadratic order is directly given by the eigenvector.

Let’s define c2 the coefficient associated with the quadratic term in A,

c2(λ) =
(

Ψ̃c, {Ψc, φ[Ψc]}
)

=
∑

m

∫
(Ψ̃c)

?
m{Ψc, φ[Ψc]}m dJ

=
−2π

Λ′c(λ)

∫ ∑

m,n∈Z

c
∗
m+nϕm,n(J)

λ+ i(m+ n)Ω
dJ

(VI.50)

where we have re-indexed the sum to have

ϕm,n(J) = m

[
n
∂

∂J

(
∂JF

0
cm

λ+ imΩ

)
cn −m

∂JF
0
cm

λ+ imΩ
c
′
n

]
. (VI.51)

The first thing we want to extract from c2 is its limit when λ → 0. Once again thanks to the
logarithmic divergence of the frequency Ω(J), we can safely replace denominator of the form
λ+ imΩ(J) by imΩ(J) when m 6= 0. It leaves us with

— the normalization factor 1/Λ′c(λ) ∝ 1/λ,
— m = 0 terms are canceled since ϕ0,n = 0,
— m = −n terms bring a supplementary divergence at first sight, but a careful calculation

shows that it is not the case. Indeed for n = −m, we have in the J integral

c
∗
0

λ

∑

m

ϕm,−m(J) = −c
∗
0

λ
∂J

(
∂JF

0

(∑

m

m2
c

2
m

λ+ imΩ

))

= −2c∗0∂J

(
∂JF

0

(∑

m>0

m2
c

2
m

λ2 + (mΩ)2

))

λ→0→ −2c∗0∂J

(
∂JF

0

Ω2

∑

m>0

c
2
m

)
= c

∗
0∂J

(
∂JF

0(J)

Ω2(J)
(c2

0 − g0)(J)

)

(VI.52)

where have exchanged sum and derivative thanks to the regularity of the cm function.

125 Laboratoire Jean-Alexandre Dieudonné



CHAPTER VI. BIFURCATIONS AROUND NON HOMOGENEOUS STATES

Thus, the total divergence is exclusively given by the normalization factor and

c2(λ) ∝ 1/λ.

An exact estimation of the c2 coefficient in particular its sign is probably out of reach but as we
will see now it does not matter. Hence the result yields

Ȧ = λA+ c2A
2 + O

(
A3
)

with c2 ∝
1

λ
. (VI.53)

which is a transcritical bifurcation whatever the sign of c2. This behavior is illustrated and
compared with the homogeneous supercritical transition on Figure VI.1. If means for example
that if c2 > 0, we will have a subcritical (resp. supercritical) bifurcation for A(0) > 0 (resp.
A(0) < 0). In the supercritical case Asat ∝ λ2 which is the trapping scaling. The numerics
(discussed later) Figure VI.5 confirm perfectly this result. Here this origin of this scaling is
very different from the homogeneous case since it comes from the normalization factor and not
from pinching singularities (associate with resonances). It could be a sign that no Single Wave
reduction is possible here.

Remark VI.5
— The symmetry of the inhomogeneous system holds for generic potential hence the bifur-

cation equation is always transcritical

Ȧ = λA+ c2A
2 + O

(
A3
)
.

Similarly, even for a generic interaction potential, the divergence of the coefficient c2 ∝
1/λ will only come from the normalization factor. Other terms are regular if we assume
the frequency Ω = dH/dJ associated with the generic potential either to not vanish at
finite J or does so only logarithmically. This includes the cases where the stationary
potential φ[f 0](q) has a single minimum and is infinite for |q| infinite (such as for 1D
gravity), and the generic situation with periodic boundary conditions; indeed, in the latter
situation, local minima of the stationary potential give rise to separatrices, on which the
action is constant. At these specific values of the action Ω vanishes, but generically it
does so only logarithmically These arguments make this result very generic.

— Because Λ′c(λ) ∝ λ, we have |µ − µc| ∝ λ2 ∝ Asat. In homogeneous case since
Λ′(0) 6= 0 we had |µ− µc|2 ∝ λ2 ∝ Asat.

6 HIGHER ORDER TERMS

As before to validate or not the dimensional reduction it is essential to estimate the diver-
gence of higher order terms. The detailed computation does not bring any particular insight so
we will present it only in Appendix B.2. This time we cannot escape the computation of the
first order of the unstable manifold H(A) ∈ W u. We find for the higher order terms

c3 ∝
1

λ3
(VI.54)

which means that at saturation Asat ∝ λ2, quadratic and cubic terms are of the same order. It
means that some mechanism occurs at the saturation level, this mechanism could be similar or
not to the trapping of the SWM.

Université Côte d’Azur 126



7. NUMERICS

Note that numerics tends to confirm the failure of this one dimensional reduction since we
can see oscillation on inset of Figure VI.1(b). Is this failure related to the nature of the unstable
manifold expansion where even for a two dimensional model (Section IV.1) it fails when for-
getting the neutral modes? In this case a two (or larger) dimensional reduction could works. Or
does it mean as it seems to be the case in the homogeneous model that no finite-dimensional
reduction is possible?

Remark VI.6
As stated before, remark V.5, in finite-dimensional systems with two eigenvalues λ,−λ it is
natural to obtain a singular behavior near the criticality if one forget about the −λ mode. In the
homogeneous case, we have safely forgotten this mode since the criticality is of dimension 1
with (Λ(H))′(0+) 6= 0. Here we have seen that Λ′(0) = 0. Hence in principle here we should be
able to derive a non singular two dimensional reduction of the bifurcation. In Section VI.9 we
will pursue further this discussion...

7 NUMERICS

Our analytical description of the bifurcation can be accurately tested in the HMF case. The
time-evolved distribution function is obtained via a GPU parallel implementation of a semi-
Lagrangian scheme for the Vlasov HMF equation with periodic boundary conditions [RF13]. I
gratefully acknowledge Tarcisio Rocha Filho who provided the code in its original structure (I
just did some modifications in order to choose the initial conditions and to be able to do videos
of the density evolution). We use a 2n × 2n grid in position momentum phase space truncated
at |p| = 2 with n up to 12; the time step is usually 10−2. We use the two families of reference
stationary Eq. (VI.37). For both families, a real positive eigenvalue appears at a critical value of
µ: for F 0

µ , this is at point a, see Figure VI.4. The initial perturbation is

εT (q, p) = ε cos(q) exp(−βTp2/2). (VI.55)

Note that this is not proportional to the unstable eigenvector Ψc: this allows us to test the robust-
ness of our unstable manifold analysis with respect to the initial condition. For all simulation
results presented in Figure VI.5, the size of the perturbation ε was chosen small enough such
that the saturated solution reached for ε > 0 does not depend on ε. On the other hand, the
smaller ε, the more accurate computations are required to avoid numerical errors. In particular,
we have observed that numerical errors may drive the system far away from the reference sta-
tionary solution, following a dynamics similar to the one with ε < 0. In such cases, we have
used a finer phase space grid: GPU computational power was crucial to reach very fine grids.
For example the initial Fermi distribution F 0

µ was very sensitive to numerical errors and to ε:
we took ε = 1.8 · 10−6 with a 4096 × 4096 grid; for G0

µ distribution, which is much smoother,
ε = 10−5 and a 1024× 1024 grid was enough (except for the point corresponding to λ = 0.032
where more precision was needed, and we took ε = 3 · 10−6).

Typical evolutions for the order parameter M(t) are shown in Figure VI.5 (insets), for
positive and negative ε. The asymmetry is clear: for one perturbation the change in δM =
M(t) −M0 remains small, for the other it is O (1). In the case where δM remains small, we
compute its saturated value by averaging the small oscillations; the result is plotted as a function
of λ on Figure VI.5: the δM ∝ λ2 behavior is clear, for both families. The fact that numer-
ical simulations are able to reach this stationary state suggests that it is a genuine stationary
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state, indeed stable with respect to the whole dynamics, and not only on the unstable manifold.
However, longer simulations, or with smaller grid sizes (not shown), indicate it is also easily
destabilized by numerical noise. We conclude that the O

(
λ2
)

state is thus probably close to
the instability threshold. Notice that for the initial unstable reference state |Λµ(0)| = O

(
λ2
)

is very small; hence the very close nearby stationary state with δM ∝ λ2 may have a different
stability, although (in)stability of non homogeneous stationary states is rather robust comparing
with the homogeneous case (see [BY15] for a discussion).

The precise computations of all the parameters and functions λ,M0, µ, c(J),Ω(J), ... were
carefully done via the software Mathematica [Inc].

To better illustrate the phase space dynamics of f(q, p) in time, one can check online simula-
tions on my personal website 7. The colors represent the density of particles (blue: no particles;
red a lot of particles). The video "Fermi_eps_+.mp4" shows the time evolution of the distribu-
tion function in phase space with initial condition F 0

µ(H(q, p)) + εT (q, p), for ε = +1.8 · 10−6,
β = βT = 40, (M0 = 0.328, µ = 0.658) (it corresponds to the dashed blue curve in the upper
inset of Figure VI.5) from t = 0 to t = 600. For the G0

µ initial distribution the perturbation
is similar, the critical parameters are (M0 = 0.243, µ = 9.59). Since the system reaches a
new stationary state close to the original one, we observe almost no change in the distribution
function. It is important to notice however that this picture is very different from that of the
saturation of an instability over a homogeneous background: in that case, resonances would
create small "cat’s eyes" structures, which do not appear here. To better appreciate the dynam-
ics in this case, we also provide the video "Fermi_eps_+_diff.mp4", which is the same as the
previous one, except that the reference state F 0

µ has been subtracted; hence the evolution of the
perturbation is more clearly shown.

The video "Fermi_eps_-.mp4" shows the time evolution of the distribution function with
the same parameter values except that ε = −1.8 · 10−6 (it corresponds to the green curve in
the upper inset of Figure VI.5). This time the distribution changes completely its shape and
seems to approach a periodic solution, far away from the original stationary distribution. In
all simulations, the relative error between the total energy of the system at a given time and
the total initial energy is at most of the order of 10−7. The video "Torr_G_eps_-.mp4" is also
provided corresponding to simulation with the G0

µ function with ε = −10−5 (magenta curve in
the lower inset of Figure VI.5.

Testing the predicted scaling A∞ ∝ λ2, requires computing λ with a good accuracy. To
compute the eigenvalue λ for each (M,µ) associated with an initial distribution F0(H), one
has to find a positive root of the dispersion function Eq. (VI.25a). The two main numerical
obstacles are to compute efficiently the functions cm(J), and the infinite sum in m. The first
obstacle is suppressed by our explicit expression Eq. (B.4). It follows from their expression that
the convergence of cm(J) toward 0 with m is very fast except for J = Jc where it has a finite
value (which will not contribute once integrated). Then we can choose a good truncation for the
sum and estimate the precision over λ.

7. http://cnls.lanl.gov/~metivier/html/video.html
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Figure VI.5 – 〈δM〉 (λ) for distributions F 0
µ Eq. (VI.37a) (circles) andG0

µ Eq. (VI.37b) (crosses)
with associated quadratic fit; β = βT = 40. For each function we show two runs of Mc(t) =
M(t) (here Ms(t) = 0) with positive and negative ε. 〈δM〉 in the main diagram is computed as
a long time average for ε > 0. For F 0

µ , |ε| = 1.8 ·10−6; for G0
µ, |ε| = 10−5, except for λ = 0.032

where |ε| = 3 · 10−6. Note that the reference stationary states F 0
µ follow the curve from point

a towards point l on Figure VI.4. Along this curve, λ starts from 0 at point a, then grows and
reaches an upper limit, about 0.15, before decreasing and reaching 0 again at point l. This is
why two values of µ may correspond to the same value of λ (but different values of 〈δM〉), as
can be seen around λ = 0.15.
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8 POSSIBLE APPLICATIONS

As detailed in [BMT13], the instability pattern around homogeneous state is shared in many
Hamiltonian systems, with applications from plasmas to fluids. Here we have seen that the sat-
uration process seems really different possibly preventing a single-wave-model like description
of the instability. So, a natural question is to what correspond that new type of bifurcation?
There are probably examples in plasmas physics but so far we didn’t found them.

In the astrophysics community, however, we found what seems to be a striking example of
this asymmetric bifurcation.

8.1 Radial orbit instability: two possible end states

In [PPA90, Pal94] authors study the nonlinear evolution of the Radial Orbit Instability [BT11].
They start from a weakly unstable spherical state

— Close to this reference state, they find an axisymmetric weakly oblate stationary state
— At finite distance from the reference state (outside the perturbative regime), they find a

stable prolate stationary state.
This finding is studied in Section 11.1.1 of [Pal94]. Palmer starts from a weakly unstable 3D
spherical equilibrium and perturbs its self-consistent potential

φ = φ0(r) + ες(r)P2 (cosϑ) (VI.56)

where P2 is a Legendre polynomial, ς(r) some function with a constant sign, ϑ the standard
spherical polar angle and ε = δM(0) is the initial amplitude of the order parameter δM of the
perturbation. He deduces that if

— ε > 0 the perturbed system is prolate (rugby/American football ball shape),
— ε < 0 the perturbed system is oblate (discus/flying saucer).

Then after a 3D static treatment (with some approximation and hypothesis), Palmer ends up
in the perturbative regime with a self-consistent equation 8 that has to be satisfied by the order
parameter and the instability parameter µ− µc ≥ 0

A3δM
2
∞ − 2δM∞A2 − (µ− µc) = 0, (VI.57)

where A3 > 0, A2 > 0 and µ− µc > 0 is small. Solutions of this equation are

(δM∞)− =
A2 −

√
A2

2 + A3(µ− µc)
A3

∼ −µ− µc
A2

= −O (µ− µc) < 0 (VI.58a)

(δM∞)+ =

√
A2

2 + A3(µ− µc) + A2

A3

∼ 2A2

A3

= O (1) > 0. (VI.58b)

It means that if the initial perturbation ε < 0 there is an oblate stationary solution close by of
order O ((µ− µc)) (which is the same scaling than for our 1D case). If ε > 0, the solution
leaves the perturbative regime with a bar-like shape. It is fully consistent with the asymmetric
behavior we predict on the unstable manifold. That is one great motivation for application!
Indeed, such dynamical theory could be very useful to study galactic formation where bar-like
structure could have been formed from spherical structure that went unstable.

8. We rewrite the equation replacing his A1 parameter by (µ − µc) so that the system is unstable for µ > µc.
Also, his A2 < 0 is replaced by −A2 < 0.
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Remark VI.7
An open question regards the stability of the new weakly oblate stationary state: in our numer-
ical examples, it seems stable, but very close to threshold. In [PPA90] they claim it is unstable,
but since their numerical simulations are much less precise, this could be a numerical artifact.

8.2 Super Massive Black Hole

With this result in mind we were very excited to hear at the ICTP conference on long-range 9,
astrophysicist talks.

Amongst other we hear Jihad Touma talking about galactic models of stars orbiting around
a super massive black hole (SMBH), which is today the standard picture for galaxy structure.
For example following elliptic orbit of stars have allowed [SOG+02, GSW+08] to deduced the
position and mass of the SMBH of the Milky-way. In [ST16], Sridhar and Touma derive a
reduced model from this complete system ending up with a Vlasov equation in 3D (or 2D or 1D
depending on the symmetry assumption) angle-action variables. Once again, we think that our
treatment can be applied without much changes 10. Of course, stability result on such realistic
model would be very important for galactic formation. We contacted J. Touma successfully and
started to look at the model. However, since I have started my thesis manuscript, I cannot help
much my advisor and Y.Y. Yamaguchi on this problem.

9 TOWARDS AN EXACT DIMENSIONAL REDUCTION?

9.1 Did we miss something?

This Section relates some later findings (June 2017 and after) that could lead to an exact
dimensional reduction of the bifurcation problem around steady states of the non homogeneous
Vlasov equation. In Remark V.5 we noted that due to the strong resonances of the homogeneous
case we had Λ′(0± iλi) 6= 0 at criticality µ = µc. It implied that the "positive" and "negative"
eigenvalues 11 did not join on the real axis (they are on different Riemann sheets), hence a 2× 2
description of the bifurcation with a center manifold technique was not possible [CH89] and we
had to use only a 2 dimensional unstable manifold leading to a singular expansion.

In the non homogeneous case with a real eigenvalue we followed the same unstable mani-
fold path describing the bifurcation with a one-dimensional unstable manifold (due to the lack
of rotational symmetry). This approach though qualitatively correct (predicting the transcritical
bifurcation observed in simulations with the correct trapping scaling) was plagued by singular-
ities at every order. Moreover, its one-dimensional form could not account (which was also the
case for the homogeneous Vlasov case) for the "trapping oscillations" observed numerically.

Now, what if we could describe this bifurcation with a finite-dimensional center manifold,
as one should in a finite-dimension analog of this problem? Here we indeed have Λ′(0) = 0,
so that at criticality λµc = 0 the eigenvalues λ,−λ do collide. It only happens because this

9. ICTP conference program in Trieste on long-range interaction, July 2016.
10. That assertion is optimistic.
11. Either for four complex eigenvalues λ, λ∗,−λ,−λ∗ with each an associated dimension of one, or two real

eigenvalues λ,−λ with an associated dimension of two each (thanks to rotational symmetry).
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CHAPTER VI. BIFURCATIONS AROUND NON HOMOGENEOUS STATES

time there is no need for analytic continuation of the dispersion relation; physically because of
weaker resonances between particles at the separatrix and the perturbing wave. Furthermore,
here in addition to these two eigenvalues we might expect another 0 eigenvalue associated with
the stationary states. Now how to treat this center manifold problem 12?

9.2 The Triple Zero bifurcation

In the following analysis, we are going to leave aside implicitly the continuous spectrum
(assuming that in some functional space it can be moved away from the imaginary axis) and
the neutral mode λs = 0 associated with the sin direction that we do not perturb. Hence, we
will consider the two colliding eigenvalues λ,−λ associated with the cos direction plus a 0
eigenvalue (that is needed for the center to be feasible) 13.

From here we leave the index c of Ψc. Having a triple zero eigenvalue at µ = µc means for a
3-dimensional problem that there is a Jordan block representation of the linear problem as

L J =




0 1 0
0 0 1
0 0 0


 . (VI.59)

This type of triple zero problem produces the so call Triple Zero (TZ) bifurcation [GFRL+99,
FGRLA02]. Here the dimension is infinite but we can still use these ideas. The eigenvalue
problem is “unusual” since there is only one eigenvector for three eigenvalues. To form a basis
at criticality ν = µ − µc = 0, we have to use the notion of generalized eigenvectors (with not
the same sense that for van Kampen generalized eigenvectors of Section V.2.2)

L 0 ψ
(0) = 0 , L 0 ψ

(1) = ψ(0) , L 0 ψ
(2) = ψ(1), (VI.60)

where ψ(1) and ψ(2) are called generalized eigenvectors while ψ(0) is a usual eigenvector asso-
ciated with λ = 0.

The corresponding projections are given by the adjoint (generalized) eigenvectors, deter-
mined by

L †
0 ψ̃

(0) = 0 , L †
0 ψ̃

(1) = ψ̃(0) , L †
0 ψ̃

(2) = ψ̃(1). (VI.61)

This yields (the first line is the m = 0 Fourier coefficient, the second line is for all m 6= 0):

ψ(0) =

(
0

−F
′
0cm

Ω

)
ψ(1) =

(
0

F ′0cm
imΩ2

)
ψ(2) =




Λ′′(0)

4π
∫
c

2
0

c0(J)

F ′0cm
m2Ω3


 . (VI.62)

The associated magnetizations are:

M [ψ(0)] = 1 , M [ψ(1)] = 0 , M [ψ(2)] = 0.

There is some freedom in the choice of ψ(2)
m=0. It is chosen here so that M [ψ(2)] = 0; this fixes

only the scalar product with c0; in addition, it is chosen here proportional to c0. Note that there
is another infinite family of eigenvectors with 0 eigenvalues

ψ =

(
u(J)

0

)
;

12. In fact we had this idea at the early stage of the problem but somehow, we got lost and did not pursue further.
13. This is a modification with respect to what was presented at the Ph.D. defense where we had not noticed the

inconsistency.
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however, they are not associated with a Jordan block.
The generalized eigenprojections are

ψ̃(0) =




2

Λ′′(0)
c0

0


 ψ̃(1) =




0

− 2

Λ′′(0)

cm

imΩ


 ψ̃(2) =



− Λ(4)(0)

6Λ′′2(0)
c0

2

Λ′′(0)

cm

m2Ω2


(VI.63)

Note that Λ′′(0) 6= 0 and Λ(4)(0) 6= 0. These vectors satisfy

〈ψ̃(i), ψ(j)〉 = δ2−i,j.

These last relations fix the prefactors in front of the eigenprojections, involving the derivatives
of Λ; the prefactors are finite. There is some freedom in the choice of ψ̃(2)

m=0; it is chosen here
proportional to c0. Note that it is not possible to obtain such a structure with only one or two
vectors neither with more than three vectors. On the subspace span(ψ(0), ψ(1), ψ(2)), the critical
linearized operator L 0 is indeed a 3D Jordan block, with a 0 diagonal.

We write f as a point on a 3D manifold tangent to span(ψ(0), ψ(1), ψ(2)) at the origin. It
should be possible to construct locally such an invariant manifold:

f = A0ψ
(0) + A1ψ

(1) + A2ψ
(2) +H[A0, A1, A2].

At leading order (quadratic), we do not need to compute H . The dynamical equation for the
perturbation f is

∂tf = L 0 f + νδL f + B(f, f).

At quadratic order, there are a priori 27 terms to compute, the 〈ψ̃(i),B(ψ(j), ψ(k))〉, for any
i, j, k. The bilinear form B reads

B(g, h)m = M [h]
∑

l 6=0

il(glc
′
m−l − g′m−lcl).

Hence the only non zero terms at quadratic order are

B(ψ(i), ψ(0)) , i = 0, 1, 2.

Then many projections vanish because of symmetries. Finally, only 4 terms remain:

〈ψ̃(0),B(ψ(1), ψ(0))〉 , 〈ψ̃(1),B(ψ(0), ψ(0))〉 , 〈ψ̃(1),B(ψ(2), ψ(0))〉 , 〈ψ̃(2),B(ψ(1), ψ(0))〉.
Close to criticality, we need to compute the contributions of νδL . We have (emphasizing

that all terms have leading order ν):

νδL g = −νδΩ∂θg −M [g]νδF ′0∂θ cos q

We have a priori 9 terms to compute, the 〈ψ̃(i), νδL ψ(j)〉. The non zero ones are

〈ψ̃(1), νδL ψ(0)〉 , 〈ψ̃(2), νδL ψ(1)〉 , 〈ψ̃(1), νδL ψ(2)〉 .
The final reduced system is

Ȧ0 =A1 + νbA1 + α01A0A1 (VI.64a)

Ȧ1 =(1 + νc)A2 + νaA0 + β00A
2
0 + β02A0A2 (VI.64b)

Ȧ2 =γ01A0A1, (VI.64c)

where the coefficients have to be computed numerically. It can be simplified a bit further by
changes of variables. However, such a 3D dynamical system is not straightforward to analyze.
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9.2.a Quick analysis of the reduced equations

At linear order, Ȧ2 = 0, so A2 is conserved at this order. Notice that ψ(2) has a non vanishing
zero mode; hence it modifies the Casimirs of Fµ at linear order. It is thus normal that an initial
condition withA2 6= 0 cannot be dynamically connected to the reference stateA0 = A1 = A2 =
0. It is also a hint that there may be a nonlinear generalization of this conserved quantity A2

which would be the trace of the Casimir conservation. Let us try G(A0, A1, A2) = A2 + g(A0),
with g(A0) = O

(
A2

0

)
. Taylor expanding g, computing order by order, and resumming the

series, one obtains the conserved quantity

G(A0, A2) = A2 −
γ01

α01

A0 +
γ01(1 + νb)

α2
01

ln

(
1 +

α01

1 + νb
A0

)
. (VI.65)

Since the dynamics is at best accurate at quadratic order, this exactly conserved quantity should
be considered with care: it is probably relevant at quadratic order only. As a first consequence,
the dynamics is two-dimensional, and this is the reason why we do not observe chaotic trajec-
tories. We are interested in initial conditions very close to the weakly unstable stationary state,
actually infinitely close: hence Ai(t = 0) can be thought of as very small. Hence the value of
the conserved quantity is essentially 0. The reduced dynamics, truncated at order A2

0 (dropping
terms such as Ak0, k > 2, and νA2

0) becomes

Ȧ0 = (1 + νb)A1 + α01A0A1

Ȧ1 = G(ε)(1 + β02A0) + νaA0 +

(
β00 −

1

2
γ01

)
A2

0

Where we used that G is constant in time and very small such that G(ε) = O (A2(0)) =
O (ε) � ν with G(ε → 0) = 0. This last system is similar (up to some variable change) to the
Bogdanov-Takens normal form [Tak74, Bog75, HK91, Kuz04, Kuz05]. This dynamical system
has two fixed points for ε → 0: the reference one (0, 0) and a new one (−νa/(β00 − γ01/2));
the new one is at distance O (ν) of the first one, that is O

(
λ2
)
. There is a homoclinic orbit at

(0, 0), which encircles the new fixed point; this homoclinic orbit is a separatrix: any orbit inside
it is bounded, and oscillates around the new fixed point; any orbit outside eventually escapes
to infinity. The "angular volume" occupied by the bounded orbits around (0, 0) is small (of
order ν), because the stable and unstable manifolds at (0, 0) are close one to another. Hence one
has to choose well the perturbation to observe a bounded dynamics. Nevertheless, any initial
condition with A1(t = 0) = 0 and a well chosen sign for A0 is in this "bounded region". All
this is strikingly consistent with the HMF numerical simulations, and suggest further possible
tests, since the coefficients are computable.

9.2.b Numerical comparaison between reduced system and full Vlasov dynamics

Our quick analysis already showed that the TZ reduced system predicts a transcritical behav-
ior as the one observed in Vlasov simulations (see Section VI.7). Moreover the saturation scal-
ing O

(
λ2
)

predicted is also the one seen in these simulations. Nevertheless these two features
were already predicted with the unstable manifold approach despite its singularities. Hence can
the TZ model predic more than that? Like the oscillations around the saturated level? Or can
we compare TZ model quantitatively with simulations?

In order to answer these questions, we compute all the coefficients νa, νb, νc at the initial
condition (M0, µ) and the nonlinear coefficients at criticality ((M0)µc , µc), α01, β00, β02, γ01.

Université Côte d’Azur 134



9. TOWARDS AN EXACT DIMENSIONAL REDUCTION?

Moreover we need the initial conditions A1(0), A2(0), A3(0) to be the same in simulations and
TZ model. The perturbation is given by Eq. (VI.55) however we change the normalization so
that A0(0) = ε. By symmetry A1(0) = 0, but due to numerical grid error A1(0) could be
nonzero (but very small). A2(0) has to be computed with its full definition. The criticality
around where the center manifold is computed, corresponds for the Fermi distribution VI.37a
to the point a on Figure VI.4. Taking ν = µ− µc 6= 0 corresponds to move on the dashed line;
perturbation ε of this initial state are perturbation away form this dashed line.
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Figure VI.6 – Comparison of the TZ dynamics Eq. (VI.64) versus the full Vlasov-HMF dy-
namics. We plot the time evolution of the magnetization M(t) − M0 for a perturbed un-
stable non homogeneous states of the Fermi distribution Eq. (VI.37a) with β = 40 and
(M0 = 0.3360, µ = 0.6691) (which correspond to λ = 8.62 · 10−3). The criticality is
((M0)µc = 0.3361, µc = 0.6693). We test different perturbations ε with βT = 10. The pa-
rameter are (up to three significant digits) νa = 7.44 · 10−5, νb = −3.12 · 10−4, νc = νb, α01 =
0.380, β00 = −0.181, β02 = 0.572, γ01 = −0.602. In the simulations the grid is 4096 × 4096
and pmax = 3.

On Figure VI.6 we show the comparison of the TZ dynamics versus the full Vlasov-HMF
simulations by plotting M(t) − M0. On Figure VI.6(a) we show the effect of two different
ε on the amplitude and frequency of oscillations. The quantitative agreement between the full
simulations and the TZ model is very good: for both ε = 10−4 and 10−5 the predicted amplitude
match with a error around 10%. Moreover the frequency of oscillations also agrees very well.
However we can see on the full dynamics than a small damping occurs while the TZ model con-
serves the amplitude of orbits (in fact there is no dissipative term in TZ model). This damping
could be a manifestation of the weak resonances producing small Landau damping. On Figure
VI.6(b) we show that for ε positive or negative we indeed have a transcritical behavior. The
O (1) curve predicted by TZ matches the simulations up to a time ∼ 1/λ, after it undergoes a
cycling dynamics but does not match the simulations anymore. It is normal considering that
the perturbative approach is no longer valid, nevertheless higher order terms might improve the
agreement.
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9.2.c Questions and puzzles

— Can we make further qualitative/quantitative predictions based on the 3D reduced dy-
namics? Many complicated things happen close to a triple zero bifurcation; here, varying
ν, we more or less follow a 1D curve in the 3D parameter space close to the bifurcation.

— What happens for a general potential? Computations not shown here show that up to
some details the generic reduced system is identical to Eq. (VI.64).

— Pushing the computations to order 3 is likely to produce divergences because of the
separatrix. It is not clear how to handle these divergences. Note that models other than
HMF may not have any separatrix, and then should not show this type of singularities.

— The "Crawford singularities" have apparently disappeared at order 2, and this is physi-
cally not unreasonable, since the resonance with zero velocity particles is now very weak.
Does it mean that there is hope for a mathematical conjecture?

— Because of the weak resonances should we couple this TZ system with a kind of single
wave model to account for the small Landau damping? Or does it completely disappear
in the limit ν, ε→ 0 where the center manifold is mathematically defined?

— For a generic degenerate Hamiltonian system (with respect to the Poisson brackets) there
are Casimir invariant [MH13, HM13], they are associated with a 0 eigenvalue. In general
close to a bifurcation without resonances we expect the two eigenvalue λ,−λ to collide
in 0. Thus, is the TZ normal form generic for degenerate Hamiltonian systems (without
resonances)?
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CHAPTER VII

VLASOV-FOKKER-PLANCK SYSTEM

Vlasov equation does not possess any mechanism driving the dynamics towards thermal
equilibrium, as it neglects collisional effects as well as noise and friction. While the collision-
less dynamics can be (and for a given timescale) a very good approximation of the real evolu-
tion, small dissipative mechanisms are usually present and slowly drive the system to statistical
equilibrium. For plasmas [LLP81] and self-gravitating systems [BT11], discreteness -usually
called "collisional"- effects provide this relaxation mechanism; for cold atoms in a magneto-
optical trap, there is a rather strong friction and velocity diffusion (see Part One). How do
dissipative effects act on the dynamics? How are the are two iconic collisionless effects of the
Vlasov equation, namely Landau damping and trapping scaling, modified?

In this Chapter, we add to the Vlasov equation a linear Fokker-Planck operator accounting
for a friction/diffusion 1 in the system. It forces the equilibrium distribution to be Gaussian
in velocity. The first question that arose from our theoretical physicist mind when we started
the experimental collaboration (Part One) was "Can we observe Landau damping in a very
large Magneto-Optical-Trap?". Since the Vlasov-Fokker-Planck (VFP) equation describes the
VLMOT behavior (according to the standard description), it is natural to wonder how Lan-
dau damping survives with friction and diffusion. Moreover, the detuning controls the friction
and we should then be able to explore different regimes. However, quick estimations of the
friction terms showed us that the system was overdamped leaving a thin hope to observe any
Landau damping. Nevertheless, the theoretical questions remains, how Landau damping be-
haves in presence of friction and diffusion? As we will see the spectrum of the linear operator is
strongly modified since the continuous spectrum completely disappear [SS02]. Hence we can
also wonder how these modifications affect the bifurcation toward instability. Can we construct
the unstable manifold for VFP? Do singularities arise? We know that in standard dissipative
systems the saturation of the order parameter follows the "Hopf scaling" Asat ∝

√
λ, do we

recover this regime for large friction? Standard bifurcation methods should work (e.g. center
manifold, multiple time scale analysis) for a finite dissipation level, however we know they fail

1. That we will often simply denote by friction alone.
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∝ λ1/2

∝ λ2

∝ γ2/3

γ4/3 γ1/3
λ

Asat

Figure VII.1 – Schematic representation of the main nonlinear results. On the horizontal axis:
the linear instability rate λ; on the vertical axis: the saturation amplitude (ie the amplitude
reached by the perturbation over timescales of order 1/λ). The dissipation coefficient γ is
fixed. This picture assumes that both γ and λ are small. For λ � γ1/3, the trapping scaling
Asat ∝ λ2, characteristic of Vlasov regime, appears. For λ � γ4/3, the normal dissipative
scaling Asat ∝ λ1/2 is recovered. In between we predict a plateau with saturation amplitude
Asat ∝ γ2/3.

at zero dissipation (Vlasov limit), hence using the unstable manifold technique we should be
able to observe this "breakdown" when diminishing the dissipation.

In the linear analysis, Section VII.2, we show following [SS02] that the spectrum of the linear
operator is drastically modified in presence of friction since the continuous spectrum is removed
and the resonances of the dispersion relation become true eigenvalues. Hence in the small fric-
tion limit we recover Landau damping because the eigenvalues of the perturbed system converge
toward the resonances pure Vlasov equation. However, for larger friction the Landau damping
progressively disappears in favor of pure dissipation. Physically the friction/dissipation pro-
vides a cut off to the velocity phase mixing. In the nonlinear part, Section VII.3, we manage
to perform the nonlinear expansion; the dominating contribution is still provided by the zeroth
harmonic of the unstable manifold. Nevertheless, the computations are more involved since
we have to express the problem in velocity Fourier space. Eventually we obtain the different
scaling of the cubic coefficient c3 that yield the saturation scaling. We find not two but three
different regimes for the saturation amplitude with respect to the instability parameter and fric-
tion. We summarize these results on Figure VII.1. Furthermore, these regimes correspond to
the ones found for a similar problem on fluid mechanics systems [CS87, CS95]. We can put into
perspective this similitude with the fact that Single Wave Model reduction is for both Vlasov
and Euler 2D. The interpretation in terms of critical layer (linear, nonlinear, viscous) is done in
Section VII.3.3.

Note that we consider here only homogeneous equilibrium contrary at what have been done
in the previous Chapter VI. A Vlasov-Fokker-Planck analysis around non homogeneous states
is for now out of reach since the system is not Hamiltonian (no action variable could diagonalize
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1. SETTINGS

the linear problem).
The method presented here is different from the one used in the article we wrote [BM17a]

on this topic. Indeed, in this article to prove rigorous mathematical theorems on the spectrum
of the Vlasov-Fokker-Planck operator we used the already existing framework and results of
J-M. Bismut and G. Lebeau 2 [BL08] on the perturbed harmonic oscillator operator. We then
performed the unstable q calculation using the Bargman representation. Here in this manuscript
we show another way using Fourier velocity calculation as in [LB58, SS02, NBS99]. Of course,
the results are the same.

1 SETTINGS

Our starting point is the Vlasov-Newton-Fokker-Planck equation [Ris89], Eq. (I.31) and
Eq. (I.33a). To keep the following computations as simple as possible, we stick to one di-
mensional case with HMF interactions. The kinetic equation for the density f(q, p, t) reads

∂tF + p∂qF −K∂qφ[F ]∂pF = γ∂p (pF + ∂pF ) , (VII.1a)
φ[F ] =−M [f ] cos q, (VII.1b)

where γ is the friction parameter, we have chosen our units so that kBT = 1 and introduced
a coupling parameter K. Hence here we change the coupling parameter K in order to control
the (in)stability whereas in the frictionless case in Chapter V the instability coupling was set to
K = 1 and the temperature could vary. This change is obtained by rescaling. The distribution

f 0(p) =
e−p

2/2

(2π)3/2

is the only velocity stationary solution of this equation. This Gaussian shape is expected since
at thermal equilibrium we expect a Gibbs distribution.

Remark VII.1
In [BM17a] we deal with the Coulomb/Newton case with the same results. The Gaussian equi-
librium is always stable for a repulsive interaction; since we are interested in the weakly unstable
case we focus on the attractive case.

Furthermore, if we wanted the system to relax towards another equilibrium distribution we
could use a more general Fokker-Planck operator

γ∂p

(
f 0∂p

(
f

f 0

))

for which f 0(p) is a stationary state.

We study the perturbed density F (q, p, t) = f0(p)+f(q, p, t) and its evolution. The equation
for f reads:

∂tf = L f + N f (VII.2a)
L f = −p∂qf +K∂qφ[f ](f 0)′(p) + γ∂p (pf + ∂pf) (VII.2b)

N [f ] = K∂qφ[f ]∂pf. (VII.2c)

Note that the nonlinear operator is the same as in the homogeneous case.

2. We are indebted to Gilles Lebeau for this idea.
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2 LINEAR PROBLEM

2.1 Velocity Fourier

In the homogeneous case the eigenvalue problem has been straightforward, in the non ho-
mogeneous one we had to change variable. Here at the spatial Fourier level we encounter new
terms with first and second order velocity derivatives

L k fk = −ikpfk + ikKφk[f ](f 0)′ + γ∂p (pfk + ∂pfk) . (VII.3)

To simplify further we proceed to the velocity-Fourier transform (denoted by a hat)

f̂(η) = FT[f(p)](η) = (2π)−1/2

∫
f(p)eipη dp.

In velocity Fourier, ∂p → −iη and p→ −i∂η. Moreover for k = ±1

φk[f ] = −1

2

∫
fk dp = −1

2
(2π)1/2f̂k(η = 0). (VII.4)

We also have f̂ 0(η) = (2π)−3/2e−η
2/2

The Fourier velocity transform of the linear operator yields

L̂ kf̂k(η) = −k∂ηf̂k − ηkKφk[fk](f̂ 0)− γη∂ηf̂k − γη2f̂k. (VII.5)

Remark VII.2
Unlike the two previous conservative case (with no dissipation), the 0th spatial Fourier mode
L 0 f 6= 0. Which mean that λ = 0 is no longer an eigenvalue associated with an infinite
eigenspace. It is now associated with a one dimensional eigenspace spanned by f 0. That is to
say there is no more an infinity of possible steady states but only one (the Gaussian).

2.2 Eigenvalue problem

We can now seek an eigenvector of the form Ψk = ψk(p)e
ikq for k = ±1.

L Ψk = λΨk (VII.6)

which gives in Fourier velocity

∂ηψ̂k +
λ+ γη2

k + γη
ψ̂k = −Kφk[Ψ]

ηf̂ 0

k + γη
= k
√

2πψ̂k(η = 0)
K

2

ηf̂ 0

k + γη
. (VII.7)

We impose the normalization such that ψ̂(η = 0) = 1. From now on we drop the spatial Fourier
index k = 1, e.g. ψ1 = ψ.

We define y = 1/γ, a = y2 + λy. The homogeneous solutions of Eq. (VII.7) are given by

ψ̂h(η) = cst · e−η2/2eyη
(

1 +
η

y

)−a
. (VII.8)
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Since there is an unphysical divergence at η = −1/γ, this solution has to be removed (by setting
the arbitrary constant to 0).

Hence the complete eigenvector is given by a particular solution [SS02, NBS04],

ψ̂(η) = ψ̂p(η) = −K
4π
e−η

2/2eyη
(

1 +
η

y

)−a ∫ η

−y
te−yt

(
1 +

t

y

)a−1

dt

= −K
4π
ye−η

2/2ey
2+yη

(
y2 + yη

)−a
∫ y2+yη

0

(x/y − y)e−xxa−1dx

=
K

4π
e−η

2/2ey
2+yη

(
y2 + yη

)−a (
y2γ(a, y2 + yη)− γ(a+ 1, y2 + yη)

)

=
K

4π

(
1− λy d(a, y2 + yη)

)
e−η

2/2

(VII.9)

where we have used ψ̂(η = −y) = yKe−y
2/2/(4π(y − λ)) to choose the lower integration

bound. We have introduced the lower incomplete Gamma function [ODL+14]

γ(a, z) =

∫ z

0

ta−1e−t dt,

(not to be confuse with the friction parameter γ) and used γ(a+ 1, x) = aγ(a, x)− xae−x and
defined

d(a, x) = x−aex
∫ x

0

e−tta−1 dt = x−aexγ(a, x) =

∫ 1

0

exs(1− s)a−1 ds. (VII.10)

Remark VII.3
In the limit γ = 0, the divergence of the homogeneous solution is suppressed ψ̂h(η) ∝ eλη which
is indeed the Fourier transform of the generalized eigenvector ∝ δ(λ + iv). So, with friction
these solutions are removed and there is no more continuous spectrum (see next Section).

2.3 Spectrum

In the previous computation, we did not have to be careful about whether λ was on the
imaginary axis or not which is another indication that the continuous spectrum has somehow
changed. In terms of operator the Fokker-Planck "perturbation" is unbounded (because of the
velocity derivatives) and we expect that even a small perturbation can affect/break the continu-
ous spectrum structure. Indeed, in standard systems there is in general no such spectrum.

The normalization condition ψ̂(0) = 1 gives us directly the dispersion relation

Λ(λ, γ) = 1− K

4π

(
1− λ/γ d(1/γ2 + λ/γ, 1/γ2)

)
. (VII.11)

In [SS02] is performed the limit γ → 0, (which can be done expanding in powers of 1/γ in the
integral terms) yielding

lim
γ→0

Λ(λ, γ) = 1− K

4π

∫ ∞

0

e−s
2/2−λss ds = ε

(0)
1 (λ) (VII.12)

where ε(0)
1 (λ) was defined in Eq. (V.32) as the analytic continuation of the homogeneous dis-

persion relation denoted in this Chapter Λ(0)(λ). It means that indeed the dispersion relation
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tends to the dispersion relation without friction which is expected. The important implication
is that the roots of this analytic continuation (resonances) are even with a small friction γ 6= 0,
true eigenvalues of Λ(λ, γ) and thus of the system. So, when γ → 0, the negative eigenvalues
approach the resonances of the frictionless Vlasov equation.

In [BM17a] we prove that indeed the continuous spectrum is empty for the Vlasov-Fokker-
Planck operator with the help of [BL08]. In mathematics, it is called "stochastic stability"
since eigenvalues of the system with a small stochastic perturbation (Fokker-Planck opera-
tor with a Gaussian noise) are close to the resonances. This stochastic stability for the reso-
nances of the linearized Vlasov operator is a phenomenon studied in other contexts: in fluid
dynamics [Bal99], for Pollicott-Ruelle resonances [Dro16, DZ15], or for a Schrödinger opera-
tor [Zwo15].

2.4 Landau damping

In the gravitational case, we know that the eigenvalues are real for a Gaussian distribution,
hence here we focus on a small real eigenvalue. The stability criterion is obtained for λ = 0 as

The system is stable iif IK = 1− K

4π
≤ 0, (VII.13)

which does not depend on the friction. So here when the system is stable it has eigenvalues with
negative real part (that will damp perturbation instead of the continuous spectrum).

Now what does the stochastic stability implies for the relaxation? The Landau damping oc-
curs through the resonances of the dispersion relation. With friction, we have seen that since the
dispersion relation is analytic in the whole plane there are no resonance but only true eigenval-
ues Eq. (VII.12). In the limit γ → 0 limit these eigenvalues converge to the resonances which
means that the damping is the same that the Landau damping one. In terms of mixing for a
fixed λ, γ the eigenvector ψ̂(η) associated with a damped mode decrease as e−η

2/2+yη to zero.
It means that its real velocity counterpart ψ(v) is regular (Riemann-Lebesgue lemma). In the
frictionless limit, we have ψ̂(η) ∝ eλη which produces a n eigenfunction much less regular and
is therefore physically translated by a more important phase mixing.

Remark VII.4
What is the behavior of the eigenvalues for large friction? In [Cha13] is studied the repulsive
case where eigenvalues are a priori complex. A transition is predicted for large friction the
damping does not oscillate anymore (λ ∈ R < 0). We can see it by using that [Cha13]

1− a d(a+ x, x)
x→0∼ x

a+ a2
, for fixed a

which means that in the limit λ ∼ γ for large γ, we have

Λ∞1 (λ) = 1 +
K

4π

1

λγ + λ2
(VII.14)

with solution

λ = −γ
2
∼
√
γ2 − K

4π
(VII.15)

It means that upon a certain level of friction the stable eigenvalue is real and that the dissipation
occurs without oscillation. It corresponds in fact to the transition between an underdamped
oscillator and an overdamped oscillator. Since the Magneto Optical Trap is probably in the
overdamped regime all mixing (Landau damping) effects must have disappeared.
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2.5 Adjoint problem

The adjoint equation can be obtained as in previous Chapters,

L † g = p∂qg −Kφ[(f 0)′∂qf ]− γ(p∂pg − ∂2
pg) (VII.16a)

L †
k gk = ipkgk − ikKφk[(f 0)′∂qf ]− γ(p∂pgk − ∂2

pgk) (VII.16b)

L̂
†
kĝk = k∂ηĝk − ikKφk[(f 0)′∂qf ]δ(η) + γ(∂η(ηĝk)− η2ĝk) (VII.16c)

Let the adjoint eigenvector be Ψ̃ =
ψ̃(p)eiq

2π

∂η
̂̃ψ − λ∗ − γ + γη2

1 + γη
̂̃ψ = cst · δ(η)

1 + γη
. (VII.17)

To get the solution we must separate the problem in several domains and seek a homogeneous
solution (for k = 1):

̂̃ψh(η) = Ceη
2/2e−η/γ(1 + γη)(λγ+1)/γ2−1 (VII.18)

we know that ̂̃ψ(−1/γ) = 0 also that for w < −/γ homogeneous solution does not admit real
solution so we put the function to zero in this domain. Then combining it with the particular
solution [NBS04]

̂̃ψ(η) =
1

(Λ′(λ))∗
eη

2/2e−η/γ(1 + γη)(λγ+1)/γ2−1 (Θ(1/γ + η)−Θ(η)) (VII.19)

where we defined Θ(η) as the Heaviside function and used Θ′(η) = δ(η). The normalization
factor will be justified in the next Section. It produces indeed a non zero solution for η ∈
]− 1/γ, 0[. The effect of friction is once again highlighted: it produces a cut-off to the velocity
modes.

2.6 Dispersion relation and normalization check

To normalize the projection
(

ˆ̃ψ, ψ̂
)

= 1, we first express

Λ′(λ) =
yK

4π

(
d(a, y2) + λy∂ad(a, y2)

)
(VII.20)

with

∂ad(a, x) = x−aex
∫ x

0

ln

(
t

x

)
e−tta−1 dt = −x−aex

∫ x

0

γ(a, t)

t
dt. (VII.21)

On the other hand

(Ψ̃,Ψ) = 1 =
1

Λ′(λ)

K

4π

∫ 0

−y
e−yη(1 + η/y)a−1

(
1− λy d(a, y2 + yη)

)
dη

=
1

Λ′(λ)

K

4π

(
y d(a, y2)− λy3ey

2

(y2)−a
∫ 0

−y

γ(a, y2 + yη)

y2 + yη
dη

)

=
1

Λ′(λ)

K

4π

(
y d(a, y2)− λy2ey

2

(y2)−a
∫ y2

0

γ(a, t)

t
dt

)

=
1

Λ′(λ)
Λ′(λ) = 1,

(VII.22)
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which once again links the dispersion relation and the normalization factor in a nontrivial fash-
ion.

3 NONLINEAR EXPANSION

Here we perform the nonlinear analysis that will be very similar to the one in Chapter V.
The main differences and difficulties are that the unstable manifold will be expressed in Fourier
velocity through first order differential equation. Furthermore, the asymptotic regimes in λ, γ
will require nontrivial integral estimations.

Since the symmetry O(2) holds for the Vlasov-Fokker-Planck equation with a Gaussian
initial distribution f 0(p) the unstable manifold is of dimension two with one real eigenvalue
and we can decompose f on the unstable manifold W u as

f = AΨ + c.c.+H(A,A∗).

The rotational symmetry insures that the form of H is still constrained by Eq. (V.37), moreover
we can still expand the Fourier coefficient of H in series of |A|2 and get

Ȧ = λA+ (Ψ̃, Nf) = λA+ c3|A|2A+ O
(
|A|5A

)
. (VII.23)

The nonlinear terms have formally the same expression as before

N 0[f ] = −K
∑

l

ilφ[f ]−l∂vfl = |A|2iK (φ1[Ψ]∂vψ
∗ − φ−1[Ψ∗]∂vψ) +O(|A|4) (VII.24a)

N 1[f ] = K
∑

l

i(1− l)φ[f ]1−l∂vfl = A|A|2iK (φ1[Ψ]∂vh0,0 − φ−1[Ψ∗]∂vh2,0) +O(A|A|4)

(VII.24b)

N 2[f ] = K
∑

l

i(2− l)φ[f ]2−l∂vfl = A2iKφ1[Ψ]∂vψ +O(A4). (VII.24c)

From Eq. (VII.24b) we deduce that the expression of the cubic coefficient is formally the
same that in the frictionless case Eq. (V.49),

c3(λ, γ) = −iKπ
√

2π
〈
ψ̃, ∂p (h0,0 − h2,0)

〉
= c

(h0)
3 + c

(h2)
3 (VII.25)

where we separated the contribution from the zeroth and second harmonic.
We will derive the expressions of h0,0 and h2,0 with the same method than in frictionless

case. Formally we still have (since λ is real in the attractive case)

(2λ−L 0)h0 = N 0[f ] (VII.26a)
(2λ−L 2)h2 = N 2[f ], (VII.26b)

but here the linear operator L 0 6= 0 and we only know the Fourier velocity expression of ψ
which forces us to solve a differential problem

∂ηĥ0,0 +
2λ+ γη2

γη
ĥ0,0 = −πK

2

√
2π(ψ̂∗ − ψ̂)/γ, (VII.27a)

∂ηĥ2,0 +
2λ+ γη2

2 + γη
ĥ2,0 = −πK

2

√
2π

η

2 + γη
ψ̂. (VII.27b)
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Remark VII.5
At first sight the perspective of Fourier velocity computation transform back in real velocity
space is not enjoyable at all, but thanks to the Parseval theorem claiming that the Fourier trans-
form is an isometry, the result of the projection (scalar product) will be the same expressed in
real or Fourier space,

〈g̃∗(p), f(p)〉 =

∫
g∗(p)f(p) dp = (2π)−1

∫ (∫
ĝ(η)e−ipη dη′

)∗(∫
f̂(η′)e−ipη

′
dη′
)

dp

=

∫∫
ĝ∗(η)f̂(η′)δ(η − η′) dη′dη =

∫
ĝ∗(η)f̂(η) dη.

(VII.28)

It is really one of the big advantage of the unstable manifold expansion with its geometrical
interpretation, that allows to express the problem in the most convenient basis and still have
formally the same quantities to compute. For example, in [BM17a] we express the problem
in another basis, the Bargman one but the quantity c3 is exactly the same in both cases. The
Fourier velocity uses integrals while the Bargman representation uses series. In the way, we
automatically prove some integral/series equalities.

3.1 Cubic coefficient

As in the frictionless case there are two terms to estimate one with h0,0 and one with h2,0.
We will compute the divergence induced by the first term and recover the Crawford one in the
frictionless limit. The h2,0 term for γ = 0 does not produce any divergence and as shown in
Appendix C.2.

Remark VII.6
With a more generic potential there would be a third term, easier to compute, that produces a
divergence like λ−1 for λ � γ1/3 and λγ−2/3 for λ � γ1/3. As we will see this singularity is
always weaker that the one produced by the zeroth Fourier term h0,0.

We seek a particular solution of Eq. (VII.27a)

ĥ0,0(η) = −πK
2

√
2πye−η

2/2η−2λy

∫ η

0

et
2/2t2λy

(
ψ̂∗(−t)− ψ̂(t)

)
dt

=
√

2π
K2

8
λy2e−η

2/2η−2λy

∫ η

0

t2λy
(
d(a, y2 − yt)− d(a, y2 + yt)

)
dt,

(VII.29)

so

c
(h0)
3 = −iπK

√
2π(ψ̃, ∂ph0,0) = −πK

2

√
2π

∫
η ̂̃ψ
∗
(η)ĥ0,0 dη

=
π2K3

4Λ′(λ)
λy2

∫ 0

−y
η1−2λy(1 + η/y)a−1e−yη

∫ η

0

t2λy
(
d(a∗, y2 − yt)− d(a, y2 + yt)

)
dt dη.

(VII.30)

The difficulty lies in estimating the asymptotic behavior of this integral. In this Section, we
will not present further computations to only highlight the results and leave details for the
Appendix C.1. The h0,0 term gives the main contribution to the cubic coefficient. We get in the
limit of small instability λ and friction γ, three different regimes,
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i) γ1/3 � λ,
ii) γ4/3 � λ� γ1/3,
iii) λ� γ4/3.

The asymptotic expansion gives for the cubic coefficient

c3 ∼ c
(h0)
3 ∼





−π2K2/4 · λ−3, γ1/3 � λ

−|cst| · γ−4/3, γ4/3 � λ� γ1/3

−|cst| ·O (1) , λ� γ4/3.

(VII.31)

In regime i) (Vlasov regime) we recover exactly Eq. (V.54) (with K = 1). This yields the
saturation scaling

Asat ∼





λ2, γ1/3 � λ

γ2/3, γ4/3 � λ� γ1/3

λ1/2, λ� γ4/3.

(VII.32)

We indeed recover both trapping and Hopf scaling for small and large friction as well as an in-
termediate regime. This result is summarized on figure VII.1. We discuss the different regimes
in the next Sections.

Remark VII.7
Once again in the unstable case, the friction acts as a cut-off for divergences: high velocity
modes η that were responsible for the pinching singularities are now suppressed at some level
1/γ.

3.2 Higher order terms

The natural step after estimating the cubic term is to check the scaling of higher order terms.
Unfortunately, the full consideration of all the different terms have not been done yet (it is quite
intricate). Preliminary computations tend to show that

i) O
(
c5|Asat|5

)
= O

(
c3|Asat|3

)
, γ1/3 � λ (VII.33a)

ii), iii) O
(
c5|Asat|5

)
� O

(
c3|Asat|3

)
, λ� γ1/3 (VII.33b)

Hence in regime i) where we had the trapping scaling the truncation is not possible while it
seems possible to do so in regimes ii) and iii). Therefore, we can conjecture is that in region
ii), iii) a local dimensional reduction of the bifurcation is possible and thus would describe
well the saturation. In particular, we should expect the characteristic trapping oscillations (see
Figure V.6) only in the regime i). A numerical simulation could check that there are no oscilla-
tions for λ � γ1/3. Unfortunately, I do not have a Vlasov-Fokker-Planck solver. A molecular
dynamics code could be used but would require a very precise integration scheme and a large
particles number.
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3.3 Critical layers

How to interpret the three different regimes of friction, i), ii), iii) in terms of critical layer?
So far, we have abusively use the term friction to talk about friction AND dissipation. Here

we distinguish the two. We denote ∆p the typical scale of the critical layer (CL) size in velocity
(in space it is of order 2π). The different time scales of the problem are

τdyn ∼ λ−1 Dynamical time (VII.34a)
τγ ∼ γ−1 Viscous time (VII.34b)

τNL ∼ A
−1/2
sat Nonlinear time (see Eq. (V.58)) (VII.34c)

τa ∼ ∆p−1 typical time for phase mixing inside the CL (VII.34d)
τdiss ∼ γ−1∆p−2 Dissipation time (VII.34e)

where τdiss was estimated from the dissipation term γ∂2
pf . The friction time scale is always

lager than the dissipation timescale thus we shall leave it aside.
Comparing timescales with the advection terms yields the different possible CL

∆pdyn ∼ λ; ∆pdiss ∼ γ1/3; ∆pNL ∼ A1/2 (VII.35)

— If ∆pdyn � ∆pdiss (λ � γ1/3) the dissipation is negligible. Then saturation with the
nonlinear term force ∆pdyn ∼ ∆pNL. Thus Asat ∼ λ2. So, we indeed expect Vlasov
regime for λ� γ1/3.

— If ∆pdyn � ∆pdiss the CL is viscous. Saturation with the nonlinear terms force ∆pdiss ∼
∆pNL. Thus Asat ∼ γ2/3. However, this regime is relevant only if Asat ≤ λ1/2 (standard
scaling for dissipative systems). So, we recover that the intermediate regime yields for
γ4/3 � λ� γ1/3.

— The dissipative (third regime) regime is thus Asat ≤ λ1/2 for λ� γ4/3.
This simple reasoning has the advantage to simply predict all our unstable manifold results
(both scaling and regimes) with some qualitative picture on the different critical layers.

4 CONCLUSION AND CONJECTURES

We provide here some concluding remarks, and make some conjectures to go beyond the
results obtained.

1. In regime i), we recover not only the trapping scaling, but also the universal −π2K2
c /4

prefactor, obtained without dissipation in [Cra95a, Cra94b].

2. Notice that in regimes i) and ii), the dominant contribution to c3 is a diverging integral;
this means that large velocity modes η, corresponding to highly oscillating velocity pro-
files, provide the dominant contribution. In regime ii), the dissipation γ plays a role in
the cut-off, contrary to regime i) where the cut-off is not strong enough. In regime iii),
there is no more divergence.

3. It is interesting to compare more precisely with the literature on weakly unstable 2D
shear flows. In [CS95, CS87, CS96], the regimes i) c3 ∝ λ−3 and ii) c3 ∝ λγ−4/3

also appear. However, the regime iii) c3 = O(1) is different, and the boundary between
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regimes ii) and iii) is different too. A possible explanation is that when the dissipative
time scale is shorter than the linear instability time scale (i.e. λ � γ), it is necessary to
add an external force to maintain the background shear flow. By contrast, maintaining
the Gaussian velocity distribution in the present Vlasov-Fokker-Planck setting does not
require any extra force, since it is stationary for the dissipation operator.

4. The λ ∼ γ1/3 boundary already appeared in the literature on Vlasov or 2D Euler equa-
tions: in the derivation of the Single Wave Model, taking γ ∝ λ3 is the right scal-
ing to ensure that dissipation enters in the equation at the same order as the "Vlasov
terms" [GH88, dCN98b, Bal99]. This is consistent with our finding that for γ � λ3, the
dissipation has no effect at leading order, while for γ � λ3 it qualitatively modifies the
problem.

5. In the pure Vlasov case, it is known that rescaling time and amplitude asA(t) = λ2α(λt),
all terms in the expansion in powers of A contribute at the same order to the equation for
α [Cra95a]; it is thus impossible to safely truncate the series to obtain a simple ordinary
differential equation, which is usually understood as a manifestation of the fact that the
effective dynamics close to the bifurcation is actually infinite dimensional [BMT13].
Here in regards to the first estimation of Section VII.3.2, we may conjecture that as soon
as γ � λ3 under a rescaling A(t) = γ2/3α(λt), the series can be safely truncated,
yielding an effective ordinary differential equation for the reduced dynamics.

6. It is worth noting that the bifurcation of the standard Kuramoto model [Kur75] (see Chap-
ter VIII), which shares some similarities with Vlasov equation, does not present the same
kind of divergences [Cra94a, Cra95b], and has been tackled at a rigorous mathematical
level [Chi13, Die16b, FGVG16]. One may then wonder if the regimes ii) and iii) of
Vlasov-Fokker-Planck equation may be also amenable to a mathematical treatment. All
these conjectures go well beyond the scope of this work.

Université Côte d’Azur 148



CHAPTER VIII

BIFURCATIONS IN COUPLED
OSCILLATORS SYSTEMS: THE

KURAMOTO MODEL

In the three previous Chapters, we have studied Hamiltonian systems with or without dissi-
pation, with long-range interactions and explored their out of equilibrium dynamics using the
unstable manifold method. In finite systems, the out of equilibrium states (QSS) eventually
relax to some statistical equilibrium in times τc = O

(
N δ
)
. Is the physics of purely out of

equilibrium systems different? When we started investigating the bifurcations for the Vlasov
equation we became aware at some point of a model displaying a lot of similarities with a non
Hamiltonian structure. It was the Kuramoto model. This model had also been studied by J.D.
Crawford and had no singularities in its bifurcation expansion. The first thing we wanted to
understand was what was the difference.

Hence in this Chapter we introduce the Kuramoto model for Coupled Oscillators that is
purely out of equilibrium (and non Hamiltonian). The model is by itself very interesting and
rich; it is uses in many different fields to understand the synchronization phenomenon in a
large population of oscillators which result in a nonlinear cooperative effect. The model origi-
nally introduced by Y. Kuramoto to describe circadian rhythm [Kur15]. The model is relevant
for many of physical/biological/chemical/social/electrical systems such as crickets chirping in
synchrony 1 [Wal69], crowd applause [NRV+00, XVS08], pedestrians on bridges [PTA+01,
OA08], electrochemical [KZH02] and electronic [TZT+12] oscillators, laser arrays [HKO+13],
metronomes [MTFH13], etc. The force of the Kuramoto model relies on its simplicity and yet
universality to describe the synchronization phenomenon

As we will see this model in the N → ∞ limit displays similarities with Vlasov dynamics,
like a continuous spectrum and Landau damping. However, it possesses some major differences

1. Characteristic of the South of France.
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in its standard form 2 that make some "miracles" possible. In particular, an exact (i.e. non local,
for any magnitude of order parameter) dimensional reduction known as the Ott-Antonsen ansatz
exists while the unstable manifold expansion does not exhibit any singularities. However, this
reduction does not hold if the model is slightly modified. In the final Chapter XI, we will gather
our thoughts on the "why" such dimensional reduction is possible or not.

This Chapter will be dedicated to review known results on the Kuramoto model and one
simple extension in the light of our previous experience with the Vlasov model. We will expose
different methods to solve the bifurcation toward synchronization problem, from Y. Kuramoto
early calculations to the most recent mathematical results of H. Dietert through Mirollo & Stro-
gatz, J.D. Crawford’s unstable manifold computations, Ott-Antonsen ansatz and H. Chiba re-
duction. This Chapter also serves as an introduction for Chapter IX and X where we present
our original results concerning the bifurcation analysis of the Kuramoto modified by inertia and
delayed interactions.

1 HISTORICAL REVIEW

In nature, many system displays some rhythm, like the spikes emitted by neurons or the
cricket’s frequency of singing. In 1665 Dutch physicist C. Huygens (inventor of pendulum
clock) - ill in bed - noticed that no matter initial conditions, the two clocks on his wall even-
tually synchronize. He then led several experiments to understand this phenomenon, it was
the first scientific description of synchronization. What is surprising about this phenomenon
is that the weak coupling (through vibration on the wall [OM15] for this example) is suffi-
cient for full synchronization. Other examples Understanding synchronization in large popu-
lations of coupled oscillators is a question which arises in many different fields, from physics
to neuroscience, chemistry, and biology, see for example the book [PRK01]. Since this syn-
chronization phenomena seems quite universal, there must be some minimal model describing
synchrony all those systems. The first idea to reach such paradigm was to describe the os-
cillators through their phases only and was proposed by A.T. Winfree [Win67] (see also his
extraordinary book [Win80]). Therefore, for one oscillator the dynamics is only given by one
equation on its phase, so the dynamics is automatically non Hamiltonian (since there is no evo-
lution equation for its velocity) and out of equilibrium. Then Y. Kuramoto proposed an even
simpler model where the interaction term that should in principle be model dependent was cho-
sen as a sin function 3. It means that it is then the first Fourier mode of a generic potential that
dictates the dynamics of synchronization. It is consistent with the Vlasov investigation where
the first mode is always the first one to be unstable. Such minimal model is then enough to
understand qualitatively dynamics of a large number of coupled oscillators.

2. What we will refer as the original/standard/first order Kuramoto model.
3. The precise mechanism behind the Huygens clocks was only elucidated recently [OM15].
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1.1 The model

The Kuramoto model, which features a sinusoidal coupling and an all-to-all interaction be-
tween oscillators, has become a paradigmatic model for synchronization, and its very rich be-
havior prompted an enormous number of studies. The key ingredients are for N oscillators

— Evolution of the phase θ̇i = · · · uniquely.
— Each oscillator has its own natural frequency ωi ∈]−∞,∞[.
— A weak all-to-all coupling as K/N

∑

j

sin(θj − θi).

Putting everything together leads to

θ̇i = ωi +
K

N

∑

j

sin (θj − θi) (VIII.1)

where the ωi are the natural frequencies of oscillators drawn according to some distribution law
g(ω). Through a phase shift it is always possible to center the frequency distribution to zero.
The dynamics is made through 1 × N coupled first order equations (where it is 2 × N for a
Hamiltonian system). Kuramoto introduced an order parameter (now named after him) that
measures the synchrony of the system,

r(t) = |r|(t)eiϕr(t) =
1

N

N∑

j=1

eiθj(t). (VIII.2)

In fact, r is the strict equivalent to the magnetization in the HMF system. For r = 0 the system
is homogeneous↔asynchronous while for r 6= 0 some partial synchrony occurs to reach perfect
synchrony at r = 1.

1.2 Original result (Kuramoto 1975)

The Kuramoto model was proposed and "solved" by Y. Kuramoto at the same time [Kur84,
Kur75]. We retrace here quickly its early computations. Since

K

N

∑

j

sin (θj − θi) =
K

2i

(
re−iθi − c.c.

)
= −K|r| sin(θi − ϕr),

one can study only
θ̇ = ω −K|r| sin θ (VIII.3)

where the phase ϕr has been set to zero thanks to the rotational symmetry.
The great idea of Y. Kuramoto was to separate two populations of oscillators, one "locked"

containing synchronized cluster and the other one "drifting" composed of the oscillators drifting
around

r = rlock + rdrift.

He could predict the critical coupling parameter K = Kc and the shape of the bifurcation for
r∞. In the locked region, we have for a stationary state θ̇ = 0 and

ω = Kr∞ sin θ (VIII.4)
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which is only possible for ω < Kr∞. It defines the limit between drifting and locked oscillators.
Then he estimated the two contributions in the largeN →∞ limit with a symmetric distribution
g(ω) = g(−ω), self consistently (see [ABPV+05]) as

rlocked = Kr∞

∫ π/2

−π/2
cos2 θg(Kr∞ sin θ) dθ. (VIII.5)

The drifting part is more involved:

rdrift =

∫

|ω|>Kr∞

g(ω)

T (ω)

∫ π

−π

cos θ

Vω(θ)
dθ, (VIII.6)

where (θ, Vω(θ)) is the attractive periodic orbit for an oscillator with intrinsic frequency ω, and
T (ω) is the period of this orbit. Here Vω(θ) = ω − Kr∞ sin θ, so due to the symmetry the
drifting part is zero rdrift = 0.

Near the onset of synchrony, we have r∞ � 1 so for regular function we can expand the g
distribution

r∞ = rlocked = Kr∞

(
g(0)

∫ π/2

−π/2
cos2 θ dθ +

(Kr∞)2

2
g′′(0)

∫ π/2

−π/2
sin2 θ cos2 θ dθ + O

(
r4
∞
)
)

= Kr∞

(
πg(0)

2
+
π(Kr∞)2

16
g′′(0)

)
.

(VIII.7)

This only produce non zero solution for K > Kc = 2/(πg(0)) when g′′(0) < 0 (unimodal
function). Moreover in this case, the transition is supercritical with

r∞ ∼
√

16

πK2
c g
′′(0)

(
1− K

Kc

)
. (VIII.8)

In the event that g′′(0) > 0, higher order terms have to be considered and the transition is
subcritical (discontinuous).

An amazing feature of the Kuramoto model is that those simple calculations predict the exact
asymptotic results (with the right coefficient and stability criteria)! In figure VIII.1 we plot the
exact bifurcation diagram that is in agreement with previous computations. For a Lorentzian

distribution g′′(0) < 0 we observe a square root bifurcation∝
√
K −K(1)

c . For a bi-Lorentzian
distribution Eq. (VIII.28) with g′′(0) > 0 the transition is indeed subcritical. We will explain
later in Section VIII.3, how this plot was made.

Remark VIII.1
If those calculations are powerful, there are self-consistent, meaning that we assume the exis-
tence of an asymptotic steady state and find it. It does not provide us with the dynamics of how
such state is reached. That will be given for example with the following bifurcations techniques.
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1.3 Large oscillator number limit (Mirollo & Strogatz, 1991)

Thanks to its resemblances with the HMF model, obtaining a kinetic equation of the Ku-
ramoto model in the N → ∞ limit is mathematically easier than in for Coulomb like systems.
In [SM91], S.H. Strogatz and R.E. Mirollo consider for the first time this coupled oscillators
problem with a kinetic equation, studying its linear stability. The evolution equation that we
call here the Kuramoto equation is for the one particle density distribution f(θ, ω, t),

∂tF + ω∂θF +
K

2i
∂θ
((
r1[F ]e−iθ − r−1[F ]eiθ

)
F
)

= 0 (VIII.9a)

rk[F ] =

∫
F (θ, ω, t)eikθ dω dθ, (VIII.9b)

∫
F (θ, ω, t) dθ = g(ω), (VIII.9c)

∫
g(ω) dω = 1. (VIII.9d)

As before for the linear and nonlinear study we will need to decompose the equation around
the incoherent solution f 0(ω) = g(ω)/(2π) as F (θ, ω, t) = f 0(ω) + f(θ, ω, t),

∂tf = L f + N f (VIII.10a)

L f = −ω∂θf −
K

2i

g(ω)

2π
∂θ
(
r1[f ]e−iθ − r−1[f ]eiθ

)
, (VIII.10b)

N f = −K
2i
∂θ
((
r1[f ]e−iθ − r−1[f ]eiθ

)
f
)
. (VIII.10c)

Let’s list the differences and similarities between the Vlasov homogeneous kinetic system and
the Kuramoto one, just looking at Eq. (VIII.9) and Eq. (VIII.10).

Similarities

— Same HMF interactions (thus same order parameter)
— The presence of an advection term that was previously responsible for the continuous

spectrum and Landau damping. Thus, one may expect Landau damping to also occur in
the Kuramoto model.

— The 0th Fourier mode of the linear operator L 0 = 0. In Vlasov equation this was linked
directly with the infinite number of possible stationary states. Here it also means that any
distribution g(ω) (regular enough) is steady state solution. Thus λ = 0 is an eigenvalue
with an infinite dimensional eigenspace associated. One could define Casimir invariant
for this problem as

Cs[f ] =

∫∫
s[f ](θ, ω, t) dθ, (VIII.11)
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Differences

— The first order dynamics induces no derivatives terms ∂ω, only ∂θ.
— The 0th Fourier mode of the linear AND nonlinear operator are zero N 0 = L 0 = 0.

It means that the spatial Fourier mode f0 is constant in time (and even zero by normal-
ization). An equivalent statement is given in Eq. (VIII.9c). A direct implication is that
the unstable manifold that will be constructed in Section VIII.2 has no zero spatial mode
H0 = 0. Remember that in the Vlasov case this 0th harmonic was responsible of the
strongest divergence in the dynamical expansion (its importance in terms of diverging
coefficient is also known in fluid mechanics, see [CS87]). Therefore, if any divergence
occurs we expect them to be weaker.

Hence since the linear operator is similar (up to one velocity derivative) the linear problem
looks very much like the Vlasov-HMF case. The criteria derived in [SM91] holds for generic
g(ω) function. S.H. Strogatz and R.E. Mirollo also consider a Gaussian noise for the phase θ
which has for effect to add as with Vlasov-Fokker-Planck equation a D∂2

θf operator (where D
is the diffusion coefficient). In terms of spectrum this noise displaces the continuous spectrum
on the left plane on σc = {λ/Reλ = −D}

Remark VIII.2
If the support of g(ω) is finite on [−a, a] so will be the continuous spectrum σc = {Imλ ∈
[−a, a] ∪ Reλ = 0}. It is also true in the Vlasov case, but here we restrict to distribution with
infinite support. The branch cuts in the continuous spectrum are responsible for other effects as
in the non homogeneous case.

2 CRAWFORD APPROACH (1993)

At this point the linear analysis had been done, it remained to deal with the nonlinear dynam-
ical analysis of the bifurcation with generic g distribution. Historically at the same time as his
paper on the homogeneous Vlasov equation J.D. Crawford performed his unstable calculation
for the Kuramoto equation. Its results confirmed the finding of Y. Kuramoto. On this subject a
very well written paper by S.H. Strogatz [Str00] (that could serve as a nice introduction to this
PhD thesis) highlights the crucial contribution of J.D. Crawford on the topics.

Since the method is very similar to the previous cases we will only gather the most important
steps here.

TheO(2) symmetry predicts as in homogeneous Vlasov, that if g is even with each eigenval-
ues λ associated with an eigenspace of dimension two. If g is not even, there is only the SO(2)
rotational symmetry and the eigenvalues have an associated eigenspace of dimension one.

Ψ1(θ, ω) = ψ1(ω)eiθ =
K

2

g(ω)

λ+ iω
eiθ (VIII.12a)

Ψ̃1(θ, ω) = ψ̃1(ω)
eiθ

2π
=

1

(Λ′1(λ))∗
1

λ∗ − iω
eiθ

2π
(VIII.12b)

Λ1(λ) = 1− K

2

∫
g(ω)

λ+ iω
dω (VIII.12c)
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with once again
(

Ψ̃1,Ψ1

)
= 1 and

∫
ψ1 dω = 1 For the nonlinear problem, we have

N 0[f ] = 0 (VIII.13a)

N 1[f ] = −|A|2AK
2


r1[Ψ∗1]h2,0 − Ar−1[Ψ1] H0︸︷︷︸

=0

+O
(
|A|2

)

 (VIII.13b)

N 2[f ] = K
(
A2r−1[Ψ1]ψ + O

(
|A|2

))
(VIII.13c)

so

Ȧ = λA+
〈
ψ̃1,N 1[ft]

〉
= λA−2π

K

2

〈
ψ̃1, h2,0

〉

︸ ︷︷ ︸
c3

|A|2A+ O
(
|A|4A

)
(VIII.14)

Since we can compute

h2,0(0) =
πK2

2

g(ω)

(λ+ iω)2
(VIII.15)

we are left with

c3 = −π
2K3

2

1

Λ′(λ)

∫
g(ω)

(λ+ iω)3
dω

=
π2K2

2

Λ′′(λ)

Λ′(λ)
.

(VIII.16)

Since we want to deal with an unstable manifold of dimension two let’s either assume that
g is even and λ real (which is not automatic, for example bi-Lorentzian distributions exhibit a
threshold upon which a real eigenvalue becomes complex.) or λ complex and g not even.

Here let’s assume that λ is real, let’s perform the λ→ 0 limit in c3. Thanks to integration by
part and Plemej formula we obtain

c3(0) =
π3K2

c

4

g′′(0)

−PV
∫

(g′(ω)/ω) dω

g=gL=
π3K2

c

4
g′′(0). (VIII.17)

If we go back to the r variable with r ∼ 2πA

ṙ = λr +
πK2

c

16
g′′(0)|r|2r + O

(
|r|4r

)
(VIII.18)

which gives

r∞ ∼
√
−16λ

πK2
c g
′′(0)

=

√
16

πK2
c g
′′(0)

(
1− K

Kc

)
, (VIII.19)

where we have used that for a Lorentzian distribution λ = K/Kc − 1. It is the original Y.
Kuramoto result.

Remark VIII.3
We notice that to be supercritical we should in principle prove that Λ′′(0+ +iλi)/Λ

′(0+ +iλi) <
0 either with i) g even and λi = 0 or ii) g not even and λi 6= 0. To my knowledge nobody has
proved such thing or even considered this question. Indeed, in general authors are concerned
with even unimodal distribution (where the demonstration is immediate). In Appendix D.3, we
prove in the i) case that this is true for bimodal distribution (in particular it says that when g is
even and bimodal, eigenvalues are real iff Λ′′(0) > 0). But the demonstration still resists for
more generic functions.
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So in this Kuramoto example despite the presence of a continuous spectrum, the cubic coef-
ficient is non singular! Giving rise to a standard "Hopf" scaling as in dissipative systems, while
the relaxation process in stable case is still pure Landau damping.

Do the higher orders terms possess some divergences? The answer is no for the standard
Kuramoto case, see a generic demonstration given in [Cra95a]. Hence if the higher orders
coefficients are regular then, we have close to the bifurcation λr � 1 at saturation,

O (λ|A|∞) = O
(
c3|A|3∞

)
� O

(
c2n+1|A|2n+1

∞
)
. (VIII.20)

Therefore, we expect 4 the one dimensional description Eq. (VIII.18) of the infinite dimensional
original system to be accurate for the supercritical bifurcation.

At this point the natural question is "Why does it work here and not with Vlasov"? Is it
uniquely linked with the presence of diverging coefficients? What makes a coefficient to diverge
or not? Why in the unstable case the continuous spectrum does not seem to play a role? Is there
some kind of Single Wave Model associated with trapping of particles ? In [BS00] the authors
start a SWM approach for the Kuramoto model, but it seems that they do not pursue further.

3 OTT-ANTONSEN ANSATZ (2008)

In 2008 while the Kuramoto field was already quite big, with many extension and methods
to study them; the "game" was shaken by an astonishing discovery of E. Ott and T.M. Anton-
sen [OA08] which could be the dream of every theoretical physicist: the discovery of an explicit
class of solution to a full partial differential equation... This new solution lead to a large number
of papers 5 using this Ott-Antonsen ansatz (OA ansatz). The force of their ansatz is to reduce
exactly the dimension of the bifurcation problem in a certain case globally. Here globally is
opposed to locally and means that the analysis holds for any r. In this Section, we will discuss
this ansatz.

3.1 The ansatz

Let’s decompose the real distribution function in its Fourier expansion

F (θ, ω, t) =
g(ω)

2π

(
1 +

∑

k>0

(
αk(ω, t)e

ikθ + c.c.
)
)
. (VIII.21)

We now restrict the dynamics to Fourier modes that satisfies the following ansatz

αk(ω, t) = αk(ω, t), (VIII.22)

where |α| < 1 to ensure the convergence of the series. Inserting this in the Kuramoto equation
Eq. (VIII.9c) gives after a factorization by αk the same equation to satisfy for each Fourier
mode:

∂tα + iωα +
K

2

(
α2r∗ − r

)
= 0 (VIII.23a)

r∗(t) =

∫
α(ω, t)g(ω) dω. (VIII.23b)

4. Of course it is not a mathematical theorem saying that this unstable manifold is attractive, but a formal result.
5. 372 citations in less than ten years which is quite big for this field I guess.
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This equation is still infinite dimensional but less "complex" since we only have to deal with one
Fourier coefficient. For example, we have a simple expression for the total distribution function

F (θ, ω, t) =
g(ω)

2π

(
1 +

(
αk(ω, t)e

ikθ

1− αk(ω, t)eikθ
+ c.c.

))
. (VIII.24)

One could find some similarities between this reduced model and the Single Wave Model
Eq. (V.59).

Another miracle occurs at this step since for a Lorentzian distribution the integrals can be
computed explicitly 6 thanks to its poles in i,−i

gL =
σ

π

1

σ2 + ω2
. (VIII.25)

For simplicity we take σ = 1. Thus, we have

r∗(t) =

∫
α(ω, t)gL(ω) dω = α(−i, t). (VIII.26)

The price is of course to assume some analyticity of the α(ω, t) functions. So replacing with
ω = −i in Eq. (VIII.23) gives exactly

ṙ =
K −Kc

2
r − K

2
|r|2r (VIII.27)

with Kc = 2. Here there is no neglected higher order terms and r does not have to be small. It
means that there is an exact global dimensional reduction to the "standard" normal form. The
dimension went from infinity to one (for this class a solution satisfying the ansatz Eq. (VIII.22))!

Despite that it is not the purpose to study in details all the possibilities of this ansatz let’s
mention that it works (with a reduction not necessarily to dimension equal one) for a variety of
extensions [OA08]:

— All rational functions. For bi-Lorentzian distribution [MBS+09],

gbL =
σ

2π

(
1

σ2 + (ω − ω0)2
+

1

σ2 + (ω + ω0)2

)
, (VIII.28)

one can reduce the system to a set of two coupled o.d.e. In particular, one can plot
the exact bifurcation diagram for a Lorentzian and bi Lorentzian, see Figure VIII.1 (the
equations of the red plot are not shown here the interested reader can refer to [MBS+09]).

— A forcing term
— Delayed coupling, we will come back to this in Chapter X
— Different species of oscillators with different coupling within each species.

6. Integrals of rational functions are particularly simple to compute with this trick.
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K
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c K
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|r∞|
ω

g(ω)

Figure VIII.1 – Bifurcation diagram for the Kuramoto order obtained via the OA ansatz. Dashed
line show unstable states while solid line are stable steady states. In black the supercritical
bifurcation corresponding to ω0 = 0 in Eq. (VIII.28) (associated distribution shown in the inset).
In red, the subcritical bifurcation of Eq. (VIII.28) for ω0 = 0.8 (associated distribution shown
in the inset). Associated OA ansatz for this latter case in [MBS+09].

3.2 Comparison between Ott-Antonsen ansatz and the Unstable mani-
fold

Now a lot of questions arise
— Why does it work? Some papers have addressed the generality of this reduction for some

extensions of the model [PR08, MMS09] as well as the analogy with the Watanabe-
Strogatz ansatz [WS93].

— Is this OA manifold representing well the full dynamics? In [OA09, OHA11] the at-
tractiveness of the ansatz for the full dynamics is shown "In particular, for distribution
g with non zero spreading 7, all attractors of the full system lie on the reduced mani-
fold, and all attractors of the dynamics on the reduced manifold are attractors of the full
system". It says that for regular enough distribution g(ω) (with no zero width) a phase
mixing between the different oscillators occurs so the system eventually relaxes to the
OA manifold.

— The physical meaning of this reduction still for us remains unclear. How to interpret
that for a Lorentzian distribution we get an exact one dimensional reduction while for a
Gaussian distribution we still have an infinite integro-differential problem (still simpler
than the full Kuramoto model). Is it just mathematics?

— Can it be applied to the Vlasov case (in which case most of the previous work would be
useless!)?

— In the bi-Lorentzian case we know that there must exist an exact two-dimensional re-
duction, how with the Crawford technique could we end up with this reduction (since it
matches in the supercritical case?). How the Crawford approach is local and exactly the
same that the global OA reduction? What for the subcritical case where O (A∞ = 1)?

7. Which is always the case we study.
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Are higher order terms exactly zero like with the OA ansatz?
One of the obvious limitation of the OA ansatz is that it really fully works only for rational

function while techniques as Crawford’s one are more generic. This point legitimates the use of
such technique. How does the unstable manifold look compared to the OA ansatz? To answer
this question let’s write the distribution on the unstable manifold, for convenience we define
before

ψ1(ω) =
g(ω)

2π
β1,0(ω) (VIII.29a)

h1,j(ω) =
g(ω)

2π
β1,j(ω) j ≥ 1 (VIII.29b)

hk,j(ω) =
g(ω)

2π
βk,j(ω) j ≥ 0, k ≥ 2 (VIII.29c)

h0,j = 0 ∀j ≥ 0 (VIII.29d)

it gives

F (θ, ω, t) =
g(ω)

2π

(
1 +

∑

k>0

(
Akβk,0(ω, t)eikθ + c.c.

)
+
∑

j≥1

|A|2j
∑

k>0

(
Akβk,1(ω, t)eikθ + c.c.

)
)

(VIII.30)
Is there a relation between the βk,j ? In fact, the βk,0 are for the standard Kuramoto model easy
to compute, combining Eq. (V.44c) and Eq. (V.45c), we get for k ≥ 2,

Ak
(
k(λ+ iω)hk,0 + O

(
|A|2

))
= N k[f ] =

K

2
k
(
fk−1r−1[f ]− fk+1rk+1r1[f ]

)

= k
K

2
Ak


hk−1,0 r−1[Ψ∗]︸ ︷︷ ︸

2π

+O
(
|A|2

)



(VIII.31)

where we have used that L k 6=1 = −ik∂θ. For k = 2 see Eq. (VIII.15). Thus, by simple
recurrence we get

βk,0 = βk1,0 (VIII.32a)

β1,0 = 2π
K

2

1

λ+ iω
(VIII.32b)

which is the exact same structure that the OA ansatz! Therefore, the unstable manifold is at its
first order expansion belonging to the OA manifold for every g distribution. What is remarkable
is that at this order time is decoupled from natural frequency

α1(t) = A(t)β1(ω). (VIII.33)

Preliminary calculations tend to show that if we consider higher orders, this structure does not
hold...
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4 MATHEMATICAL RESULTS

Results a la Crawford although very powerful do not prove that the built unstable manifold
is attractive, which means that we could miss with this technique a large panel of the dynamics.
The job of mathematician in the Kuramoto field was to prove rigorously several things. Here
are some results obtained

— The nonlinear Landau damping occurs which was proven in a similar spirit than for the
Vlasov equation [FGVG16, Die16b]. Due to the simpler structure of the potential and of
the equation there is no echo effect that was appearing in the nonlinear Vlasov Landau
damping [MV11, Vil10].

— The rigorous reduction and the associated bifurcation in the supercritical case was proven
with two different methods [Die16b, CN11].

The demonstration of H. Chiba [CN11] use larger functional spaces the so called "rigged
Hilbert spaces". It provides a good framework to deal with the continuous spectrum. The
proof of H. Dietert [Die16b] also uses a functional space where there is no continuous spectrum
combined with estimates in spatial and velocity Fourier modes. Note that those results deal
uniquely with regular 8 monotonic functions, which do not include the subcritical case when
g′′(0) < 0. It is to my knowledge the only mathematical theorems concerning bifurcations in a
system with a continuous spectrum.

5 EVERYTHING FALLS APART: THE KURAMOTO-DAIDO
CASE (1992)!

So far, we have only seen the standard Kuramoto case where everything worked out greatly.
A suggestion of Crawford in one of his first paper on unstable manifold [Cra94b] tackles the
difference in terms of singular/nonsingular coefficient c3 and Hopf/trapping scaling between the
Vlasov and Kuramoto model:
"This difference in the nonlinear behavior seems noteworthy since the linear dynamics of the
model is qualitatively similar to Vlasov although apparently lacking a Hamiltonian structure"
So is the possibility of exact dimensional reduction/rigorous mathematical results/non singular
coefficients/Hopf scaling lies uniquely in the non Hamiltonian nature of the Kuramoto model?

As we will see in this simple extension of the Kuramoto model introduced and discussed by
H. Daido [Dai92, Dai94, Dai96], the answer is clearly no. We will very quickly state the main
result of the unstable manifold approach for the Kuramoto-Daido model.

The model is defined as

θ̇i = ωi +
K

N

∑

j

sin (θj − θi)−
K

N

∑

j

χ sin 2 (θj − θi) . (VIII.34)

It adds a second harmonic to the standard model, which of course can be relevant in the physics
of some systems. H. Daido through a self-consistent method predicted that in general at the
onset of synchronization the exponent of saturation A∞ ∝ λι was ι = 1 and not ι = 1/2.

8. In [Chi13] the distribution are either Gaussian or Lorentzian while in [Die16b] they belong to the Sobolev
spaceW(n,1) with g′′(0) > 0.
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5.1 Crawford result (1994)

Once again J.D. Crawford attacked the problem with the unstable manifold technique [Cra95b,
CD99] confirming H. Daido’s result. He computed the singularities in the coefficients of the dy-
namical expansion and showed how the saturation scaling was modified in general. He recovers
the Daido scaling ι = 1 and also that the truncation of the dynamical expansion was impossible
since every order contributes the same at the saturation level.

The linear problem is the same as before since the most unstable mode is still associated
with the first Fourier mode (one can see it easily comparing the dispersion relation for the two
modes). At the nonlinear level, we have minimal differences

N 0[f ] = Eq. (VIII.13a), (VIII.35a)

N 1[f ] = −2π|A|2AK
2

(
h2,0 + χψ∗

∫
h2,0 dω

)
, (VIII.35b)

N 2[f ] = Eq. (VIII.13c). (VIII.35c)

We can compute h2,0 using the resolvent Eq. (IV.23), to find

h2,0 = −χψ
∫
h2,0 dω + πK

ψ

λ+ iω
and

∫
h2,0 dω = πK

Λ′(λ)

1 + χ
. (VIII.36)

It eventually gives for the cubic coefficient

c3 =
π2K2

2

Λ′′1(λ)

Λ′1(λ)
− χ(πK)2 Λ′1(λ)

1 + χ

〈
ψ̃, ψ∗

〉
. (VIII.37)

As we have previously experienced this type of projection with
〈
ψ̃, ψ∗

〉
displays pinching

singularities. Here a simple computation shows that we have a 1/λ singularity. Hence

c3 ∼ −χ
(πK)3

2λ

g(0)

1 + χ
. (VIII.38)

The sign of χ does play an important role here: for χ > 0, the contribution of the second
harmonic has an anti-ferromagnetic effect (repulsive), and the transition is always supercritical 9

with a scaling
A∞ ∝ λ (VIII.39)

which recover Daido prediction. So physically this second harmonic repulsion has an effect of
slowing down the synchronization growth. On the contrary if 0 < χ < 1 the second harmonic
has an attractive effect and the bifurcation is subcritical. For χ ≥ 1 the second harmonic
becomes the most unstable mode, so the unstable decomposition on the first harmonic has to
be modified. A study of the population of oscillators (via self-consistent method and numerical
experiments) reveals that several clusters of oscillators can be formed in presence of a second
harmonic [KP13, LMLY14, KP14] and that several bifurcation branches with various stability
can exists in the subcritical case. It is not captured in the Crawford analysis where we only see
the onset of synchronization when varying the coupling parameter.

9. To be complete we would have to prove that Λ′(λ) > 0 which is the same discussion as in VIII.3 and
Appendix D.3.
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5.2 Comparison with the Ott-Antonsen ansatz

When discovering this Kuramoto-Daido model which very much looks like both the Vlasov
case (in terms of singularities) and Kuramoto (in terms of structure), we immediately wondered
if the OA ansatz could apply or not. If it was it would open a door to dimensional reduction
of infinite dimensional systems with a singular dynamical expansion like the Vlasov equation.
However, it does not work. When trying the ansatz on the Kuramoto-Daido case, we end up
with two equations producing inconsistencies, one for the first Fourier mode and one that can
be factorized for higher Fourier modes

∂tα + iωα +
K

2

(
α2r∗ − r

)
− χK

2

(
α3r∗2 − r2α

∗) = 0 k = 1 (VIII.40a)

∂tα + iωα +
K

2

(
α2r∗ − r

)
− χK

2

(
α3r∗2 − r2

1

α

)
= 0 k > 1 (VIII.40b)

r∗(t) =

∫
α(ω, t)g(ω) dω (VIII.40c)

r∗2(t) =

∫
α2(ω, t)g(ω) dω. (VIII.40d)

It impies
α−1(ω, t) = α∗(ω, t) = α−1(ω, t),

hence that |α1|(ω, t) = 1. Which can be problem for the convergence of the series Eq. (VIII.21).
Note that the OA ansatz works partially when there is uniquely one non zero harmonic k

(k = 1 being the standard case). It is partial in the sense that is predictive only for the Fourier
modes n×k. For example, with only non zero sin 3θ, the evolution of r3[f ], r6[f ], · · · is known
but not r1[f ], r2[f ].

Remark VIII.4
The structure βk,0 = βk1,0 Eq. (VIII.32) a la OA ansatz for the unstable manifold Fourier co-
efficients hk,0 that was holding in the standard Kuramoto case does not hold with a second
harmonic. It is thus tempting to link the OA ansatz failure to this lack of power structure in the
unstable manifold. An idea we had was to use the structure of the unstable manifold to guess
an ansatz on the full kinetics equation. But so far it has not worked.

5.3 The Chiba result (2011)

In [CN11] there is a tentative of a mathematical approach to the Kuramoto-Daido problem.
Unfortunately, despite rigorous result with the standard Kuramoto case, it seems that in the
Daido case the bifurcation analysis is not rigorous. He claims to obtain the dynamics for any
coupling function:
"The dynamics on the manifold is derived for any coupling functions. When the coupling func-
tion is sin θ, a bifurcation diagram conjectured by Kuramoto is rigorously obtained. When it is
not sin θ, a new type of bifurcation phenomenon is found due to the discontinuity of the projec-
tion operator to the center subspace."
Nevertheless, his result is interesting since he finds for the bifurcation, also a "singular" (in
his case discontinuous) projection that does not produce a singularity of the type 1/λ, but a
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quadratic term that respects the SO(2) symmetry

Ȧ = λA− χ

1 + χ
C|A|A+ O

(
|A|2A

)
, (VIII.41)

for some C > 0 coefficient. This equation produces the same bifurcations than the Crawford
result with a super critical bifurcation with ι = 1 when χ > 0 and a subcritical one for −1 <
χ < 0. The difference is that a priori the higher orders terms will not diverge which may say
that locally the reduction is exact. If the claim concerning the rigorousness of this approach as
well as the method of derivation remain unclear the idea that a term like |A|A could remove
and contain the singularities at every order is appealing. For Vlasov to get the trapping scaling
would require a

√
|A|A term. But it would still not be enough to account for the trapping

oscillations.

5.4 What is the difference?

The fundamental difference between the standard Kuramoto model and the Kuramoto-Daido
model occurs at the nonlinear level for N 1[f ] = Eq. (VIII.35b). With only a first harmonic,
fk is nonlinearly coupled with fk−1, fk+1. However, since f0 = 0 nothing couples (at every
order) positive Fourier modes k > 0 to negative ones k < 0. Those modes have a free transport
evolution e−ikpt to the "left" for k > 0 and to the "right" for k < 0. With a second harmonic, the
unstable mode f1 is now coupled also with f3 and f−1. In the projection, a la Crawford or a la
Chiba it is this negative mode that causes the singularity/discontinuity. In terms of singularities
we understand that positive Fourier modes are associated with poles on (with convention of
Eq. (V.55)) the upper half plane while negative modes will have their poles on the lower half
plane, which eventually causes pinching singularities. For the Ott-Antonsen ansatz this negative
mode is also responsible of the failure Eq. (VIII.40). In fact, in the Vlasov case since f0 is non
zero it directly couples positive and negative Fourier modes independently of the presence of
a second harmonic. The "proximity" of this coupling seems to produce the most important
divergence. On this subject if one takes a Daido like model with a first and third harmonic
sin θ − χ sin 3θ, f1 is not directly coupled with its opposite f−1 but to f−2. The consequence
is that the cubic coefficient c3 is nonsingular while the quintic one c5 ∝ λ−2 is. It produces a
scaling with an exponent 3/4 ≤ ι < 1.

In the result of H. Dietert [Die16b] this positive/negative coupling is also what would cause
the failure of the estimates used for the bifurcation analysis.

Hence the standard Kuramoto model with its exact or even rigorous local dimension reduc-
tion is an exception in the sea of examples with continuous spectrum and generic coupling
function.
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CHAPTER IX

KURAMOTO MODEL WITH INERTIA

We have seen that in the Vlasov-HMF model (Chapter V), singularities appear in the bifur-
cation expansion while in the standard Kuramoto model a regular exact dimensional reduction
is possible. The former model is purely Hamiltonian whereas the latter follows a first order dy-
namics. What would give a system interpolating the two models as two limiting cases? Would
such a model display singularities only in the Vlasov limit? Or on the contrary be regular only
for the standard Kuramoto limit? Or something in between? Such a model already exists and
it is called the second order Kuramoto model (or Kuramoto with inertia). It is a second or-
der model with friction γ and inertia m. We find that some singularities always appear in the
vicinity of the bifurcation. These singularities come from the coupling with the zeroth Fourier
harmonic term that unlike the original Kuramoto model is not constant in time. In the zero
inertia m = 0 limit we get back the standard Kuramoto case with no singularities, while in
the frictionless limit γ = 0, we recover the Vlasov Hamiltonian Mean Field model with its
characteristic trapping scaling (due to very strong nonlinear effects).

This model was not introduced to serve our questioning but for physical reasons. Inertia
was added to the original Kuramoto model to describe the synchronization of a certain fire-
flies [Erm91], and proved later useful to model coupled Josephson junctions [WCS96, TSS05]
and power grids [FNP08, ONBT14, DCB13]. Recently, an inertial model on a complex network
was shown to display a new type of "explosive synchronization" [JPM+13]. It was quickly
recognized [TLO97a, AS98] that inertia could turn the continuous Kuramoto transition into a
discontinuous one with hysteresis. At first sight, a natural adaptation of the original clever self-
consistent mean-field approach by Kuramoto [Kur75] seems to explain satisfactorily this obser-
vation [TLO97a, TLO97b] a sufficiently large inertia induces a bistable dynamical behavior of
some oscillators, that translates into a hysteretic dynamics at the collective level. However, Fig-
ure IX.1 makes it clear that even a small inertia is enough to trigger a discontinuous transition:
this cannot be accounted for by the bistability picture.

Many other generalizations of the standard Kuramoto model have been introduced to better
fit modeling needs. Citing just a few contributions: more general coupling than the sole sin θ-

165



CHAPTER IX. KURAMOTO MODEL WITH INERTIA

2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

m = 0

m = 0.25

m = 0.5

m = 0.5 self

m = 1

K

r

Figure IX.1 – Asymptotic order parameter r as a function of K for different m (α = 0). The
arrows indicate the direction of the jumps. Without inertia, the transition is continuous, while
a hysteresis appears already for small m. Note the presence of a single branch with r 6= 0 for
m = 0.25, 0.5, while there are two for m = 1. The dashed line is the partially synchronized
solution given by the self-consistent method (see Appendix D.2) for m = 0.5. The frequency
distribution is Lorentzian: gσ(ω) = (σ/π)/(σ2 + ω2) with σ = 1.

harmonic [Dai92] (as we have just seen in Section VIII.5), noise [Sak88], phase shifts bringing
frustration [SSK88] (that we will use here), delays [YS99, Izh98] (see the next Chapter), or a
more realistic interaction topology [SSK87, HCK02].

In the Kuramoto model with inertia the only predictive approach so far was the self-consistent
method a la Kuramoto (see the Chapter VIII.1.2 and Appendix D.2). This approach was studied
numerically or analytically in the large friction limit [TLO97a, ONBT14]. The Ott-Antonsen
ansatz fails immediately. However, in [JPRK14] a tentative is done with no true reduction a
la Ott-Antonsen but with some function with fitting parameters. Thus, an unstable manifold
approach was lacking to explain the "explosive" transition toward synchronization observed. It
will also serve as a bridge between the Vlasov HMF and standard Kuramoto model.

In this Chapter, we prove that any non zero inertia, however small, is able to change the
nature of the synchronization transition in Kuramoto-like models, either from continuous to
discontinuous, or from discontinuous to continuous (this latter case is new to the literature
to my knowledge). The bifurcation nature is given again by the sign and scaling of the cubic
coefficient in the bifurcation expansion. This original result was published in [BM16]. It is
obtained again through an unstable manifold expansion.

We compare our predictions with large-scale numerical simulations (molecular dynamics):
using again a GPU (graphics processing unit) architecture allows us to reach a number of oscil-
lators significantly larger than in most previous works; this is crucial to test with a reasonable
precision scaling laws in the vicinity of bifurcations.
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1 THE MODEL

Our starting point is the model introduced by Tanaka et al. [TLO97a], which adds inertia
to the original Kuramoto model. It has been since then studied by many authors, often in
presence of noise, and we first discuss some of the theoretical results obtained so far. [TLO97a]
adapts the original self-consistent Kuramoto method to the presence of inertia, and predicts,
consistently with the numerics, that a large enough inertia makes the transition discontinuous.
The small inertia case was apparently not studied. In [AS98, ABS00], the authors perform a
bifurcation study of the incoherent state in presence of noise, and find a critical inertia beyond
which the transition should be discontinuous; their result suggests that a small inertia can make
a qualitative difference, but the singular nature of the small-noise limit makes an extrapolation
to zero noise difficult. We note that a full "phase diagram" compatible with [AS98, ABS00] is
presented in [GCR14, SSK88] (see also [KP14]). In the following, we also add to the model
in [TLO97a] a "frustration" parameter α, as in [SSK88]; this will provide us with a further
parameter to make testable predictions. Our resulting model is then the same as [KP14], without
noise.

Each of the N oscillators in the system has a frequency vi, with i ∈ 1, · · · , N and a phase
θi ∈ [0, 2π[; it also has a natural frequency ωi, drawn from a frequency distribution g. We
assume that g is even (g(−ω) = g(ω)). If there is no coupling between oscillators, the actual
frequency vi tends to their natural frequency ωi thanks to the friction. The dynamical equations
for positions and velocities are

θ̇i = vi (IX.1a)

m v̇i = γ(ωi − vi) +
K

N

N∑

j=1

sin(θj − θi − α). (IX.1b)

This is the second order Kuramoto model (also referred as Kuramoto with inertia). If the inertia
m tends to 0, one recovers the usual Kuramoto model Eq. (VIII.1) (over damped dynamics). If
γ = 0, there is no restoring force towards the natural frequency, and one obtains for α = 0 a
Hamiltonian model with an all-to-all coupling and a cosine interaction potential, it is the HMF
model Eq. (V.4). We use two rescaled parameters m̃ = m/γ, K̃ = K/γ as in [BM16] instead
of K,m, γ. The Kuramoto limit corresponds to m̃ → 0, and Vlasov limit to K̃, m̃ → ∞
and K̃/m̃ → cst. Our parameters now coincide with those of [TLO97a]. Dropping the˜for
convenience, In the N → ∞ limit, the system Eq. (IX.1) is described by a kinetic equation for
the phase space density F (θ, v, ω, t):

∂tF + v∂θF +
K

2im

(
r1[F ]e−iθe−iα − r−1[F ]eiθeiα

)
∂vF −

1

m
∂v ((v − ω)F ) = 0, (IX.2)

where the rk coefficients representing the different order parameters measuring synchrony are
defined as in the first order model Eq. (VIII.9b) with an integration over the extra velocity vari-
able.

The first step of the problem is as always to find the unsynchronized stationary solution
f 0(v, ω). It is easy to check that

f 0(v, ω) = g(ω)δ(v − ω)/(2π) (IX.3)

is indeed a stationary solution of Eq. (IX.2). The first thing to observe is that the velocity
distribution in v lives in a less regular space than usual. Actually, in presence of a Gaussian

167 Laboratoire Jean-Alexandre Dieudonné



CHAPTER IX. KURAMOTO MODEL WITH INERTIA

noise the stationary solution is a Gaussian [ABS00] and its zero temperature limit coincide with
Eq. (IX.3). Increasing the coupling strength K, f 0 changes from stable to unstable. Our goal
is again to study the dynamics of Eq. (IX.2) in the vicinity of this bifurcation. The linear and a
nonlinear decomposition, with F = f 0 + f gives

∂tf = L f + N [f ], (IX.4a)

L f = −v∂θf −
K

2im

(
r1[f ]e−iθe−iα − r−1[f ]eiθeiα

)
∂vf

0 +
1

m
∂v ((v − ω)f) , (IX.4b)

N [f ] = − K

2im

(
r1[f ]e−iθe−iα − r−1[f ]eiθeiα

)
∂vf. (IX.4c)

In terms of spectrum the perturbation induced by the friction term (last term) is not bounded thus
some changes in the continuous spectrum with respect to Vlasov HFM or standard Kuramoto
model are possible.

2 LINEAR PART

2.1 Eigenvalue problem

Let us solve L Ψk = λΨk with Ψk = ψk(v, ω)eiθ. This yields for k = 1 (we remove the
index ψ1 = ψ)

(λ+ iv)ψ =
1

m
∂v ((v − ω)ψ) +

K

2im
eiαg(ω)δ′(v − ω)

∫
ψ dv dω,

where δ′(x) stands for the derivative in the distribution sense of the delta Dirac distribution.
The difficult part of the inertia bifurcation problem is first to solve the eigenvalue problem

which is neither like standard Kuramoto or Vlasov HMF (without friction) neither like Vlasov-
Fokker-Planck (with friction and dissipation). Indeed, in this latter case the functional space
was regular enough so Fourier or Bargman expansion in velocity worked well. Moreover, here
we have two "velocity variables" the natural frequency ω and the velocity v. The idea (ansatz)
is to look for a solution of the form

ψ = U0(ω)δ(v − ω) + U1(ω)δ′(v − ω). (IX.5)

Imposing the normalization
∫
ψ dv dω = 1, one finds

U0 =
K

2m
eiα

g(ω)

(λ+ iω)(λ+ 1/m+ iω)
(IX.6)

U1 =
K

2im
eiα

g(ω)

λ+ 1/m+ iω
. (IX.7)

where we used the identity xδ(n)(x) = −nδ(n−1)(x) for n > 1 and xδ(x) = 0. Expliciting the
normalization condition yields the dispersion relation for k = ±1:

Λk(λ) = 1− K

2m
eikα

∫
g(ω)

(λ+ ikω)(λ+ 1/m+ ikω)
dω = 0. (IX.8)
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This dispersion relation can be recovered as the noiseless limit of the one in [ABS00], as it
should. One can also check that the limit m → ∞ , K/m = cst yields the Vlasov dispersion
relation 1 with a cosine potential and g(ω) as stationary velocity profile f 0(v); the m→ 0 limit
yields the standard Kuramoto dispersion relation.

The effect of the friction operator modified the continuous spectrum. Looking at the singular
points in the dispersion relation (or equivalently looking for generalized eigenvector), we do
not find one continuous spectrum but many! One is the usual situated on the imaginary axis
while the other are placed in the left plane. In fact, if we had chosen ψ(v, ω) = Un(ω)δ(n)(v −
ω), we would have found continuous spectrum on every axis Reλ = −n/m. Hence σc =
{λ/Reλ = −n/m,∀n ≥ 0}. Therefore, the effect 2 of friction (without noise) on the linear
operator Kuramoto operator is to split the continuous spectrum in an infinite number of parts
situated in the left plane and thus associated with damped oscillations (excepted for n = 0). It
is interesting the look in [ABS00] at the effect of an additional noise measured byD (dispersion
in velocity as for Vlasov-Fokker-Planck). It has for effect to shift all these spectra further in
the left plane, in particular the spectrum in n = 0 is situated in Reλ = −D. Hence stochastic
stability like in Vlasov-Fokker-Planck, Section VII.2.3, does not occur here since the continuous
spectrum still exists after the addition of friction and dissipation. Hence the additional natural
frequency variable must be responsible for this change.

2.2 Adjoint problem

The definition of the scalar product with two frequency variables is straight forward

(f1, f2) =

∫
〈f1, f2〉 dθ =

∫ ∫
f ∗1 f2 dω dv dθ. (IX.9)

The adjoint is thus

L † q = v∂θq −
1

m
(v − ω)∂vq +

K

2im

(
eiαe−iθr1[q∂vf

0]− e−iαeiθr−1[q∂vf
0]
)
. (IX.10)

L † is also diagonal when expressed in the Fourier basis with respect to θ we thus concentrate
on

Ψ̃k =
ψ̃k(v, ω)

2π
eikθ.

Then for k = 1

(λ∗ − iv)ψ̃ +
1

m
(v − ω)∂vψ̃ =

K

2im
e−iα

∫
g(ω)∂vψ̃(ω, ω) dω. (IX.11)

It is not obvious how to compute ψ̃ from the above equation. Nevertheless, taking v = ω, one
easily extracts ψ̃(ω, ω):

ψ̃(ω, ω) =
K

2im
e−iα

C

λ∗ − iω

with C a constant to be determined by normalization: we impose
∫
ψ̃∗ψ dv dω = 1. Differ-

entiating repeatedly Eq. (IX.11) with respect to v, and then taking v = ω, one can compute

1. Thanks to an integration by parts.
2. Of course a rigorous spectral analysis is needed to really understand this result.
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ψ̃(n)(ω) = ∂nv [ψ̃](ω, ω) for any n. From Eq. (IX.5), we see that we need to compute up to n = 1
in order to obtain C; the result is

C =
2im

K
eiα

1

Λ′(λ)∗
(IX.12)

which once again links the scalar product
〈

Ψ̃,Ψ
〉

to the derivative of the dispersion relation. In
the following, we will need

ψ̃(ω, ω) =
1

Λ′(λ)∗
1

λ∗ − iω (IX.13a)

ψ̃(1)(ω) =
i

Λ′(λ)∗
1

(λ∗ − iω)(λ∗ − iω + 1/m)
(IX.13b)

ψ̃(2)(ω) =
−2

Λ′(λ)∗
× 1

Π2
l=0(λ∗ − iω + l/m)

(IX.13c)

ψ̃(3)(ω) =
−6i

Λ′(λ)∗
× 1

Π3
l=0(λ∗ − iω + l/m)

(IX.13d)

3 UNSTABLE MANIFOLD EXPANSION

In this Section, we are going to perform the unstable manifold expansion in a very similar
fashion than the homogeneous Vlasov case (with or without friction/dissipation).

The dynamics Eq. (IX.2) is symmetric with respect to rotations SO(2), (θ, v, ω) = (θ +
ϕ, v, ω); if α = 0 and g(ω) even, it is in addition symmetric with respect to reflections (θ, v, ω) =
−(θ, v, ω). To simplify a bit the calculation we choose here to take g even, and we restrict to
the case of two unstable eigenvectors. This is generically the case when:

i) α 6= 0; in this case, there is a complex unstable eigenvalue λ, and λ? is also an unstable
eigenvalue;

ii) α = 0, and λ is real; in this case, it is twice degenerate, associated with two eigenvectors.
Hence in both cases we will build a two-dimensional unstable manifold. We leave for fu-
ture studies the cases α = 0, λ complex, which leads to a four-dimensional unstable man-
ifold [Cra94a], as well as non even g(ω) distributions. We decompose the solution on the
unstable manifold as before

f = AΨ + A?Ψ? +H[A,A?](θ, v, ω). (IX.14)

with H = O((A,A?)2). We expect once again by symmetry to get

Ȧ = λA+ c3|A|2A+O(A5) (IX.15)
H(A,A?) = AA?h0,0(v, ω) + A2h2,0(v, ω)e2iθ + c.c.+ . . .

where we have used the A↔ −A and translation symmetries. From Eq. (IX.4c) we get for the
Fourier components of N [f ]:

(N [f ])0 = i
2πKe−iα

2m
σ∂vψ + c.c.+ O

(
|A|4

)
(IX.16)

(N [f ])2 = −i2πKe
iα

2m
A2∂vψ + O

(
A2|A|2

)
. (IX.17)
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Thus, using the time equation as in Eq. (V.44) we have to solve

(2λr −L 0)h0,0 = i
2πKe−iα

2m
∂vψ + c.c. (IX.18)

(2λ−L 2)h2,0 = −i2πKe
iα

2m
∂vψ. (IX.19)

where L 0 6= 0 due to the friction term. The N 1[f ] term gives

Ȧ = λA+ A|A|2 2πK

2im

(
eiα〈ψ̃, ∂vh0,0〉 − e−iα〈ψ̃, ∂vh2,0〉

)
+ O

(
A|A|4

)
. (IX.20)

3.1 Computation of h0,0

We start from Eq. (IX.18). We have h0,0 = h+ c.c., where h is the solution of

(2λr −L 0) · h = i
2πKe−iα

2m
∂vψ. (IX.21)

Eq. (IX.21) reads

2λr −
1

m
∂v[(v − ω)h0,0] =

2πK2

4im2

(
gδ′(v − ω)

(λ∗ − iω)(λ∗ − iω + 1/m)
+ i

gδ′′(v − ω)

(λ∗ − iω + 1/m)

)
.

(IX.22)
We introduce the ansatz:

h = W0(ω)δ(v − ω) +W1(ω)δ′(v − ω) +W2(ω)δ′′(v − ω).

Using the identities

xδ′(x) = −δ(x)

xδ′′(x) = −2δ′(x),

we obtain

W0(ω) = 0 (IX.23)

W1(ω) =
2iπ(K/2m)2g(ω)

(2λr + 1/m)(λ+ iω)(λ+ 1/m+ iω)
(IX.24)

W2(ω) =
2π(K/2m)2g(ω)

2(λr + 1/m)(λ+ 1/m+ iω)
. (IX.25)

3.2 Computation of h2,0

A similar computation starting from Eq. (IX.19) yields h2,0. We have to solve

(2λ−L 2) · h2,0 = −i2πKe
iα

2m
∂vψ. (IX.26)

Using the ansatz
h2,0 = X0δ(v − ω) +X1δ

′(v − ω) +X2δ
′′(v − ω),
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we obtain

X0(ω) =
iX1(ω)

(λ+ iω)

X1(ω) =
−i(2πKeiα/2m)U0(ω)

(2λ+ 2iω + 1/m)
+

4iX2(ω)

(2λ+ 2iω + 1/m)

X2(ω) =
−i(2πKeiα/2m)U1(ω)

2(λ+ iω + 1/m)
.

3.3 Putting everything together

Inserting the expressions of h0,0 and h2,0 into Eq. (IX.20), we obtain the final reduced equa-
tion we were looking for. Let us start with the first contribution, which comes from 〈ψ̃, ∂vh0,0〉:

〈ψ̃, ∂vh0,0〉 =

∫∫
ψ̃∗(v, ω)

[
(W1(ω) +W ∗

1 (ω)) δ(2)(v − ω)

+ (W2(ω) +W ∗
2 (ω)) δ(3)(v − ω)

]
dv dω (IX.27)

=

∫ [
ψ̃(2)∗(ω) (W1(ω) +W ∗

1 (ω))− ψ̃(3)∗(ω) (W2(ω) +W ∗
2 (ω))

]
dω.

We have to compute the above integrals in the limit λr → 0+. A pole which moves to the
real axis when λr → 0+ does not create any divergence by itself (see Section V.5.4) although
the integral is not well defined a priori, it can be analytically continued. However, divergences
may appear through "pinching singularities", see Section V.5.4, that is when two poles approach
the real axis, each on one side. From Eq. (IX.13b), Eq. (IX.13c), Eq. (IX.13d) and Eq. (IX.24),

Eq. (IX.25) one sees that a pinching singularity appears only in
∫
ψ̃(2)∗W ∗

1 ; hence this provides

the leading term:
∫
ψ̃(2)∗W ∗

1 dω = iπ
K2

m2

1

(1/m)

1

Λ′(iλi)

∫ (
g(ω)

(λ2
r + (ω + λi)2)((λr + 1/m)2 + (ω + λi)2)

×

1

(λr + 2/m+ i(ω + λi))

)
dω

∼ iπ
K2

m2

1

(1/m)4

1

Λ′(iλi)

π

2

g(−λi)
λr

,

where we have used ∫
ϕ(x)

x2 + ε2
∼

ε→0+
π
ϕ(0)

ε
. (IX.28)

Let us turn to the second contribution, coming from 〈ψ̃, ∂vh2,0〉:

〈ψ̃, ∂vh2,0〉 =

∫∫
ψ̃∗(v, ω)

[
X0(ω)δ′(v − ω) +X1(ω)δ′′(v − ω) +X2(ω)δ(3)(v − ω)

]
dv dω

=

∫ [
−ψ̃(1)∗(ω)X0(ω) + ψ̃(2)∗(ω)X1(ω)− ψ̃(3)∗(ω)X2(ω)

]
dω. (IX.29)

It is not difficult to see that no pinching singularity appears, so that the above term has a finite
limit when λr → 0.
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Figure IX.2 – r (computed in the asymptotic stationary state) as a function of the coupling
constant K for different parameter α, with m = 0.4. Arrows indicate the direction of the
jumps. The frequency distribution is a bi-Lorentzian Eq. (VIII.28), with σ = 1 and ω0 = 0.8.
The bifurcation is clearly sub-critical for α = 0 and 0.524, and supercritical for α = 1.5; in this
latter case r is grows linearly with K −Kc as predicted by Eq. (IX.30). The inset shows s(α),
which is positive for α = 0 and 0.524 and negative for α = 1.5. The value s(α) corresponding
to each bifurcation is shown by a point of the same color as the plot.

We conclude that the leading behavior of c3 for m > 0 is given by:

c3 ∼
π3

2
mK3 eiα

Λ′(iλi)

g(−λi)
λr

. (IX.30)

In particular, the sign of s(α) = Re

(
eiα

Λ′(iλi)

)
determines the type (sub- or super-critical) of

the bifurcation. Our hypothesis of a two-dimensional unstable manifold ensures that Λ′(iλi) 6=
0).

4 DISCUSSION

Using the reduced dynamics Eq. (IX.15) truncated at order A3 provides essential qualitative
information: i) The bifurcation is subcritical if and only if Re (c3) > 0 ii) In the supercritical
case, one obtains the asymptotic order parameter |A|∞ ∼

√
−λr/Re (c3). From this, the

dramatic effect of the inertia m appears clearly: it introduces into c3 a contribution diverging
like 1/λr, which is the dominant one: the sign of s = Re (eiα/Λ′(iλi)) controls the bifurcation
type, sub-(resp. super) critical for s > 0 (resp. s < 0). For m = 0, the next order term,
which does not diverge when λr → 0, is needed; the bifurcation is then controlled by s0 =
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Figure IX.3 – Asymptotic r as a function of K for α = 0.8, with m = 0 or m = 0.5. The
frequency distribution is a superposition of two Lorentzian as in [OW12], figure 3: g(ω) =
τg1 + (1 − τ)gδ, with τ = 0.8, δ = 0.075; note that g is unimodal. The inset shows that
s0(α = 0.8) > 0 (hence discontinuous transition at m = 0), and s(α = 0.8) < 0 (hence
continuous transition as soon as m > 0).

Re(Λ′′(iλi)/Λ
′(iλi)): sub-(resp. super) critical for s0 > 0 (resp. s0 < 0) (this generalizes to

α 6= 0 a result of [Cra95b], see Appendix D.1.1).
Hence, any small m may either turn a supercritical bifurcation at m = 0 into a subcritical

one, or the other way around, turn a subcritical bifurcation at m = 0 into a supercritical one.
While the first direction, illustrated in Figure IX.1, was anticipated in [GCR14, KP14], the
second direction is unexpected. Figure IX.3 provides an example with a unimodal g(ω) and
α 6= 0. Furthermore, in the supercritical case, we predict the scaling law for the asymptotic
order parameter |A|∞ ∝ λr, and this is also observed.

If the distribution g is unimodal we note that s(α = 0) > 0, so the bifurcation is always
subcritical. It means that for the system without frustration parameter α = 0, we indeed proved
that with any inertia m the bifurcation is discontinuous (we should as in the standard Kuramoto
case prove that for generic symmetric g distribution Λ′(0) > 0, which we are able to do only
for unimodal function). Finally, Eq. (VIII.16) makes clear that both the standard first order
Kuramoto (m = 0, α = 0) and Vlasov (m = ∞ , K/m = cst, see Appendix D.1.2) limits are
singular. In the first case, the divergent term vanishes, and the bifurcation is controlled by the
sign of s0. One recovers the already known results: for a symmetric unimodal g, s0(α = 0) < 0

and the bifurcation is supercritical, with standard scaling |A|∞ ∝
√
λr. In the second case,

Eq. (VIII.16) diverges when m,K → ∞. Redoing the computations in this limit indeed yields

(for α = 0) c3 ∝ −
1

λ3
r

, as found in [Cra95a]. This leads to the trapping scaling |A|∞ ∝ λ2
r .
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4.1 Numerics

We present in this Section precise numerical simulations that fully support the above anal-
ysis. The Kuramoto codes (with and without inertia) were constructed by myself. The time-
evolved system is obtained via GPU parallel implementation of a Runge-Kunta 4 scheme for
the equations Eq. (IX.1) [GCR14]. The order parameter is computed by its standard discrete
definition [Kur75]. For every simulation, we take N = 65536, and a time step ∆t = 10−3.
The asymptotic order parameter r is the average of |r1|(t) for t ∈ [1500, 2000]. In order to
test our prediction on the type of bifurcation, we start from an unsynchronized state (drawing
positions θi uniformly on a unit circle). The ωi are sampled according to g, the initial velocities
are vi = ωi. We let the system evolve until t = 2000 and measure the averaged order parameter.
Then we vary the coupling constant K → K + ∆K with ∆K = 0.1 or 0.2 (or smaller close
to transitions) and reiterate the procedure; at some point the bifurcation towards synchroniza-
tion is observed. When K is large enough we apply the same procedure in the other direction,
K → K−∆K. Thus, we are able to distinguish clearly a subcritical bifurcation (with a charac-
teristic hysteresis cycle) from a supercritical bifurcation (with no hysteresis). In figure IX.1, we
see how the hysteretic cycle depends on the inertia m. For m = 1, there are two branches with
r 6= 0: these correspond to the bistable behavior of the single oscillator dynamics in a range of
ω, see [TLO97a]; for m = 0.5 and m = 0.25, the single oscillator dynamics is not bistable in
the transition region, and, accordingly, there is only one branch with r 6= 0. The bifurcation
remains nevertheless clearly subcritical. Tests varying α are reported on figure IX.2: we see that
the singular term Eq. (VIII.16) again correctly predicts the type of bifurcation (continuous vs
discontinuous), as well as the scaling of the saturated state in the continuous case. In figure IX.3
and IX.2, inertia induces a supercritical transition; Eq. (VIII.16) also correctly predicts the lin-
ear scaling of the saturated state in this case. Finally, we note that in the subcritical regime, the
numerically observed Kc is sometimes lower than the prediction Eq. (IX.2); this is presumably
related to strong finite size effects [HCPT07], especially in presence of inertia [ONBT14].

In conclusion, we have once again successfully constructed an unstable manifold expansion
for models of synchronization with inertia and frustration, circumventing the problem of the
continuous spectrum on the imaginary axis. The singularities appearing in the expansion con-
trol the system’s behavior in the vicinity of the bifurcation, and allow useful qualitative and
quantitative predictions. In particular, while synchronization models tend to present compli-
cated phase diagrams for which it is difficult to develop an intuition [OW12, KP14], we obtain
simple criteria determining the character of the transition. We were also thanks to the cubic
coefficient able to predict a case where inertia turns a subcritical bifurcation into a supercritical
one, which is new to the literature.

However, to be complete we should look at the higher order terms to check that as previous
cases with singular coefficients they produce same order terms when there is saturation (Re c3 <
0). A surprising result would be that they produce negligible terms at saturation which could be
a sign that rigorous dimensional reduction is possible. The bad case would be that those higher
order terms are of lower order, which would invalidate this result.

Regarding the guiding thread of this thesis, that is to say the singularities in the unstable
manifold expansion, we have also confirmed some ideas. The presence of the zeroth harmonic
H0 = |A|2h0 is crucial to qualitative behavior of the bifurcation. As soon as it is non zero (for
m 6= 0) it produces a dominating contribution ∝ 1/λr in the bifurcation expansion. Never-
theless, here its effect is weaker than in the Vlasov case, which is probably due to the friction
γ. Indeed, compared to the Vlasov-HMF case we have here L 0 6= 0 and a split continuous
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spectrum which might weaken the resonance phenomena. To get more insight on what is really
happening a development a la Single Wave Model [BS00, BMT13] for the Kuramoto would be
very useful. However even consideration in terms of critical layers are not simple in Kuramoto
like model since an extra variable ω is present.
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CHAPTER X

KURAMOTO MODEL WITH DELAY

This Chapter is dedicated to the study of both first and second order Kuramoto model with
delayed interaction. The Kuramoto model with delayed interaction was introduced in [Izh98]
and studied first in [YS99] by M.K.S. Yeung and S.H. Strogatz (see [CKKH00] for a self-
consistent and numerical study). The physical motivation for this model is clear: interactions
such as two crickets hearing each other is not instantaneous and always slower than the speed
of light. Of course, such example might seem a bit irrelevant but delay could become non-
negligible in some electrical network like power grid systems [LC04] or coupled neuron sys-
tems [DJM+09, DJM+09, NUS13, ST15]. Hence what is the effect of delay on the bifurcation
in Kuramoto models? Another challenge is to recover the bifurcation diagram of [YS99] Figure
4 which predicts sub/super-critical bifurcation for a varying delay (in what seems to be a peri-
odic pattern). Providing a cubic coefficient with such positive/negative oscillation would give
the first theoretical explanation/prediction for this phenomenon.

To answer this question, we will have to introduce quickly the essential features of delayed
equation framework. The two main changes are the addition of the delay variable for operators
and functions and the modification of the scalar product. We will then apply this formalism to
the bifurcation problem in a very similar fashion than the two previous Chapters for Kuramoto
system with or without inertia, writing uniquely the crucial steps. In the standard Kuramoto case
as a security check we will also compare the unstable manifold result with the one predicted
by the OA ansatz (which does work in this case). Moreover, thanks to this broader formalism
of delay equations (also called Theory of Functional Differential Equations) we will be able to
prove a general result linking the normalization factor (of the projection on the unstable mode)
with the derivative of the dispersion relation.

The main result of this Chapter yields is the explicit expression of the cubic coefficient of the
unstable manifold expansion for both Kuramoto models with or without inertia. In the former
case, the expression is compared with the one obtained with the OA ansatz.
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1 THEORY OF DELAY DIFFERENTIAL EQUATION

In this Section, we summarize the formalism to study the linear and nonlinear dynamics of
delay equations. The main points to accept are

— The distribution studied f(t) is now a function of the delay ft(ϕ) = f(t+ϕ) (for negative
ϕ).

— The linear and nonlinear operators have a different expression for zero and non-zero
delay Eq. (X.10)

— The adjoint operators are defined through a bilinear form acting as the usual inner prod-
uct.

— This new inner product depends on the delay dependence of the linear operator Eq. (X.11).
Its form is motivated by the so-called Lagrange identities [Hal63, BKNG09, Gao13].

1.1 Extended functional space and operator

In this Section, we motivate with a brief derivation the form of operators in the delay formal-
ism.

The nonlinear operator M acts on functions in some functional space f(θ, ω, t) ∈ B, we
want to study the evolution equation

∂

∂t
f = M [f ]. (X.1)

We can extend the functional space, for a given τ ≥ 0, Bτ = C 0([−τ, 0],B) denotes the Banach
space of continuous mappings from [−τ, 0] intoB equipped with a norm ‖u‖ = sup

−τ≤ϕ≤0
‖u(ϕ)‖B

for function u ∈ Bτ . Now for t ≥ 0, ft ∈ Bτ is defined by ft(ϕ) = f(t + ϕ) for ϕ ∈ [−τ, 0].
Hence the problem writes

∂

∂t
f(t) = M [ft]. (X.2)

Operators with delay can be conveniently represented as integral over delay [HL93, GW13]

M [ft] =

∫ 0

−τ
[dη(ϕ)]ft(ϕ) (X.3)

where ϕ acts as the delay variable and η is an operator with bounded variation depending on the
delay parameter. For example, for a discrete time delay τ we have

η(ϕ) = Θ(ϕ+ τ)L (X.4)

that give M [ft] = L ft(−τ) = L f(t− τ).
Let fi(ϕ), for −τ ≤ ϕ ≤ 0 define the "initial condition" (which is a function of delay). The

solution is given by the nonlinear solution operator T (t):

ft(ϕ) = (T (t)F )(ϕ), −τ ≤ ϕ ≤ 0. (X.5)

The uniqueness is given by the fact that T has properties of a semi-group

T (t+ δ) = T (t)T (δ) t, δ ≥ 0, T (0) = I (X.6)
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Thus, we can rewrite

∂

∂t
ft(ϕ) = (A ft)(ϕ), −τ ≤ ϕ ≤ 0 (X.7)

where A is the infinitesimal generator of the operator T which correspond to

(A ft)(ϕ) = lim
ε→0

1

ε
[(T (ε)ft)(ϕ)− ft(ϕ)] . (X.8)

Thus, we deduce 1 that

(A ft)(ϕ) =





d

dϕ
ft(ϕ), −τ ≤ ϕ ≤ 0,

M [ft], ϕ = 0.
(X.9)

We split linear and nonlinear part to write

(A ft)(ϕ) = (Dft + F [ft])(ϕ) =





d

dϕ
ft(ϕ)

L ft(ϕ)
+

{
0, −τ ≤ ϕ < 0

N [ft], ϕ = 0.
(X.10)

The expression of the operator for nonzero delay is the translation of the function to its previous
times. We will also need to decompose the linear operator in two parts L = L + R, one that
does not contain any delay L term and one with all delayed terms R.

1.2 Dual space

In the space Bτ there is no canonical inner product. However, in 1963 J.K. Hale [Hal63]
managed to define a bilinear form acting as the inner product on this space. The method to
define it is generic for functional space with no natural inner product (some further motivations
are given in Section 1.3 of [Gao13]). In our problem with a discrete delay the scalar product is

(gt, ft)τ = (g∗t (0), ft(0)) +

∫ 0

−τ
(g∗t (ξ + τ)Rft(ξ)) dξ (X.11)

where (g, f) denotes the usual scalar product on B (position and velocity).
The additional terms contains the delay, this integral term often appears in the context of

boundary problems (here the boundary is the time). The adjoint operator is then

(D†gt)(ϑ) =




− d

dϑ
gt(ϑ), 0 < ϑ ≤ τ

L †gt(ϑ), ϑ = 0.
(X.12)

The minus sign represents the fact that in the adjoint space the variable delay evolves in the
positive sense 0→ τ ("future").

1. (T (ε)ft)(ϕ)− ft(ϕ) = (ft)(ϕ+ ε)− ft(ϕ)
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1.3 Eigenvalue problem

With this new formalism, it rather clear how to solve the eigenvalue problem, indeed we still
look for unstable eigenmodes as

Dp(ϕ) = λp(ϕ) (X.13a)

D†q(ϑ) = λ∗q(ϑ). (X.13b)

For ϑ and ϕ 6= 0 the delay dependence is easily extracted to be as

p = p(0)eλϕ = Ψeλϕ (X.14a)

q = q(0)e−λ
∗ϑ = Ψ̃e−λ

∗ϑ. (X.14b)

From the ϕ = 0 equation we get

(
λI −L (eλ·I)

)
Ψ =

(
λI −

∫ 0

−τ
dη(ϕ)eλϕI

)
Ψ = 0 (X.15)

where I denotes the identity (we have the same type of equation for the adjoint). Calling

∆(λ) = λI −
∫ 0

−τ
dη(ϕ)eλϕI (X.16)

we have the dispersion relation as Λ(λ) = det ∆(λ). We want as usual the normalization
(q, p)τ = 1.

(q, p)τ =
(

Ψ̃,Ψ
)
−
∫ 0

−τ

∫ ϕ

0

e−λ(ξ−ϕ)+λξ
(

Ψ̃, dη(ϕ)Ψ
)

dξ =

(
Ψ̃,

(
I −

∫ 0

−τ
ϕeλϕdη(ϕ)

)
Ψ

)

=
(

Ψ̃,∆′(λ)Ψ
)

= 1.

(X.17)

The derivative of the dispersion relation appeared naturally during the computation. When
∆ is a diagonal operator of scalar equation the 1/Λ′(λ) is the appropriate normalization. It
should prove in a generic fashion, what we have so far always observed Eq. (V.24),Eq. (VI.44),
Eq. (VII.22), Eq. (VIII.12b), Eq. (IX.12), that is that the normalization factor of the adjoint
eigenvector is proportional to 1/Λ′(λ). In particular it shows that if Λ′(iλi) = 0 (like in non-
homogeneous Vlasov case with λi = 0) the projection on the adjoint space is singular. Note
that the validity of this formal result and its exact formulation is still a bit unclear.

2 OTT-ANTONSEN ANSATZ WITH DELAY

In this Section, we use the OA ansatz to first reduce the system to an ordinary differential
equation with delay. This o.d.e with delay has only one mode thus it is direct to use an unstable
manifold reduction with the previous formalism to describe the onset of synchronization.
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2.1 Settings

The delayed model introduced in [YS99] for the first order Kuramoto model (with a frustra-
tion parameter) is

θ̇i(t) = ωi +
K

N

N∑

j=1

sin(θj(t− τ)− θi(t)− α), (X.18)

where the delay τ represents the time for one oscillator i to "see" the others. The associated
Kuramoto equation is for the evolution of the density f(θ, ω, t),

∂tF (t) + ω∂θF (t) +
K

2i
∂θ
((
r1[F ](t− τ)e−iθ−iα − r−1[F ](t− τ)eiθ+iα

)
F (t)

)
= 0. (X.19)

Remark X.1
Thanks to the very generic formalism Eq. (X.4) of delay theory, we could study more complex
delay terms. For example, a continuous delay as

lim
T→∞

1

T

∫ 0

−T
θj(t+ ϕ) dη(ϕ)

for some measure dη(τ).

2.2 Ott-Antonsen ansatz

As already observed in their original paper [OA08], the Ott-Antonsen ansatz works in the
delayed case. For a Lorentzian distribution

gL(ω) =
σ

π

1

(ω − ω0)2 + σ2
(X.20)

centered in ω0. The OA ansatz gives for the order parameter

ṙ(t) =
K

2
e−iω0τ+iαr(t− τ)− σr(t)− K

2
eiω0τ−iαr∗(t− τ)(r(t))2. (X.21)

The delay ordinary differential equation is simpler than the kinetic equation Eq. (X.19), but still
infinite dimensional, because the "initial condition" is a function of delay (and not a finite set
of values). The reduction Eq. (X.21) is global in the sense that is describe the system for any
r, however the possible bifurcations are not immediately deduced from the sign of the cubic
coefficient because of the delay that may induce changes. Hence, we want to put Eq. (X.21) in a
"normal form" 2, that is the "simplest" equivalent form of a dynamical equation close to a given
bifurcation point, see [Mur06, HI10]. Therefore, this will reduce the dimension of the system
close to the bifurcation (loosing information on the global system).

2. Strictly speaking the final equation will be the true normal form up to a rescaling.
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2.3 Unstable manifold calculation

2.3.a Linear part

We start with
ṙ = L rt + N [rt] (X.22)

Following the steps of analysis previously stated we define

(Drt)(ϕ) =





d

dϕ
rt(ϕ) − τ ≤ ϕ < 0

L rt(ϕ) = Lrt(0) +Rrt(−τ) ϕ = 0
(X.23)

and

(F [rt])(ϕ) =

{
0 − τ ≤ ϕ < 0

N [rt] ϕ = 0
(X.24)

and the adjoint linear operator

(D†st)(ϑ) =




− d

dϑ
st(ϑ) 0 < ϑ ≤ τ

L †st(ϕ) = L†st(0) +R†st(τ) ϑ = 0
(X.25)

with

Lr = −σr, (X.26a)

Rr =
K

2
ei(α−ω0τ)r, (X.26b)

N [rt] = −K
2
e−i(α−ω0τ)rt(−τ)∗rt(0)2. (X.26c)

Let’s now solve the eigenfunction equation

Dp(ϕ) = λp(ϕ) (X.27)

for −τ ≤ ϕ < 0, the solution to Eq. (X.23) gives p = p(0)eλϕ, from the ϕ = 0 term we get the
dispersion relation

Λ(λ) = λ+ σ − K

2
e−λτ+i(α−ω0τ). (X.28)

We can fix the initial condition normalization p(0) = 1. At criticality, we have

Kc

2
cos(α− ω0τ − λiτ) = σ (X.29a)

Kc

2
sin(α− ω0τ − λiτ) = λi. (X.29b)

For K > Kc we could show that only one complex mode (and its conjugate) goes unstable. All
other mode will have a negative real part.

Remark X.2
This time the o.d.e. Eq. (X.21) is really simple compared to a kinetic equation. For example,
we can see from Eq. (X.28) that there is no continuous spectrum. Thus, we do not expect the
unstable manifold expansion to be plagued by singular effects coefficients. Moreover, since
there is only one unstable mode (and its conjugate) for small K−Kc the unstable manifold will
be attractive [Mur06, GW13, HL93] (thus the local reduction rigorous).
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2.3.b Adjoint problem

From the adjoint problem we get of course the same dispersion relation and an eigenvector
associated with λ∗ of the form q(ϑ) = q(0)e−λ

∗ϑ. The normalization for q is chosen such that
(q, p)τ = 1, with the expression of the inner product we easily get that

q∗(0) =
1

Λ′(λ)
=

1

1 + τ K
2
e−(λ+iω0)+iα

. (X.30)

2.3.c Nonlinear part

We now seek to expand the dynamic around r = 0 when the asynchronous state is unstable
K −Kc > 0. The unstable manifold expansion is

rt(ϕ) = A(t)p(ϕ) + wt(ϕ) (X.31)

where A(t) = (q, rt)τ and 0 = (q, wt)τ . The time evolution is

Ȧ = λA+ (q,F [rt])τ = λA+ q∗(0) N [rt]. (X.32)

Since we require wt = O(A2), the nonlinear term is of order three, we don’t even have to
compute the first order of wt,

N [Ap] = −K
2
ei(ω0τ−α)p∗(−τ)p(0)2|A|2A

is enough. We get eventually the normal form of the delayed problem

Ȧ = λA− K

2

e(iω0−λ∗)τ−iα

1 + τ K
2
e−(iω0+λ)τ+iα

|A|2A+ O
(
|A|4A

)
. (X.33a)

The relevant parameter to study the bifurcation type is given by the sign of the cubic term in the
limit λr → 0,

Re c3 = −Kc

2
Re

(
ei(ω0+λi−α)τ

1 + τ Kc
2
e−i(ω0+λi−α)τ

)
. (X.33b)

This result will be analyzed later Section X.3.5.b.

3 STANDARD KURAMOTO MODEL WITH DELAY

In this Section, the idea and method are exactly the same as before except that we work
directly on the delay kinetic system (and not on the OA ansatz). The result obtained for generic
g distribution will be compared in the Lorentzian gL case with the previous result Eq. (X.33).
Also, as in the Kuramoto case we will observe that the unstable manifold structure at first order
is the same as for the OA ansatz for generic distribution g.
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3.1 Setting

Let’s g(ω) be a symmetric distribution centered in ω0. By a change of variable ω → ω− ω0,
θ → θ−ω0τ we now study a symmetric 0-centered distribution with phase lag ω0τ (in addition
to the phase lag α). For a perturbation of the incoherent initial state, F = g(ω)/(2π) + f

∂tf = L f + N [f ]. (X.34)

Following the steps of the previous analysis

(Dft)(ϕ) =





d

dϕ
ft(ϕ) − τ ≤ ϕ < 0

L ft(ϕ) = Lft(0) +Rft(−τ) ϕ = 0
(X.35)

and

(F [ft])(ϕ) =

{
0 − τ ≤ ϕ < 0

N [ft] ϕ = 0
(X.36)

and the adjoint linear operator

(D†gt)(ϑ) =




− d

dϑ
gt(ϑ) 0 < ϑ ≤ τ

L †gt(ϕ) = L†gt(0) +R†gt(τ) ϑ = 0
(X.37)

with

Lf = −ω∂θf, (X.38a)

Rf = −K
2i

g(ω)

2π
∂θ
(
r1[f ]e−iθ−i(α−ω0τ) − r−1[f ]eiθ+i(α−ω0τ)

)
, (X.38b)

N [ft] = −K
2i
∂θ
((
r1[ft](−τ)e−iθ−i(α−ω0τ) − r−1[ft](−τ)eiθ+i(α−ω0τ)

)
ft(0)

)
. (X.38c)

3.2 Eigenvalue problem

Let’s now solve the eigenfunction equation

Dp(ϕ) = λp(ϕ) (X.39)

for −τ ≤ ϕ < 0, the solution of Eq. (X.35) gives p = Ψeλϕ. The ϕ = 0 equation gives

Ψ(θ, ω) = ψ(ω)eiθ =
K

2
e−λτ+i(α−ω0τ) g(ω)

λ+ iω
eiθ. (X.40)

We choose to normalize such that r1[Ψ] = 2π, this yield the dispersion relation

Λ(λ) = 1− K

2
e−λτ+i(α−ω0τ)

∫
g(ω)

λ+ iω
dω. (X.41)

Here we have computed the eigenvector p and associated eigenvalue λ associated with the k = 1
spatial mode, by the exact same procedure we can show that p∗ is an eigenvector associated with
the eigenvalue λ∗. The eigenvalues λ, λ∗ are both associated with a eigenspace of dimension
one because the reflexion symmetry O(2) is broken thanks to the phase lag α− ω0τ .
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3.3 Adjoint problem

By adjoint computations we get

q(ϑ) = Ψ̃(θ, ω)e−λ
∗ϑ = ψ̃(ω)

eiθ

2π
e−λ

∗ϑ =
1

(Λ′(λ))∗
1

λ∗ − iω
eiθ

2π
e−λ

∗ϑ (X.42)

where we have chosen the normalization factor so that (q, p)τ = 1. As expected from the
general relation Eq. (X.17), the function Λ′(λ) appears, even though the scalar product choice
was non-intuitive.

3.4 Unstable manifold calculation

We now decompose the perturbed solution ft along the two unstable eigenvectors and the
unstable manifold

ft(ϕ) = A(t)p(ϕ) + A∗(t)p∗(ϕ) + wt(ϕ) (X.43)

with A(t) = (q, ft)τ , (q, p∗)τ = 0 and (q, wt)τ = 0. The time evolution equation is hence
rewritten as

Ȧp+ c.c.+ ẇt = ADp+ c.c.+ Dwt + F [ft]. (X.44)

After projections, it reads:

Ȧ = λA+ (q,F [ft])τ = λA+ (q(0),N [ft]) = λA+
〈
ψ̃,N 1[ft]

〉
(X.45a)

ẇt = Dwt + F [wt]−
〈
ψ̃,N 1[ft]

〉
p−

〈
ψ̃∗,N 1[ft]

〉
p∗. (X.45b)

The 0th Fourier mode is zero as in the standard Kuramoto case, so only the second harmonic
term (wt)2 will contribute to the cubic coefficient. The Fourier terms of the nonlinear operator
is

N 1[ft] = −A|A|2K
2
r1[p∗](−τ)e−i(α−ω0τ)(wt)2,0(0) + O

(
A|A|4

)
(X.46a)

N 2[ft] = A2Kr−1[p](−τ)ei(α−ω0τ)p(0) + O
(
A2|A|2

)
(X.46b)

where we can obtain at first order

(wt)2,0(ϕ) = h2,0e
2λϕ (X.47a)

(ht)2,0 =
πK2

2

g(ω)

(λ+ iω)2
e2i(α−ω0τ)e−2λτ . (X.47b)

In this computation with time derivative one should not get confused by the presence of a delay
variable that is considered separately. The delay dependence is obtained again through equation
Eq. (X.35) for nonzero delay.
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The cubic coefficient is then obtained thanks to Eq. (X.45a) and Eq. (X.46a)

c3 = −π
2K3

2

e−2λτ−λ∗τ+i(α−ω0τ)

Λ′(λ)

∫
g(ω)

(λ+ iω)3
dω

= −π2K2e−2λrτ

∫ g(ω)

(λ+ iω)3

∫ g(ω)

(λ+ iω)2
+ τ

∫ g(ω)

(λ+ iω)

c3 = −π2K2e−2λrτ

∫ g(ω)

(λ+ iω)3

∫ g(ω)

(λ+ iω)2
+ τ

2

K
eλτ−i(α−ω0τ)

(X.48)

where we have used that λ is an eigenvalue of the dispersion relation to obtain the last line. This
yields the main result of this Section. The sign of Re c3 in the λr → 0 limit gives the nature of
the bifurcation. The delay adds an oscillating term in the coefficient c3, in addition to modifying
the eigenvalue. For a fixed ω0 and varying delay τ one can plot the sign of c3 computing at the
criticality K = Kc(τ) and λ = λ(τ), see Figure X.1.

Remark X.3
As in the standard Kuramoto case no divergence appears within the unstable manifold approach
thus the one dimensional local reduction should be rigorous. Once again, we link this success
with the fact that we have despite the delay a constant zeroth harmonic f0 (N 0 = L 0 = 0) and
no coupling between positive fk>0 and negative modes fk<0, see Section VIII.5.4. Moreover,
the unstable manifold lies at its first order on the OA manifold as in the standard Kuramoto case
(see Section VIII.5.2). Indeed, its coefficients have the OA ansatz form: (wt)k,0 = βkt for some
βt.

3.5 Application

3.5.a Centered distribution ω0 = 0

Can a delay affect the bifurcation of symmetric centered distribution g with no frustration
parameter? Letting λr → 0 in Eq. (X.48) and Eq. (X.41) we get that with α, ω0 = 0, λi = 0 and
Kc = (Kc)Kuramoto

c3 =
π3K2

c

2

g′′(0)

−PV
∫

(g′(ω)/ω) + 2τ/Kc

. (X.49)

Therefore, for a unimodal function we see that the sign of the coefficient is unchanged compared
to the standard Kuramoto case since both denominator terms are positive. If g(ω) is for example
bimodal with real eigenvalue the sign of the denominator is unchanged (see Appendix D.3).
Remember that the case of a symmetric distribution with complex eigenvalue is possible but
requires a four-dimensional unstable manifold that this result does not cover. In conclusion for
"standard" (at least unimodal and bimodal where we could prove the sign of the denominator)
distribution with real eigenvalue, delay does not affect the nature of the bifurcation nor the
critical coupling.
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3.5.b Lorentzian distribution

For a Lorentzian gL(ω) =
σ

π
(ω2 + σ2)−1 the integral in Eq. (X.48) are easy to compute with

∫
gL(ω)

(λ+ iω)n
= (λ+ σ)−n

and so is the dispersion relation, that gives the same expression as in the OA case Eq. (X.28).
The cubic coefficient is then

(cL)3 = −(2π)2K

2

e−λ
∗τe−i(α−ω0τ)

1 + τ K
2
e−λτ+i(α−ω0τ)

(X.50)

which is the exact same coefficient (up to the change r ∼ 2πA) as with the OA ansatz Eq. (X.33a)
which confirms both results.

A direct application is to recover the numerical observation of [YS99] Figure 4 which pre-
dicts for a Lorentzian (with σ = 0.1 and ω0 = 3) the critical coupling constant line with respect
to delay Kc(τ). Moreover, in this article simulations were performed for τ = 1 and 2 and show
respectively a subcritical and supercritical bifurcation. These observations agree fully with Fig-
ure X.1; our plot of Re c3 is indeed positive for τ = 1 and negative for τ = 2. Furthermore,
thanks to this theoretical expression Eq. (X.48) we can do simple predictions. As observed
in [YS99] for Lorentzian Eq. (X.20)

— Kc is minimum for every ω0τ = 2nπ with associated Kc = 2σ and λi = 0. Thus, in
these points

Re c3 = − 1

1 + στ
< 0.

— Kc is a local maximum for ω0τ = (2n+ 1)π.
It is possible to show 3 with Eq. (X.41) that for τ → ∞, λiτ → π− and Kc → 2σ. So above
some critical delay τc, we always have Re c3 < 0.

Hence we have given for the first time (to my knowledge) a theoretical support for the nu-
merical observations of [YS99]. Moreover, we could predict that for large delay the bifurcation
is always supercritical. Of course, this demonstration holds only for Lorentzian distribution
Eq. (X.20) but thanks to our generic results Eq. (X.41), Eq. (X.48) one could also study other
distributions g(ω).

4 KURAMOTO MODEL WITH INERTIA AND DELAY

As we have motivated in the introduction, in some electric systems (like power grid or neural
systems) delay could play a non-negligible part. Some of those system requires a second order
description including an inertial dynamics. It is thus natural (now that we have all the tools) to
study the Kuramoto model with inertia. The method is very similar to the previous Section and
the Chapter IX on inertia so we will jump some identical steps.

3. Doing the demonstration for the local maximum ω0τ = (2n+ 1)π.
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τ

Kc
4Re c3

Figure X.1 – Stability region of the incoherent state for Lorentzian gL(ω) = Eq. (X.20) with σ =
0.1 and ω0 = 3. The solid line shows the critical lineKc(τ) (forK > Kc the system is unstable).
The red dashed line shows the associated 4 Re c3 at criticality (it has been multiplied by four to
be visible). Its sign determines the super/sub-critical nature of the bifurcation. Vertical dotted
lines τ = 1 and 2 show where the bifurcation simulations were performed in Figure 4 of [YS99].

4.1 Settings

The microscopic model is

θ̇i(t) = vi(t) (X.51a)

mv̇i(t) = (ωi − vi(t)) +
K

N

N∑

j=1

sin(θj(t− τ)− θi(t)− α). (X.51b)

While the kinetic equation (in rescaled parameters) for the phase space density F (θ, v, ω, t) is

∂tF (t) + v∂θF (t) +
K

2im

(
r1[F ](t− τ)e−i(θ+α) − r−1[F ](t− τ)ei(θ+α)

)
∂vF (t)

− 1

m
∂v ((v − ω)F (t)) = 0,

(X.52)

where we have only written the time dependence, the order parameter definition is unchanged
Eq. (VIII.9b). The incoherent stationary solution is still F (θ, v, ω, t) = f 0(v, ω) = g(ω)δ(v −
ω)/(2π). We write Eq.Eq. (X.52) as a sum of a linear and a nonlinear part, with F = f 0 + f :

dft
∂t

= Dft + F [ft], (X.53)
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with the delay operators D, F and the adjoint D† defined as in Eq. (X.35) and Eq. (X.37) with

Lf = −v∂θ +
1

m
∂v ((v − ω)f) , (X.54a)

Rf = − K

2im

(
r1[f ]e−iθe−i(α−ω0τ) − r−1[f ]eiθei(α−ω0τ)

)
∂vf

0, (X.54b)

N [ft] = − K

2im

(
r1[ft](−τ)e−iθe−iα − r−1[ft](−τ)eiθeiα

)
∂vf(0). (X.54c)

4.2 Eigenvalue problem

Similarly the eigenvalue problem
Dp = λp (X.55)

is straightforward, with p(ϕ) = Ψeλϕ = ψeiθeλϕ. For ϕ = 0, looking for a solution in the form

ψ = U0(ω)δ(v − ω) + U1(ω)δ′(v − ω) (X.56)

and imposing the normalization
∫
ψ dv dω = 1, one finds

U0 =
K

2m
ei(α−ω0τ)e−λτ

g(ω)

(λ+ iω)(λ+ 1/m+ iω)
(X.57)

U1 =
K

2im
ei(α−ω0τ)e−λτ

g(ω)

λ+ 1/m+ iω
. (X.58)

Expliciting the normalization condition yields the dispersion relation:

Λ(λ) = 1− K

2m
ei(α−ω0τ)e−λτ

∫
g(ω)

(λ+ iω)(λ+ 1/m+ iω)
dω = 0. (X.59)

Hence, if λ is an eigenvalue of D1, λ∗ is an eigenvalue of D−1, as expected from the rotation
symmetry.

We compute the adjoint eigenvector as q(ϑ) = Ψ̃e−λ
∗ϑ = ψ̃

eiθ

2π
e−λ

∗ϑ, through

(λ∗ − iv)ψ̃ +
1

m
(v − ω)∂vψ̃ =

K

2im
e−i(α−ω0τ)e−λ

?τ

∫
g(ω)∂vψ̃(ω, ω) dω. (X.60)

Again the normalization with 1/Λ′(λ) will play an important role. The expression of the
ψ̃(n)(ω, ω) terms is formally the same as in Eq. (IX.13).

4.3 Unstable manifold

The decomposition on the center manifold is again

ft(ϕ) = A(t)p(ϕ) + A∗(t)p∗(ϕ) +H[A,A∗](ϕ) (X.61)

with A(t) = (q, ft), (q, p∗) = 0 and (q,H) = 0 with the same time evolution equations
Eq. (X.45). The dynamical expansion gives

Ȧ = λA+ A|A|2 2πK

2im

(
ei(α−ω0τ)e−λτ 〈ψ̃, ∂vh0,0〉 − e−i(α−ω0τ)e−λ

∗τ 〈ψ̃, ∂vh2,0〉
)

+ O
(
A|A|4

)
.

(X.62)
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The Fourier component of the unstable manifold can be computed as before for ϕ 6= 0
(wt)0,0(ϕ) = h0,0e

2λrϕ, (wt)2,0(ϕ) = h2,0e
2λϕ and with the "boundary condition" ϕ = 0

(2λr −L 0) · h0,0 = i
2πK

2m
e−i(α−ω0τ)e−λ

∗τ∂vψ + c.c. (X.63)

(2λ−L 2) · h2,0 = −i2πK
2m

ei(α−ω0τ)e−λτ∂vψ. (X.64)

4.3.a Computation of h0,0

We start from Eq. (X.63). We have h0,0 = h+ c.c., where h is the solution of

(2λr −L 0) · h = i
2πK

2m
e−i(α−ω0τ)e−λ

∗τ∂vψ. (X.65)

Eq. (X.65) reads

2λrh0,0 −
1

m
∂v[(v − ω)h0,0] =

2πK2

4im2
e−2λrτ

(
gδ′(v − ω)

(λ∗ − iω)(λ∗ − iω + 1/m)
+ i

gδ′′(v − ω)

(λ∗ − iω + 1/m)

)
.

(X.66)

We introduce the ansatz:

h = W0(ω)δ(v − ω) +W1(ω)δ′(v − ω) +W2(ω)δ′′(v − ω).

to get

W0(ω) = 0 (X.67)

W1(ω) =
2iπ(K/2m)2e−2λrτg(ω)

(2λr + 1/m)(λ+ iω)(λ+ 1/m+ iω)
(X.68)

W2(ω) =
2π(K/2m)2e−2λrτg(ω)

2(λr + 1/m)(λ+ 1/m+ iω)
. (X.69)

4.3.b Computation of h2,0

A similar computation starting from Eq. (X.64) yields h2,0. We have to solve

(2λ−L 2) · h2,0 = −i2πK
2m

ei(α−ω0τ)e−λτ∂vψ. (X.70)

Using the ansatz
h2,0 = X0δ(v − ω) +X1δ

′(v − ω) +X2δ
′′(v − ω),

we obtain

X0(ω) =
iX1(ω)

(λ+ iω)

X1(ω) =
−i(2πKei(α−ω0τ)e−λτ/2m)U0(ω)

(2λ+ 2iω + 1/m)
+

4iX2(ω)

(2λ+ 2iω + 1/m)

X2(ω) =
−i(2πKei(α−ω0τ)e−λτ/2m)U1(ω)

2(λ+ iω + 1/m)
.
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4.3.c Putting everything together

As in IX.3.3 one can insure that the only diverging term will comes from
∫
ψ̃(2)∗W ∗

1 ; thus

the leading term is
∫
ψ̃(2)∗W ∗

1 dω ∼ iπ
K2

m2

e−2λrτ

(1/m)4

1

Λ′(iλi)

π

2

g(−λi)
λr

, (X.71)

We conclude that the leading behavior of c3 for m > 0 is given by:

c3 ∼
π3

2
mK3 e

i(α−(ω0+λi)τ)

Λ′(iλi)

g(−λi)
λr

. (X.72)

In particular, the sign of s(τ) = Re

(
ei(α−(ω0+λi)τ)

Λ′(iλi)

)
determines the type (sub- or super-critical)

of the bifurcation.

Remark X.4
As we have seen the second order Kuramoto model links the Vlasov-HMF model with the
standard Kuramoto model. Thus, here without really paying attention we have also studied the
delayed Vlasov-HMF model (one should take the frictionless limit as shown in D.1.2 for the
non-delay equation). In this limit, we also expect the delay to change periodically the super/sub-
critical nature of the bifurcation.

0 2 4 6 8 10
-6

-4

-2

0

2

4

τ

Kc, m = 0.1

Re c3, m = 0.1

Kc, m = 3

Re c3, m = 3

Figure X.2 – Stability region of the incoherent state for Lorentzian gL(ω) = Eq. (X.20) with
σ = 0.1 and ω0 = 3. We show theKc(τ) and Re c3(τ) form = 0.1 and 3. The signs of Re c3(τ)
determines the super/sub-critical nature of the bifurcation.
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4.4 Application to a Lorentzian distribution

To get some insight of what is the effect of inertia in a delay system we once again do a
Lorentzian application. The dispersion relation gives Eq. (X.59) at criticality

Kc

2
=
(
σ +mσ2 −mλ2

i

)
csc((ω0 + λi)τ) (X.73a)

λi(1 + 2σm)

σ +mσ2 −mλ2
i

= − tan((ω0 + λi)τ). (X.73b)

A full demonstration on the behavior of Kc(τ) and λi(τ) is more tedious than in the stan-
dard Kuramoto case but is in principle doable. The sign of the cubic coefficient is given for a
Lorentzian by

s(τ) = Re

(
(σ + iλi)

2(1 +m(σ + iλi))
2

m(1 + (σ + iλi)(τ +m(iλiτ + στ + 2)))

)
. (X.74)

We plot on Figure X.2 Kc and Re c3 with respect to the delay for two different inertia m = 0.1
and 3 for the same Lorentzian distribution than in Figure X.1. As before we see that the inertia
makes Re c3 positive when there is no delay τ = 0. Moreover, as before the delay induces some
"oscillations" in the sign of Re c3. Therefore, we predict that systems with inertia and a delay
τ ∼ 1 display a supercritical bifurcation toward synchronization. Moreover at large τ it seems
clear that Kc(τ)

τ→∞−→ Kc(0) and Re c3(τ)
τ→∞−→ Re c3(0) > 0.
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CHAPTER XI

REMARKS, CONJECTURES,
CONCLUSION & PERSPECTIVES

To conclude Part Two, we dedicate this Chapter to a summary of the results obtained with
the various bifurcation analyses we performed.

We have studied multiple collisionless kinetics equations accounting for different physical
situations. Each time, the goal was to describe the dynamics of these equations (of infinite
dimension) close to unstable steady state. We wanted to obtain a dimensional reduction of the
problem to get a simple description of the bifurcation. This dimensional reduction often yields
a one-dimensional (or two-dimensional if the order parameter is complex) regular differential
equation.

Each system had its own difficulties inherent with its physical specificities. Nevertheless,
in each situation we managed to perform the Unstable Manifold expansion: we provided the
expression of the cubic coefficient (or quadratic for the Vlasov non homogeneous case) and thus
the qualitative nature of the bifurcation. Every numerical test done was fully supporting of our
analytical findings (scaling, nature of the bifurcation, parameters dependence). Thus, despite
the singular nature of the unstable manifold reduction when neutral modes (or a continuum of
neutral modes) are present, it made every time right predictions. Its general formalism makes
it suitable for very generic problems (delay, dissipation/friction, ...). Our results should then
establish further the singular expansions a la Crawford as a method of choice to understand the
qualitative behavior of collisionless models.
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Difficulties and Specificities

— Vlasov around non homogeneous state (VNH) with non oscillating perturbation λ ∈ R:
Technically We need the angle-action variables to deal with the linear problem. Com-

putation of the Fourier coefficients of the HMF potential in angle-action variable.
Numerically The GPU semi-Lagrangian HMF-Vlasov solver was generously provided

by T. R. Filho [RF13]. Small modifications were necessary to handle the initial con-
ditions and the output data. Our study required careful choices of parameters (grid
size and maximum velocity pmax) close to the bifurcations. The other numerical
work hidden in this manuscript is related to the precise evaluation of the theoretical
expressions e.g. roots of the dispersion relation for the eigenvalue λ, determination of
the equilibrium parameters (M0, µ0), angle-action functions (Ω(J),cm(J), ...), Triple
Zero coefficients, ... This was whole done using the software Mathematica [Inc].

Physically Weaker resonances that allow a three-dimensional reduction of the bifurca-
tion, reproducing well the simulations. This reduction could be very generic.

— Vlasov-Fokker-Planck (VFP):
Technically Velocity Fourier description of the problem, asymptotic behavior of inte-

grals with special functions.
Physically Interplay between two small parameters leading to different types of critical

layer dominating in different regimes at the bifurcation.
— Kuramoto with inertia (KuI):

Technically Three variables (θ, v, ω); the eigenvalue problem is solved with distribu-
tions.

Numerically The GPU codes used for the numerical part were developed during the
thesis using standard schemes [GCR14]. We also evaluated via Mathematica [Inc],
all the wanted quantities e.g. Kc, c3(α), ...

Physically Singular contributions controlling the bifurcation nature even for small iner-
tia.

— Kuramoto with delay (KuD) with and without inertia:
Technically Functional differential equations.
Physically Delay does not bring any singularities but it changes the sub/super-critical

nature of the bifurcation periodically up to some critical delay.
We summarize further the main characteristic of each case treated in Table XI.1.
— The symbol ♠ stands for cases treated originally by J.D. Crawford.
— H means Hamiltonian system.
— k ≶ 0 means presence of nonlinear mixing of positive and negative Fourier modes.
— CS means continuous spectrum.
— H.O.T. stands for the higher order terms.
— Reduction asks if a dimensional reduction was found. It is not definitive, it only specifies

the current state of the art.
So far only four of these systems have (or are believed to have) exhibited a dimensional reduc-
tion. The first one is the standard Kuramoto model where a global reduction (valid for any order
parameter) of the dynamics is achievable thanks to the Ott-Antonsen (OA) ansatz. Moreover
for this systems strong mathematical results were obtained. The second system is the Kuramoto
with delay model where the OA ansatz yields an infinite dimensional delayed ordinary differ-
ential equation. This latter equation can be studied locally via standard bifurcation techniques
(e.g. center manifold for delayed equations). The third system is the VNH model with λ ∈ R
(non oscillating perturbation) where a three-dimensional reduction through the Triple Zero nor-
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mal form was done. In this case we believe that weak resonance effect could allow a rigorous
regular reduction using the center manifold method. The fourth model where dimensional re-
duction is expected is the Vlasov-Fokker-Planck system with "large" friction (λ � γ1/3). This
is quite standard for dissipative systems. Numerical test would probably help to better under-
stand the interplay between the friction γ and instability rate λ.

What makes these cases (Ku, KuD, VNH) so unique? Remember that at the linear level all
the eight cases display more or less the same characteristics with the Landau damping (through
phase mixing in velocity) while differences emerge at the nonlinear level. For the standard and
delay Kuramoto model it seems that the non mixing of Fourier modes is the biggest difference,
while for VNH the weak resonance of particles around the separatrix with the unstable wave
is the key ingredient. Could these two phenomena be somehow related? In the Kuramoto case
there seems to be strong resonances but since there is no real velocity variable ("overdamped
oscillators" with their own natural frequency), it is difficult to be definitive. In the VNH case
there is mixing between negative and positive Fourier modes, nevertheless terms that usually
produce pinching singularities due to this mixing are strongly attenuated.

How are the resonances linked with the mixing of Fourier modes?

H? k ≶ 0 CS Λ′(0+) ck H.O.T. Reduction

♠ VH Yes Yes Yes 6= 0 c3 ∼ λ−3 = No

VNH Yes Yes
Yes

depends on
Vint,f

0

+weak
resonances

0 c2 ∝ λ−1 = Yes?
TZ?

VFP No Yes No 6= 0 c3 ∝





i) λ−3

ii) λγ−4/3

iii) O (1)





= ?

� ?

� ?





No?

Yes?
Yes?

♠ Ku No No Yes 6= 0 c3 ∝ O (1) � Yes
O.A. ansatz
Math results

♠ Ku2nd No Yes Yes 6= 0 c3 ∝ λ−1 = No

KuI No Yes Yes
split 6= 0 c3 ∝ λ−1 = ? No

KuD No Yes Yes 6= 0 c3 ∝ O (1) � Yes
O.A. ansatz

KuID No Yes Yes
split 6= 0 c3 ∝ λ−1 = ? No

Table XI.1 – Comparison between the various kinetic models studied. VH: Vlasov homoge-
neous; VNH: Vlasov non homogeneous (with λ ∈ R); VFP: Vlasov-Fokker-Planck; Ku: Stan-
dard Kuramoto; Ku2nd: Kuramoto-Daido; KuI: Kuramoto with inertia; KuD: Kuramoto with
delay; KuID: Kuramoto with inertia and delay; TZ: Triple Zero.
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CHAPTER XI. REMARKS, CONJECTURES, CONCLUSION & PERSPECTIVES

1 CONJECTURES

Since many directions have been evoked to understand the possibility of a dimensional re-
duction we listed ideas and conjectures on the topic.

Conjecture XI.1
If the unstable manifold approach can be performed without singular coefficients, then the bi-
furcation description is exact close to the criticality.

A stronger version that could be applied to the VFP system.

Conjecture XI.2
When the bifurcation is supercritical and higher order terms of the unstable manifold are negli-
gible at the saturation level, then the reduction can be made exact close the criticality.

As we have seen we know that the opposite implication is false: indeed if the expansion has
the same order coefficient it does not mean that there are no possibilities to obtain a dimen-
sional reduction. For example, in the finite dimensional case Section IV.1, the one dimensional
unstable manifold was singular while a two-dimensional model (in this case the full model) was
not. Moreover, it seems that the same thing happens with VNH where the unstable manifold is
singular and a three-dimensional description is not.

Is there any case where the unstable manifold expansion fails? Why does it has always
provided (so far) the right scaling and bifurcation nature via the c3 sign, with the right param-
eters dependence (as tested for example in KuI and KuD by varying the frustration or delay
parameter)? Is there a way to show mathematically that this is true? We can risk the following
conjecture:

Conjecture XI.3
The unstable manifold always yields the right sub/super-critical behavior of the bifurcation. In
the supercritical case, it also provides the right saturation scaling.

Continuous Spectrum

The continuous spectrum (CS) and in general the infinite dimensional structure of neutral
modes in these kinetic equations were being pointed as necessarily responsible of singularities
in the unstable manifold expansion. Additionally, dimensional reduction looked hopeless with
this structure, though we saw in the standard Kuramoto model and up to a certain extent in the
VNH model (with λ real) that this was in general false.

However even if the CS does not necessary imply singular coefficients with respect to λ we
might conjecture that:

Conjecture XI.4
To get a singular unstable manifold expansion, one needs a slow manifold of dimension strictly
larger than the unstable manifold. This slow manifold is associated with eigenvalues νk (or a
continuum of neutral modes) that are of the same order (or smaller) than the unstable mode
0 ≤ |Re νk| . Reλ.
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Since the unstable manifold close to the criticality is always included in the slow manifold, it
follows that as soon as an additional slow mode is added the unstable manifold will be singular.

In the VNH unstable description we also have a non empty slow manifold: in addition to
unstable eigenvalue λ→ 0+ there is the stable one approaching the imaginary axis from the left
−λ→ 0−.

Resonances

Regarding the resonances, we have seen their crucial role in the VNH case: due to very
weak effects the system behaves like a finite dimensional system with a Jordan block. This
phenomenon was translated by

(
Ψ̃λ,Ψλ

)
∝ Λ′(λ)

λ→0−→ 0 (where we explicit the normalization
factor for this scalar product). With strong resonances, the same limit was non zero. In the VNH
case this zero limit required to extend the eigenbasis at criticality from one to three (and not two
because of the additional eigenvalue in 0). For VH the unstable manifold was of dimension two
(due to symmetry) but at criticality it did not turn to four as it is expected for finite dimensional
systems. We can thus try the following conjecture

Conjecture XI.5
If at criticality Λ′(0+ ± λi) = 0 then center manifold expansion can be done thanks to general-
ized eigenvectors and will provide a non singular dimensional reduction of the bifurcation.

This means that such systems could behave as finite dimensional ones, thus implying that
along all the infinite dimensional effects of a Vlasov/Kuramoto like equation, one of the most
essential could be the resonance effect (and removing it would change greatly the bifurcation
dimension).

Nevertheless, does it mean that models with Λ′(0+±λi) 6= 0 cannot be reduced? No, because
in the standard Kuramoto exact reduction exists (Section VIII.3 and VIII.4 or [OA08, CN11,
Die16b]) although Λ′(0+ ± λi) 6= 0. Hence there must be another (related?) mechanism.

Nonlinear spatial Fourier mixing

Conjecture XI.6
In an unstable manifold expansion with neutral modes (or continuum of neutral modes), the
zeroth harmonic always gives the most singular (or equally singular) contribution (except if it
is zero) to the bifurcation equation.

In the Kuramoto standard case there is a constant zeroth harmonic while in Vlasov systems
(and probably in generic Hamiltonian systems) this is not the case.
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Single Wave Model

The Single Wave Model (SWM) [dCN98a, dCN98b, BMT13] is an infinite dimensional
normal form of the VH model. This normal form is shared with many Hamiltonian systems like
Euler 2D and the XY model. The Kuramoto model and its relatives (Ku2nd, KuI, KuD, KuID,
...) are non Hamiltonian, hence this specific SWM will not apply in these cases. Nevertheless,
it is fair, looking at the similarities of these systems, to expect normal forms a la SWM for
Kuramoto like models. A first attempt was made in the standard Kuramoto case in [BS00].

For the KuI model this normal form would, in the Kuramoto limit, reduce to the finite Ott-
Antonsen reduction while in the Vlasov limit it should reduce to the SWM. Similarly, is it
possible to obtain a normal form for the first order Kuramoto model with generic coupling
[Dai92, CD99] (that would also reduce to the OA reduction with one harmonic)?

Another direction concerning this topic: since inviscid fluids and pure Vlasov model share
the same SWM normal form, is it possible that they also share a more general normal form with
dissipation and friction? Indeed, we have seen that the different regimes and scaling predicted
in this work were similar 1 to the ones found for viscous fluid [CS87, CS95, CS96].

2 FURTHER WORK TO DO

As we just saw, while we answered many questions we also raised many others (and set aside
some technical proof). Answering them all would certainly take quite some time. Thus, for now
we will just list the most directly related questions that we hope to answer:

— The Triple Zero reduction of the VNH problem will be explored and tested. We hope
that it will be able to predict the different behaviors observed in Figure VI.5 insets. A
decisive step would be to compute the different coefficients of the normal form for the
G0
µ = Eq. (VI.37b) and F 0

µ = Eq. (VI.37a). Then by plugging them into the normal
form we could check if the behavior is consistent with the numerics. It would certainly
establish further the validity of this reduction.

— What happens when the unstable eigenvalues of the VNH model are complex? We expect
that the resonance phenomenon is important in this case as for VH. Hence what produces
an unstable manifold calculation? Is the center manifold reduction to a normal form
possible? Or will the Single Wave Model be the infinite dimensional normal form of this
bifurcation (like in VH)? Or neither?

— We plan to do some numerical simulation for the Vlasov-Fokker-Planck system to check
the various predicted regimes. We also plan to estimate the higher order terms.

— Does the Kuramoto model with inertia and dissipation displays such interplay between
dissipation and instability?

— For the delayed Kuramoto models I will soon start a collaboration with S. Gupta to
explore further these results (and probably other directions). Moreover, numerics are still
lacking to support fully the preliminary predictions. In the inertialess case we managed
to avoid numerical simulations since we used the ones of [YS99]. However, we predicted
that there exists some critical delay τc for which the bifurcation is always supercritical
(for a Lorentzian). Results on generic distribution should be obtained.

1. The intermediate regime was slightly different but it could be due to the forcing added in the fluid system.
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— Another interesting related problem would be to study the bifurcation in Kuramoto mod-
els around partially synchronized states where the stable case was recently treated in
[DFGV16].
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APPENDIX A

MAGNETO-OPTICAL-TRAP
COLLABORATION

1 STRUCTURE FACTOR AND DIFFRACTED INTENSITY

Dipole equations

In this section, we link the structure factor with an experimental observable, the diffracted
intensity I . Probing the cloud with a laser of wavenumber kL excites atoms so that they emit a
field that we can measure. In linear regime and one dimension [BPK12, RSB+14] (neglecting
the Doppler effect terms), atoms are considered as dipoles. The coupled equations for their
amplitudes βi are

β̇i =

[
−Γd

2
+ iδ

]
βi −

idp
h
Ein(~ri) +

iΓd
2

∑

j 6=i
Vijβj (A.1)

where Vij(t) = c
e−ikL|~ri−~rj |

ωatom|~ri − ~rj|
, Ein is the shape of the monochromatic incident beam (typically

plane or Gaussian wave) of pulsation ωL in direction ~ez, dp is electric dipole matrix element and
Γd is the natural width of the transition. At equilibrium, one get

~β = −idp
}
M−1 ~Ein (A.2)
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with

M =




iδ − Γd
2

. . . iΓd
2
Vij

. . .
iΓd
2
Vij

. . .

iδ − Γd
2




. (A.3)

Off diagonal terms correspond to multiple scattering. The order of magnitude of these effects
are measured by the optical thickness b. In experiments b(δ) ∼ 1 so it is not clear whether the
effects of multiple scattering will be strong or not. In the simulations presented in Chapter II
and III, we are forced to get a very small b ∼ 4 · 10−2 to achieve a cloud with a step like
profile and with small correlations (like the expected experimental regime). Thus, no multiple
scattering effects can be seen. A larger b would require a larger number of particles in the
simulation.

In next Section, we will test on an example with larger b (but a Gaussian like density profile)
the effect of multiple scattering in the diffraction profile.

Scattered intensity

0.01 0.1 1

1

100

ka

S(k)

δ/Γd = ∞
δ/Γd = 0

Figure A.1 – MD simulations of the structure factor S(k), T = 4, ω0 = 10, C = 0.001,
b0 = 0.769.

.

The incident Laser intensity I is scattered in direction ~kf = kL(cosϕk sin θk, sinϕk sin θk, cos θk),
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see Figure II.6. For elastic scattering |~kf | = |~ki| = kL|~ez|), thus we have

I(θk, ϕk) =

∣∣∣∣∣
(

exp
(
−i~kf · ~r1

)
, · · · , exp

(
−i~kf · ~ri

)
, · · · , exp

(
−i~kf · ~rN

))
~β

∣∣∣∣∣

2

, (A.4)

in spherical coordinate.
In Figure A.1 we show two structure factors for the same cloud, one is obtained uniquely via

simple scattering (corresponding to δ/Γd = ∞), and one obtained via multiple scattering (we
choose to be at resonance δ = 0 where multiple scattering effects are the strongest). The optical
thickness at resonance is about the one used in experiment at working regime b = 0.769 ∼
bexp ∼ 1. The difference between the two structure factor is very thin. Thus, since the effects
we seek are much bigger we can only look at the single scattering effects for a first exploration.

2 THEORETICAL DENSITY PROFILE

-0.015 -0.010 -0.005 0.005 0.010 0.015

z (m )

0.2

0.4

0.6

0.8

1.0

ρ ( z )

Figure A.2 – Longitudinal density ρ(z) with λ = 300µm (blue), λ = 1 mm (orange) and
L = 7.36 mm (as in the experiments)

In Section III.2.3.b we have studied an over simplified step function density profile sec-
tion III.2.3.b to get a simple view of the two diffraction regimes Raman-Nath/Bragg. Here we
explicit a more realistic shape (with smooth borders). We used this "realistic" density to obtain
the theoretical curve in Figure III.6 that is consistent with the experimental data.

We choose on the longitudinal direction a symmetrized Fermi function Eq. (A.5). It is a
step profile with a parameter λ controlling the smoothness of the step (λ/L going to 0 gives
a Heaviside profile). In the perpendicular direction, we simply use a Gaussian shape with
waist w. Indeed, in the experiment the probing Laser has a Gaussian shape with a width much
smaller than the cloud (w � L⊥), thus border effects of the real density should be small in this

205 Laboratoire Jean-Alexandre Dieudonné



APPENDIX A. MAGNETO-OPTICAL-TRAP COLLABORATION

perpendicular plane. The mathematical expression of the symmetrized Fermi function is

ρ(z, r⊥, L, λ, w) =
λ

L

sinh
(
L
λ

)

cosh
(
L
λ

)
+ cosh

(
z
λ

) exp

(
−2r2

⊥
w2

)
/
(
πw2

)
(A.5)

Its 3D Fourier transform can be done separately for the Gaussian and the longitudinal parts.
The Fourier transform of the symmetrized Fermi function is provided in [SM97]. The result is

ρ(kz, k⊥) = λ
e−

w2

8
k2
⊥π sin(kzL)

2L sinh(πλkz)
. (A.6)

As an illustration, we plot, Figure A.2, the longitudinal density profiles for experimental
parameters w = 2.2 mm, L = 7.51 mm (L is the radius of the distribution, so the FHWM is a
bit larger than that, here it is around 1 cm like in the experiment). We compare two different
parameter λ that measure the stiffness of the step.
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VLASOV NON HOMOGENEOUS

1 ANGLE ACTION VARIABLES

In this Section, we derive the explicit expression for the Fourier coefficients of the potential
(cos q, sin q). The Fourier coefficients are defined through

cm(k) =
1

2π

∫ π

−π
cos(q(θ, κ))e−imθ, (B.1a)

sm(κ) =
1

2π

∫ π

−π
sin(q(θ, κ))e−imθ. (B.1b)

We can write cos q and sin q explicitly in angle action variables [Oga13]:

cos(q(θ, κ)) =





1− 2κ2sn2

(
2K(κ)

π
θ, κ

)
, κ < 1

1− 2 sn2

(
K(1/κ)

π
θ,

1

κ

)
, κ > 1.

(B.2a)

sin(q(θ, κ)) =





2κ sn

(
2K(κ)

π
θ, κ

)
dn

(
2K(κ)

π
θ, κ

)
, κ < 1

2 sn

(
K(1/κ)

π
θ,

1

κ

)
cn

(
K(1/κ)

π
θ,

1

κ

)
, κ > 1, p > 0

−2 sn

(
K(1/κ)

π
θ,

1

κ

)
cn

(
K(1/κ)

π
θ,

1

κ

)
, κ > 1, p < 0,

(B.2b)

where definition of the complete elliptic integral of the first K(κ) and second kind E(κ) and
the Jacobi elliptic functions sn are given through the incomplete elliptic integral of the first and
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second kind [WW96]

F (φ, κ) =

∫ φ

0

dt√
1− κ2 sin2 t

(B.3a)

K(κ) = F (π/2, κ) (B.3b)
sn (F (φ, κ)) = sinφ (B.3c)

E(φ, κ) =

∫ φ

0

√
1− κ2 sin2 tdt (B.3d)

E(κ) = E(π/2, κ), (B.3e)
(B.3f)

with K(0) = E(0) = 1 and K(1−) diverges. Injecting Eq. (B.2b) in Eq. (B.1b) and using
reference [Mil02] for the Fourier expansion of sn2, sn× cn, sn× dn gives the coefficients. We
find

c0(κ) =





2E(κ)

K(κ)
− 1, κ < 1

2κ2E(1/κ)

K(1/κ)
+ 1− 2κ2, κ > 1

(B.4a)

c2m(κ) =
2π2

K(κ)2

mq(κ)m

1− q(κ)2m
κ < 1 (B.4b)

c2m+1(κ) = 0 κ < 1 (B.4c)

cm(κ) =
2π2κ2

K(1/κ)2

mq(1/κ)m

1− q(1/κ)2m
κ > 1 (B.4d)

and

s0(κ) = 0 (B.5a)
s2m(κ) = 0 κ < 1 (B.5b)

s2m−1(κ) = −i sign(m)
π2

K(κ)2

(2m− 1)q(κ)m−1/2

1 + q(κ)2m−1
κ < 1 (B.5c)

sm(κ) = −i sign(m)
2π2κ2

K(1/κ)2

mq(1/κ)m

1 + q(1/κ)2m
κ > 1, p > 0 (B.5d)

sm(κ) = i sign(m)
2π2κ2

K(1/κ)2

mq(1/κ)m

1 + q(1/κ)2m
κ > 1, p < 0 (B.5e)

where the q−function is defined as

q(κ) = exp
(
−πK(

√
1− κ2)/K(κ)

)
.

These explicit expressions are essential to manipulate the dispersion relation (for its roots or
resonances). For example, thanks to the fast convergence although of the (cm, sm) coefficients,
one can for numerical applications truncate safely and even estimate error. We provide the
expression of Λ(λ) used to compute λ in Figure VI.5,

Λ(λ) = 1 + 4π

(
nM∑

n=1

∫ 1

0

4n2[c2nΩ∂κf̄
0](κ)

λ2 + 4n2Ω(κ)2
+ 2

2nM∑

m=1

∫ ∞

1

m2[cmΩ∂κf̄
0](κ)

λ2 +m2Ω(κ)2

)
, (B.6a)

where typically nM = 9 (nM = 7) for F 0
µ the Fermi distribution Eq. (VI.37a) (G0

µ Eq. (VI.37b))
is enough to compute λ with six-digit accuracy.
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2 COMPUTATIONS AT HIGHER ORDERS

Since the effect of resonant particles was weaker than for homogeneous case (and Landau
damping algebraic for long time), we expected nonlinearities to also be weaker. Are they weak
enough for c3A

3
sat = o(c2A

2
sat)? We explain here how to compute the higher order terms. While

the structure is standard, the effective computations are intricate. The first paragraph is valid for
a general potential, but in order to explicitly work out the order of magnitude of c3, we restrict
to the cosine potential. We then show that c3 ∼ C/λ3, as λ→ 0+.

2.1 Structure of the computation for a general potential

Let us parameterize the unstable manifold of f 0 as

g =
∑

k≥1

HkA
k, H1 = Ψc. (B.7)

Since the nonlinear part N [g] of the Vlasov equation, ∂tg = L g + N [g], is bilinear, we write
it as

N [g] = B(g, g) , with B(g, h) = ∂Jg∂θφ[g]− ∂θg∂Jφ[g].

Recalling that the reduced dynamics on the unstable manifold is

Ȧ =
∑

k≥1

ckA
k, c1 = λ, (B.8)

our goal is to provide a formal expression for ck. This requires computing at the same time the
Hk’s. We write the time evolution equation for g in two ways:

∂tg =
∑

k≥1

∑

l≥1

Ak+l−1kclHk

=
∑

k≥1

Ak L Hk +
∑

k≥1

∑

l≥1

Ak+lB(Hk, Hl),
(B.9)

where we have used Eq. (B.8). Picking up the terms order by order, we have for any k

(kc1 −L )Hk =
k−1∑

l=1

[B(Hk−l, Hl)− (k − l)cl+1Hk−l] . (B.10)

This equation for k = 1 is simply L Ψc = λΨc, and we focus on k ≥ 2.
We now project these equations onto span{Ψc} and span{Ψc}⊥; we note the corresponding

projection operators Π and Π⊥ = I− Π, where I is the identity. The projection operators work
as

(Π ◦L )Ψc = λΨc, (Π⊥ ◦L )Ψc = 0,

(Π ◦L )Hk = 0, (Π⊥ ◦L )Hk = L Hk, k ≥ 2.
(B.11)

The projection operator Π induces

ckΨc =
k−1∑

l=1

Π ◦B(Hk−l, Hl), (B.12)
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and Π⊥ yields

(kλ− L)Hk =
k−1∑

l=1

Π⊥ ◦B(Hk−l, Hl)−
k−2∑

l=1

(k − l)cl+1Hk−l. (B.13)

Equation Eq. (B.12) determines ck fromHl, and Eq. (B.13)Hk fromHl and cl with l ∈ {1, · · · , k−
1}.

2.2 Cosine potential - Order of magnitude of c3

We now specialize to the cosine potential and focus on the third order coefficient c3.
Calling Gk the r.h.s. of Eq.Eq. (B.13), we have

Hk = R(kλ) Gk, (B.14)

where R(z) = (z −L )−1 is the resolvent of L. Our first task is to determine the λ dependence
of R(kλ) Gk. Let us then consider the equation

(z −L )X = G ,

and solve for X(θ, J). Denoting the m-th Fourier component of X in θ as Xm, we find after
some computations, for all m ∈ Z:

Xm =
Gm

z + imΩ(J)
− C(z)

imcm∂JF
0(J)

z + imΩ(J)
(B.15)

where

C(z) =
2π
∑

l

∫ Glc
∗
l

z+ilΩ(J ′)
dJ ′

Λ(z)
. (B.16)

Taking z = 2λ in Eq. (B.15), we see that Λ(2λ)−1 introduces a 1/λ2 divergence, and that the
m = 0 term in the sum yields an extra 1/λ divergence, unless Gm=0 = 0. Thus, the C factor
Eq. (B.16) gives the leading singularity.

Now, recalling Eq. (B.13), we have to apply the resolvent to G = Π⊥B(Ψc,Ψc). Using the
definition of c2, we have

H2 = R(2λ) B(Ψc,Ψc)− c2R(2λ) Ψc. (B.17)

We first note that B(Ψc,Ψc)m=0 = 0 (B contains two terms, each containing a derivative with
respect to θ; hence the zeroth Fourier mode vanishes) and that Ψλ,m=0 = 0. Hence the possible
divergence related to m = 0 in Eq. (B.15) does not exist, and the resolvent introduces only a
1/λ2 divergence. We conclude that in the r.h.s. of Eq. (B.17), the first term is O

(
λ−2
)
. The

second is a priori O
(
λ−3
)
, since c2 ∝ 1/λ, but we show now it is actually also O

(
λ−2
)
. The
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C factor Eq. (B.16) for (R(2λ)Ψc)m is

C =
2π
∑

m

∫ Ψmc
∗
m

2λ+imΩ(J)
dJ

Λ(2λ)

=
2π

Λ(2λ)

∑

m

∫
im

∂JF
0(J)|cm|2

(λ+ imΩ)(2λ+ imΩ(J))
dJ

=
2π

Λ(2λ)
6λ
∑

m>0

∫
m2 ∂JF

0(J)|cm|2
|λ+ imΩ|2|2λ+ imΩ|2dJ

∼ 3

2

Λ′(λ)

Λ(2λ)
= O (1/λ)

where the last line is for λ→ 0+. Hence, the second term in the r.h.s. of Eq. (B.17) is O
(
λ−2
)
,

and so is H2. From Eq. (B.12)

c3Ψc = Π ◦ [B(H2,Ψc) +B(Ψc, H2)] , (B.18)

where the r.h.s. is Π applied to a O
(
λ−2
)
. Now, the projection Π contains a diverging 1/λ

factor, coming from the normalization factor 1/Λ′(λ), needed in Ψ̃c to ensure that 〈Ψ̃c,Ψc〉 = 1.
Hence, except for a restricted set of functions ϕ such that 〈Ψ̃c, ϕ〉 = O (1), we have (for ϕ

independent of λ): Πϕ ∝ 1

λ
. The exceptional ϕ such that the projection Π does not introduce

a diverging 1/λ factor lie close to the kernels of Π and Π⊥ (the latter is just Span(Ψc)). With
this in mind, it is not difficult to conclude that c3 ∝ 1/λ3. This is the same divergence strength
as the one which appears in the homogeneous case [Cra94a], although the mechanism inducing
the divergence is different.
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APPENDIX C

VLASOV-FOKKER-PLANCK

In this Appendix, we compute in details the dependence on the friction γ and instability
parameter λ, of the cubic coefficient c3. Since the calculations are done for a small friction, the
limit γ = 1/y → 0 will always be considered. In fact, as it is possible to check directly, in the
case where γ is a nonzero finite constant no divergence appears.

We still use the notation γ = 1/y and a = y2 +λy in all this appendix, as well as γ/2 = 1/y2

and a2 = 4y2 + 2λy.
The strategy of all estimation is to express the integrals in exponential form

∫∫∫
ey

2p(x,u,s) dsdudx.

For a standard integral one would use Laplace method determining the maximum (independent
of y) and expanding around it and then make y → ∞. We apply a similar procedure here but
our maximum depends on y and in general goes toward one integration bound with y. So, we
estimate the maximum p first according to s, then expand around this maximum s∗ and compute
the integral. Then we repeat the procedure for each integral. We can check then that neglected
terms are indeed negligible around those maximum, for example if x∗ ∼ y−1, we can safely
neglect (λy + 1)x in front of x2y2 in the exponential. It results in having a (1 + O

(
λ, y−1

)
)

term for the whole integral.
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1 ZEROTH HARMONIC CONTRIBUTION

As it can be expected from the frictionless case and for example [CS87], the divergence will
come uniquely from the zeroth harmonic term. We had from Eq. (VII.30),

c
(h0)
3 =

π2K3

4Λ′(λ)
λy2

∫ 0

−y
η1−2λy(1 + η/y)a−1e−yη

∫ η

0

t2λy
(
d(a∗, y2 − yt)− d(a, y2 + yt)

)
dt dη.

(C.1)

After changing variables in both integrals x = −η/y and u = −t/(xy)

c
(h0)
3 = − π2K3

4Λ′(λ)
λy5

∫ 1

0

x2(1− x)a−1ey
2x

∫ 1

0

u2λy
(
d(a, y2(1 + ux))− d(a, y2(1− ux))

)
du dx.

(C.2)

1.1 Diverging term

We will use the expression of d(a, x) as an integral over [0, 1] Eq. (VII.10). We first look at
the left term that will diverge:

B(1) = − π2K3

4Λ′(λ)
λy5

∫ 1

0

∫ 1

0

∫ 1

0

x2ey
2p(x,u,s) dsdudx, (C.3)

were

p(x, u, s) = x+ (1 + ux)s+ ln(1− x) + ln(1− s) +
λ

y
(2 lnu+ ln(1− x) + ln(1− s))

− 1

y2
(ln(1− x) + ln(1− s)).

(C.4)

The goal of this formulation in the spirit of the Laplace approach, find the maximum and expand
around it. For λ � y−1/3 we will prove self consistently that x∗ ∼ (λy)−1 and for λ � y−1/3,
x∗ ∼ y−2/3.

Here we develop the expression first for small s, assuming 1 − u small, which will be self
constitently proved.

ps(x, u, s) =

(
ux− λ

y
+

1

y2

)
s− s2

2
+ O

(
λ

y
s2,

1

y2
s2

)
= uxs− s2

2
+ O

(
λ

y
s,

1

y2
s

)
(C.5)

where the last maximum was obtained using the scaling of x∗ (terms like x∞y will always go
to infinity). So, it gives for the integral over s,

B(1) = −2

√
π

2

π2K3

4Λ′(λ)
λy4

∫ 1

0

∫ 1

0

x2 exp
(
y2pu(x, u)

)(
1 + O

(
λ

y
,

1

y2

))
dsdudx, (C.6)
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with

pu(x, u) =
x2u2

2
+ 2

λ

y
lnu+ x+ ln(1− x) +

λ

y
ln(1− x) +

1

y2
ln(1− x). (C.7)

As stated before the maximum in u is situated near u = 1 so we can expand as δu = 1−u� 1,

pu(x, u) = −
(
x2 + 2

λ

y

)
δu+

x2

2
+O

(
δu2
)
+x+ln(1−x)+

λ

y
ln(1−x)+

1

y2
ln(1−x). (C.8)

So, we can integrate

B(1) = −2

√
π

2

π2K3

4Λ′(λ)
λy4

∫ 1

0

exp (y2px(x))

y2x2 + 2λy

(
1 + O

(
λ

y
,

1

y2

)
)

)
dsdudx, (C.9)

where

px(x) =
x2

2
+ x+ ln(1− x) +

λ

y
ln(1− x) +

1

y2
ln(1− x) + 2 lnx. (C.10)

Again, expanding for small x where the maximum is situated, we have

px(x) = −
(
λ

y
+

1

y2

)
x− x3

3
+ 2 lnx. (C.11)

This gives

B(1) = −2

√
π

2

π2K3

4Λ′(λ)
λy4

∫ 1

0

x2

exp

(
−(2λy − 1)x− y2x

3

3

)

y2x2 + 2λy

(
1 + O

(
λ

y
,

1

y2

))
dx.

(C.12)
The maximum x∗ depends on which of the two terms (x∗)2y2, λy dominate. We find as already
formulated that x∗ ∼ (λy)−1 and for λ � y−1/3, x∗ ∼ y−2/3. So (x∗)2y2 � λy for λ � y−1/3

and (x∗)2y2 � λy for λ� y−1/3.
— It gives for λ� y−1/3,

B(1) ∼ −2

√
π

2

π2K3

4Λ′(λ)

1

4λ3
= −π2K2 1

4λ3
. (C.13)

It is exactly as in V.54.
— For λ� y−1/3,

B(1) ∼ −2

√
π

2

π2K3

4Λ′(λ)

λy4/3Γ
(

1
3

)

32/3
, (C.14)

so, when λ� γ4/3 B(1) does not diverge and is a priori of order 1.
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1.2 Non diverging term

The second term is non divergent as we will quickly see

B(2) =
π2K3

4Λ′(λ)
λy5

∫ 1

0

∫ 1

0

∫ 1

0

x2ey
2p(x,u,s) dsdudx, (C.15)

were

p(x, u, s) = x+ (1− ux)s+ ln(1− x) + ln(1− s) +
λ

y
(2 lnu+ ln(1− x) + ln(1− s))

− 1

y2
(ln(1− x) + ln(1− s)).

(C.16)

The maximum is still close to zero so we expand

ps(x, u, s) =

(
−ux− λ

y
+

1

y2

)
s−s

2

2
+O

(
λ

y
s2,

1

y2
s2

)
= uxs−s

2

2
+O

(
λ

y
s,

1

y2
s

)
. (C.17)

The difference here is the minus sign in front of uxwhich makes the maximum negative s∗ < 0.
It means that the maximum on this s ∈ [0, 1] interval is reached at s = 0 for large y assuming

u∗x∗ � λ

y
,

1

y2
(which we will check thereafter). The implication is that we can use the Laplace

formula for a maximum situated at a boundary [Avr00] (which says that instead of integrating
p′′(sast)s2/2 we integrate p′(s∗)s. In our formalism, we consider uxs� s2.

B(2) =
π2K3

4Λ′(λ)
λy3

∫ 1

0

∫ 1

0

∫ 1

0

x

u
u2λyey

2px(x) dudx, (C.18)

with
px(x) = x+ ln(1− x) +

λ

y
ln(1− x) +

1

y2
ln(1− x). (C.19)

The integration over u is in fact immediate and produce a (λy)−1 factor, thus

B(2) =
π2K3

4Λ′(λ)
y2

∫ 1

0

∫ 1

0

∫ 1

0

xey
2px(x) dx, (C.20)

px(x) + ln x = y−2 lnx− x2

2
−
(
λ

y
+

1

y2

)
x+ O

(
x3,

λ

y
x2,

1

y2
x2

)
(C.21)

the quadratic term always dominates, the maximum is x∗ ∼ 1/y. The remaining integral is

∝
∫
xe

y2x2

2 dx.

It cancels the last y2 prefactor thus the whole B(2) coefficient is finite. It is easy to check self
consistently that neglected terms are indeed small.
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2 SECOND HARMONIC CONTRIBUTION

We use the notation γ/2 = 1/y2 and a2 = 4y2 + 2λy. So y2 = 2y. We have

ĥ2,0(η) = −K
2

8

√
2πe−η

2/2 e
ηy2

2

(
1 +

η

y2

)−a2
∫ η

−y2

te−y2t (1 + t/y2)a2−1 (1− λyd(a, y2 + yt)
)

dt.

(C.22)

The associated cubic coefficient is

c
(h2)
3 =

π2K3

8Λ′(λ)

∫ 0

−y
ηe−ηy

(
1 +

η

y

)a−1

eηy2

(
1 +

η

y2

)−a2

×
∫ η

−y2

te−y2t (1 + t/y2)a2−1 (1− λyd(a, y2 + yt)
)

dtdη.

(C.23)

Here −2y ≥ t ≥ 0 So the term

λyd(a, y2 + yt) = λy

∫ 1

0

e(y2+yt)s(1− s)a−1 ds ≤ λy

∫ 1

0

ey
2s(1− s)a−1 ds

= λyey
2

y−2aγ(a, y2) ∼ λ

√
π

2
→ 0

(C.24)

where we used known equivalent of the lower incomplete Gamma function [Par02] for the
situation Re(y2 − a) ≥ 0 and Re(y2 − a)/y → 0.

So

|c(h2)
3 | ≤

∣∣∣∣∣
π2K3

8Λ′(λ)

∫ 0

−y

eηy2

2

(
1 +

η

y2

)−a2
∫ η

−y2

te−y2t (1 + t/y2)a2−1 dtdη

∣∣∣∣∣ . (C.25)

The integral over t can be re-expressed with the d(a, x) function as

|c(h2)
3 | ≤

∣∣∣∣∣
π2K3

8Λ′(λ)

∫ 0

−y
ηe−ηy

(
1 +

η

y

)a−1
(

1− λy2d(a2, y
2
2 + y2η)

)
dη

∣∣∣∣∣ . (C.26)

Once again, the terms

2λyd(a2, y
2
2 + y2η) ≤ λye4y2

(2y)−2a2γ(a2, 4y
2) ∼ λ

√
π

2
,

so we can bound further the coefficient

|c(h2)
3 | ≤

∣∣∣∣∣
π2K3

8Λ′(λ)

∫ 0

−y
ηe−ηy

(
1 +

η

y

)a−1

dη

∣∣∣∣∣ . (C.27)

The integrand can be written as an exponential ey
2p(x),

∫ 0

−y
ηe−ηy

(
1 +

η

y

)a−1

dη = −y2

∫ 1

0

ey
2(x+ln(1−x))+lnx+(λy−1) ln(1−x) dx (C.28)
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which give a maximum x∗ ∼ y−1 so the exponent can be safely expanded for small x. So

−y2

∫ 1

0

ey
2(x+ln(1−x))+lnx+(λy−1) ln(1−x) dx = −y2

∫ 1

0

xey
2 x2

2

(
1 + O

(
λ, y−1

))
dx

= −1−O
(
λ, y−1

)
.

(C.29)

Which conclude that c(h2)
3 does not display any divergences. It is also easy to observe with

Eq. (C.23) that c(h2)
3 < 0.
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APPENDIX D

THE KURAMOTO MODELS

1 KURAMOTO WITH INERTIA

In this Section with show how to recover Vlasov and standard Kuramoto limit from the
Kuramoto with inertia model.

1.1 Standard Kuramoto limit, m→ 0

We have to take first the limit m → 0, before λR → 0. Counting the powers of m in
Eq. (IX.28) shows that the whole contribution of h0,0 vanishes in this limit, even taking into
account the overall 1/m factor in front of the O(A3) term, see Eq. (IX.20). Similarly, the X1

and X2 terms in Eq. (IX.29) give a vanishing contribution in the m → 0 limit. Let us estimate
the X0 term:

∫
−ψ̃(1)∗(ω)X0(ω) dω ∼

m→0+

im e2iα

Λ′(λ)

πK2

2

∫
g(ω)

(λ+ iω)3
dω.

One may then take the λR → 0+ limit, and this yields the following result

lim
λR→0+

c3 =
π2K2

2

Λ′′(iλI)

Λ′(iλI)
, (D.1)

where we have used the expression for Λ in the limit m→ 0:

Λ(λ) = 1− K

2
eiα
∫

g(ω)

λ+ iω
dω.
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This recovers the expression for the standard Kuramoto model, see Eq.(139) in [Cra94a]. In

particular, the sign of s0(α) = Re

(
Λ′′(iλI)

Λ′(iλI)

)
determines the type of the bifurcation: s0 > 0

(resp. s0 < 0) corresponds to a subcritical (resp. supercritical) bifurcation.

1.2 Hamiltonian (Vlasov) limit, α = 0, m→∞, K →∞, K/m = cst

The Vlasov limit consists in taking m → ∞, K → ∞ while keeping K/m = cst (this
cancels the friction and the natural frequency driving), and α = 0 (no shift between oscillator).
As in the general case the h2,0 term does not give any pinching singularity. Here as in [Cra95a]
we use a fraction decomposition to get

∫ (
ψ̃(2)∗(W ∗

1 +W1)− ψ̃(3)∗(W ∗
2 +W2)

)
dω =

−2iπ

λRΛ′(λ)

(
K

2m

)2 ∫
g(ω) (3λ? − λ− 4iω)

(λ+ iω)4(λ? − iω)2
dω +O

(
λ−1
R

)

=
2iπ

Λ′(λ)

(
K

2m

)2 ∫ ( −1

8λ4
R(λ+ iω)2

+
1

8λ4
R(λ? − iω)2

− 1

2λ3
R(λ+ iω)3

)
g(ω)dω +O(λ−2

R )

=
iπ

Λ′(λ)

K

2m

(
Λ(λ)− 1− Λ(λ∗) + 1

4λ4
R

− Λ′(λ)

2λ3
R

)
+O

(
λ−2
R

)

= − iπ

4λ3
R

K

m
+O

(
λ−2
R

)
,

(D.2)

where we have used Λ(λ) = Λ(λ∗) = 0. Finally, in the limit λR → 0+

c3 ∼ −
π2K2

4m2

1

λ3
R

. (D.3)

It is the exact same result (with K = 1) than Eq. (V.54). As noted by Crawford this result
does not depend on the initial velocity distribution. The 1/λ3

R divergence yields the well know
trapping scaling for the instability’s saturation amplitude |A|∞ ∝ λ2

R.

2 THE SELF-CONSISTENT MEAN-FIELD METHOD, AND BISTABLE
BEHAVIOR

The self-consistent method (introduced in the original Kuramoto article [Kur75], and later
adapted to the case with inertia [TLO97a, TLO97b]) is a standard tool to understand qualita-
tively Kuramoto-like models. We show here that:
i) The bistability of single oscillators pointed out in [TLO97a, TLO97b] as the origin of the hys-
teretic behavior at large inertia cannot explain the results at small mass presented in figure IX.1
of the main article.
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ii) Nevertheless, the self-consistent method does predict a discontinuous transition for the pa-
rameters of figure 1, although it is difficult to make a general statement.

The basis of the method is to assume a constant value for the order parameter r. Then,
considering the dynamics of the single oscillators with this r, one may evaluate the contribution
of each oscillator to the order parameter, and write a self-consistent equation.

2.1 Bistable behavior

We assume that r is fixed, and take its phase to be 0 without loss of generality. The dynamics
for a single oscillator with intrinsic frequency ω is (in rescaled parameters)

mθ̈ + θ̇ = ω −Kr sin θ. (D.4)

Through the change of variable t = Ts with T = 1/Kr, the dynamics reduces to (keeping the
notation θ)

M
d2θ

ds2
+

dθ

ds
= Ω− sin θ, (D.5)

with M = mKr and Ω = ω/Kr. When M = 0, Eq. (D.5) has a single attractive fixed point for
small Ω (corresponding to phase locked oscillators); this fixed point collides with an unstable
one for Ω = 1, and the dynamics becomes periodic (drifting oscillators). This behavior persists
for small enough M . However, a qualitative change occurs for M = Mcrit ' 0.83. Beyond this
point, there is a range of values for Ω where the stable fixed point coexists with an attractive
periodic orbit: the dynamics Eq. (D.5) is bistable.

Notice that the curves presented on Figure IX.1 for m = 0.25 and m = 0.5 feature in the
transition region K < 3 and r < 0.5; thus, the reduced mass M < Mcrit, and bistability of the
single oscillator dynamics cannot explain the discontinuous transition.

Nevertheless, it is possible that the self-consistent mean-field method predict a discontinuous
transition, even without bistability of the single oscillator dynamics.

2.2 Self-consistent equation

We compute now the self-consistent equation "à la Kuramoto" for the parameters of figure 1,
m = 0.5; the starting point is Eq. (D.4). We have seen that there is no bistability for individual
oscillators (at least in the transition region). Thus, the self-consistent equation simply reads as
the sum of the contributions of locked and drifting oscillators:

r = rlocked + rdrift. (D.6)

The locked part is [TLO97a]

rlocked = Kr

∫ π/2

−π/2
cos2 θg(Kr sin θ) dθ. (D.7)

The drifting part is more involved:

rdrift = 2

∫

ω>Kr

g(ω)

T (ω)

∫ π

−π

cos θ

Vω(θ)
dθ, (D.8)
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where (θ, Vω(θ)) is the attractive periodic orbit for an oscillator with intrinsic frequency ω, and
T (ω) is the period of this orbit. The factor 2 in front comes from the ω → −ω symmetry.
Eq. (D.8) is usually computed in the large m regime (or rather large M ), which is of no interest
to us. It would be possible to perform a small M expansion. The results presented on Fig-
ure IX.1 rely instead on a direct numerical estimation of Eq. (D.7) and Eq. (VIII.6). For small
K, Eq. (D.6) has a single solution, r = 0. Increasing K, two new solutions appear r< and r>, at
finite distance from 0. On figure , we have plotted the r> solution as soon as it appears, although
the r = 0 solution may still be stable. We see that this self-consistent method i) does predict
a discontinuous transition for these parameters, and is in fair quantitative agreement with the
numerical data ii) does not easily provide general statements about the transition, for different
values of the parameters, and different frequency distributions.

3 SIGN OF DISPERSION RELATION DERIVATIVE

3.1 Standard Kuramoto model

The standard Kuramoto model has an O(2) symmetry (reflection and rotation invariance)
when the distribution of natural frequencies g is symmetric. In this situation when K > Kc the
system becomes linearly unstable and unstable eigenvalue(s) are

i) One real eigenvalue λ with an associated eigenspace of dimension 2. Thus, the unstable
manifold is also of dimension two. g is even.

ii) Two complex conjugate eigenvalues λ, λ∗ with where each are associated to an eigenspace
of dimension 2. This yields an unstable manifold of dimension 4. g is even.

If the O(2) symmetry is broken, situation iii), eigenvalues are always complex conjugate with
an associated eigenspace of dimension 1. This yields an unstable manifold of dimension 2.

In this Ph.D. thesis, we focused on unstable manifold of dimension 1 or 2 to avoid more
intricate computation. For an example treated by J.D. Crawford see [Cra94a]. Hence, we want
to avoid case ii).

In case i) the final result of the unstable manifold was

c3 =
π2K2

2

Λ′′(λ)

Λ′(λ)

λ→0−→ π3K2
c

4

g′′(0)

−PV
∫

(g′(ω)/ω) dω
(D.9)

where we used

Λ′(0) = −Kc

2
PV

∫
g′(ω)

ω
dω (D.10a)

Λ′′(0) =
Kc

2

πg′′(0)

2
. (D.10b)

The conclusion was that the sub/super-critical behavior of the transition was given by the sign
g′′(0). But what if Λ′(0) was negative? Can this happen for some well-chosen distribution?

In this Section, we conjecture that in case i) Λ′(0) > 0. In fact, we also conjecture that the
transition between case i) and ii) is given by Λ′′(0) = 0.

We are able to demonstrate this claim only for unimodal and bimodal distribution (and bi-
modal like distribution).
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Unimodal distribution

Unimodal functions are functions with g′(ω) ≤ 0 for ω > 0. In this case the demonstration
is direct since we always have Λ′(0) > 0.

Bimodal distribution

Bimodal functions are function one local maximum for ω > 0 and g′′(0) > 0. At the
criticality K = Kc the dispersion relation Eq. (VIII.12c) satisfies in case i) and ii) (complex or
real eigenvalue) 




PV

∫
g(ω − λi)

ω
dω = 0

2

Kc(λi)
= πg(λi).

(D.11)

The first equation gives the admissible values for λi, while the second give the associated Kc.
We define





d(λ) = PV

∫
g(ω − λ)

ω
dω =

∫ ∞

0

g(ω − λ)− g(ω + λ)

ω
dω

d′(λ) = −
∫ ∞

0

g′(ω − λ) + g′(ω + λ)

ω
dω.

(D.12)

Note that d(0) = 0 for every (symmetric) g. Hence, we want to show:
d′(0) < 0 ⇒ ∃λi > 0 such that d(λi) = 0 and g(λi) > g(0) (which directly implies that
Kc(λi) < Kc(0)).

It says that if Λ′(0) < 0 is negative then, there exists a pair of complex eigenvalue, and these
complex eigenvalues go unstable first and thus drive the instability, this is case ii).

To prove the first implication, we just need to prove d(λ)
λ→∞−→ 0+. Indeed since d(0) = 0

and we assumed d′(0) < 0, d is negative for small λ and if it has a positive limit by continuity,
there must exist at least one root λi. If we call the integrand of d

s(ω) =
g(ω − λ)− g(ω + λ)

ω
(D.13)

we have s(0) = −2g′(λ) and s′(0) = −2g′′(λ), s(∞) = 0+ because we chose g to decrease
monotonically at infinity.

To prove the second part the idea is to prove that λi ∈]0, λmax] where λmax is the position
of the maximum. In this case g(λi) > g(0) We proceed with a proof by contradiction Suppose
λi ∈ [λmax,+∞[. Then sλi(ω) ≥ 0 (since in this interval of a binomial function we have
g′(ω) ≤ 0. Hence d(λi) > 0 and λi is not a root of d. Absurd!

Thus if λi exists λi ∈ [0, λmax[ with Kc(λi) < Kc(0).
This reasoning can be applied to slightly more generic bimodal-like distributions but no

general results has been found so far. One can check explicitly that for a bi-Lorentzian distri-
bution Eq. (VIII.28) the criteria from case i) to case ii) (partial synchronized state to standing
wave [Cra94a, MBS+09]) corresponds to Λ′(0) = 0.
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APPENDIX D. THE KURAMOTO MODELS

3.2 Kuramoto with inertia

In the case with inertia the relations given by the dispersion relation Eq. (IX.8) at criticality
are more difficult to analyze and looking at g(0) and g(λi) is not enough.

Université Côte d’Azur 224



BIBLIOGRAPHY

[ABPV+05] Juan A. Acebrón, L. L. Bonilla, Conrad J. Pérez Vicente, Félix Ritort, and
Renato Spigler. The Kuramoto model: A simple paradigm for synchroniza-
tion phenomena. Reviews of Modern Physics, 77(1):137–185, April 2005.

- Cited 1 time: page 152 -

[ABS00] J. A. Acebrón, L. L. Bonilla, and R. Spigler. Synchronization in popula-
tions of globally coupled oscillators with inertial effects. Physical Review E,
62(3):3437–3454, September 2000. - Cited 3 times: pages 167, 168 and 169 -

[AEM+95] Mike H Anderson, Jason R Ensher, Michael R Matthews, Carl E Wieman, and
Eric A Cornell. Observation of Bose-Einstein condensation in a dilute atomic
vapor. science, 269(5221):198, 1995. - Cited 1 time: page 27 -

[AR95] Mickael Antoni and Stefano Ruffo. Clustering and relaxation in Hamiltonian
long-range dynamics. Physical Review E, 52(3):2361–2374, September 1995.

- Cited 1 time: page 91 -

[AS98] J. A. Acebrón and R. Spigler. Adaptive Frequency Model for Phase-Frequency
Synchronization in Large Populations of Globally Coupled Nonlinear Os-
cillators. Physical Review Letters, 81(11):2229–2232, September 1998.

- Cited 2 times: pages 165 and 167 -

[Avr00] Ivan Avramidi. Lecture notes on asymptotic expansion. University lectures,
2000. - Cited 1 time: page 216 -

[Bal99] NJ Balmforth. Shear instability in shallow water. J. Fluid Mech., 387:99–127,
1999. - Cited 2 times: pages 142 and 148 -

[BBDR05] Julien Barré, Freddy Bouchet, Thierry Dauxois, and Stefano Ruffo. Large De-
viation Techniques Applied to Systems with Long-Range Interactions. Journal
of Statistical Physics, 119(3-4):677–713, May 2005. - Cited 1 time: page 18 -

225



BIBLIOGRAPHY

[BGK57] Ira B. Bernstein, John M. Greene, and Martin D. Kruskal. Exact Nonlin-
ear Plasma Oscillations. Physical Review, 108(3):546–550, November 1957.

- Cited 1 time: page 77 -

[BH77] W. Braun and K. Hepp. The Vlasov dynamics and its fluctuations in the
1/N limit of interacting classical particles. Communications in Mathematical
Physics, 56(2):101–113, June 1977. - Cited 1 time: page 20 -

[BH80] Marc Baus and Jean-Pierre Hansen. Statistical mechanics of simple coulomb
systems. Physics Reports, 59(1):1–94, March 1980. - Cited 1 time: page 48 -

[BH07] A. J. Brizard and T. S. Hahm. Foundations of nonlinear gyrokinetic theory.
Reviews of Modern Physics, 79(2):421–468, April 2007. - Cited 1 time: page 21 -

[BKNG09] Balakumar Balachandran, Tamás Kalmár-Nagy, and David E. Gilsinn. Delay
Differential Equations: Recent Advances and New Directions. Springer Science
& Business Media, April 2009. - Cited 1 time: page 178 -

[BL08] Jean-Michel Bismut and Gilles Lebeau. The Hypoelliptic Laplacian and
Ray-Singer Metrics. (AM-167). Princeton University Press, August 2008.

- Cited 2 times: pages 139 and 142 -

[BM16] J. Barré and D. Métivier. Bifurcations and Singularities for Coupled Oscilla-
tors with Inertia and Frustration. Physical Review Letters, 117(21):214102,
November 2016. - Cited 2 times: pages 166 and 167 -

[BM17a] Julien Barré and David Métivier. Unstable manifold expansion for Vlasov-
Fokker-Planck equation. arXiv:1703.01668 [cond-mat, physics:math-ph],
March 2017. arXiv: 1703.01668. - Cited 3 times: pages 139, 142 and 145 -

[BM17b] F. P. C. Benetti and B. Marcos. Collisional relaxation in the inhomogeneous
Hamiltonian mean-field model: Diffusion coefficients. Physical Review E,
95(2):022111, February 2017. - Cited 1 time: page 116 -

[BMT13] N. J. Balmforth, P. J. Morrison, and J.-L. Thiffeault. Pattern formation in Hamil-
tonian systems with continuous spectra; a normal-form single-wave model.
arXiv:1303.0065 [cond-mat, physics:math-ph, physics:nlin], February 2013.
arXiv: 1303.0065. - Cited 10 times: pages 85, 89, 95, 107, 116, 117, 130, 148, 176 and 198 -

[BMW14] J. Barré, B. Marcos, and D. Wilkowski. Nonequilibrium Phase Transition with
Gravitational-like Interaction in a Cloud of Cold Atoms. Physical Review
Letters, 112(13):133001, March 2014. - Cited 1 time: page 36 -

[BMWZ85] C. Burnap, M. Miklavcic, B. L. Willis, and P. F. Zweifel. Single-mode sat-
uration of a linearly unstable plasma. The Physics of Fluids, 28(1):110–115,
January 1985. - Cited 1 time: page 88 -

[BMY16] J. Barré, D. Métivier, and Y. Y. Yamaguchi. Trapping scaling for bifurca-
tions in the Vlasov systems. Physical Review E, 93(4):042207, April 2016.

- Cited 4 times: pages 89, 92, 111 and 124 -

Université Côte d’Azur 226



BIBLIOGRAPHY

[Bog75] R. I. Bogdanov. Versal deformations of a singular point of a vector field on the
plane in the case of zero eigenvalues. Functional Analysis and Its Applications,
9(2):144–145, April 1975. - Cited 1 time: page 134 -

[BOY10] Julien Barré, Alain Olivetti, and Yoshiyuki Y. Yamaguchi. Dynamics of per-
turbations around inhomogeneous backgrounds in the HMF model. Journal
of Statistical Mechanics: Theory and Experiment, 2010(08):P08002, 2010.

- Cited 2 times: pages 114 and 116 -

[BOY11] Julien Barré, Alain Olivetti, and Yoshiyuki Y. Yamaguchi. Algebraic damping
in the one-dimensional Vlasov equation. Journal of Physics A: Mathematical
and Theoretical, 44(40):405502, 2011. - Cited 1 time: page 116 -

[BPK12] Tom Bienaimé, Nicola Piovella, and Robin Kaiser. Controlled Dicke Subra-
diance from a Large Cloud of Two-Level Systems. Physical Review Letters,
108(12):123602, March 2012. - Cited 1 time: page 203 -

[Bra98] Marco Brambilla. Kinetic theory of plasma waves: homogeneous plasmas.
Oxford University Press, 1998. - Cited 1 time: page 95 -

[BS00] Neil J Balmforth and Roberto Sassi. A shocking display of syn-
chrony. Physica D: Nonlinear Phenomena, 143(1):21–55, September 2000.

- Cited 3 times: pages 156, 176 and 198 -

[BT11] James Binney and Scott Tremaine. Galactic Dynamics: (Second Edition).
Princeton University Press, October 2011. - Cited 5 times: pages 60, 77, 113, 130 and 137 -

[BY15] Julien Barré and Yoshiyuki Y Yamaguchi. On the neighborhood of an inhomo-
geneous stable stationary solution of the Vlasov equation—Case of an attrac-
tive cosine potential. Journal of Mathematical Physics, 56(8):081502, 2015.

- Cited 1 time: page 128 -

[Cas59] K. M Case. Plasma oscillations. Annals of Physics, 7(3):349–364, July 1959.
- Cited 2 times: pages 95 and 100 -

[CD99] John D. Crawford and K. T. R. Davies. Synchronization of globally coupled
phase oscillators: singularities and scaling for general couplings. Physica D:
Nonlinear Phenomena, 125(1):1–46, January 1999. - Cited 2 times: pages 161 and 198 -

[CDR09] Alessandro Campa, Thierry Dauxois, and Stefano Ruffo. Statistical mechanics
and dynamics of solvable models with long-range interactions. Physics Reports,
480(3–6):57–159, September 2009. - Cited 1 time: page 18 -

[CGM14] John Cheng, Max Grossman, and Ty McKercher. Professional CUDA C
Programming. John Wiley & Sons, September 2014. - Cited 1 time: page 49 -

[CGML08] Alessandro Campa, Andrea Giansanti, Giovanna Morigi, and Francesco Sylos
Labini. Dynamics and Thermodynamics of systems with long range interac-
tions: theory and experiments. In Dynamics and Thermodynamics of Systems
with Long Range Interactions: Theory and Experiments, volume 970, 2008.

- Cited 1 time: page 18 -

227 Laboratoire Jean-Alexandre Dieudonné



BIBLIOGRAPHY

[CH89] John David Crawford and Peter D Hislop. Application of the method of spectral
deformation to the Vlasov-poisson system. Annals of Physics, 189(2):265–317,
February 1989. - Cited 6 times: pages 22, 87, 89, 95, 101 and 131 -

[Cha13] Pierre-Henri Chavanis. Initial value problem for the linearized mean field
Kramers equation with long-range interactions. The European Physical Journal
Plus, 128(9):106, September 2013. - Cited 1 time: page 142 -

[CHB+14] R. Chang, A. L. Hoendervanger, Q. Bouton, Y. Fang, T. Klafka, K. Audo,
A. Aspect, C. I. Westbrook, and D. Clément. Three-dimensional laser cool-
ing at the Doppler limit. Physical Review A, 90(6):063407, December 2014.

- Cited 2 times: pages 34 and 37 -

[Chi13] Hayato Chiba. A proof of the Kuramoto conjecture for a bifurcation structure
of the infinite-dimensional Kuramoto model. Ergodic Theory and Dynamical
Systems, 35(03):762–834, 2013. - Cited 3 times: pages 87, 148 and 160 -

[CK76] C. Z Cheng and Georg Knorr. The integration of the vlasov equation in con-
figuration space. Journal of Computational Physics, 22(3):330–351, November
1976. - Cited 1 time: page 88 -

[CKKH00] M. Y. Choi, H. J. Kim, D. Kim, and H. Hong. Synchronization in a system of
globally coupled oscillators with time delay. Physical Review E, 61(1):371–
381, January 2000. - Cited 1 time: page 177 -

[CKL14] A. Camara, R. Kaiser, and G. Labeyrie. Scaling behavior of a very large
magneto-optical trap. Physical Review A, 90(6):063404, December 2014.

- Cited 7 times: pages 27, 28, 36, 38, 41, 48 and 72 -

[CMM90] Alexandre Joel Chorin, Jerrold E Marsden, and Jerrold E Marsden. A
mathematical introduction to fluid mechanics, volume 3. Springer, 1990.

- Cited 1 time: page 101 -

[CN11] Hayato Chiba and Isao Nishikawa. Center manifold reduction for
large populations of globally coupled phase oscillators. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 21(4):043103, October 2011.

- Cited 4 times: pages 87, 160, 162 and 197 -

[CP70] R. P. H. Chang and M. Porkolab. Experimental Observation of Nonlinear Lan-
dau Damping of Plasma Waves in a Magnetic Field. Physical Review Letters,
25(18):1262–1266, November 1970. - Cited 1 time: page 88 -

[Cra91a] John David Crawford. Amplitude Equations on Unstable Manifolds: sin-
gular behavior from neutral modes. In Prof William Greenberg and
Dr Jacek Polewczak, editors, Modern Mathematical Methods in Transport
Theory, number 51 in Operator Theory: Advances and Applications, pages
97–108. Birkhäuser Basel, 1991. DOI: 10.1007/978-3-0348-5675-1_9.

- Cited 1 time: page 78 -

[Cra91b] John David Crawford. Introduction to bifurcation theory. Reviews of Modern
Physics, 63(4):991–1037, October 1991. - Cited 2 times: pages 78 and 79 -

Université Côte d’Azur 228



BIBLIOGRAPHY

[Cra94a] John David Crawford. Amplitude expansions for instabilities in populations of
globally-coupled oscillators. Journal of Statistical Physics, 74(5-6):1047–1084,
March 1994. - Cited 11 times: pages 22, 89, 92, 105, 106, 148, 170, 211, 220, 222 and 223 -

[Cra94b] John David Crawford. Universal Trapping Scaling on the Unstable Manifold
for a Collisionless Electrostatic Mode. Physical Review Letters, 73(5):656–659,
August 1994. - Cited 4 times: pages 22, 100, 147 and 160 -

[Cra95a] John David Crawford. Amplitude equations for electrostatic waves: universal
singular behavior in the limit of weak instability. Physics of Plasmas, 2(1):97–
128, 1995. - Cited 9 times: pages 22, 92, 100, 116, 147, 148, 156, 174 and 220 -

[Cra95b] John David Crawford. Scaling and Singularities in the Entrainment of Globally
Coupled Oscillators. Physical Review Letters, 74(21):4341–4344, May 1995.

- Cited 4 times: pages 22, 148, 161 and 174 -

[CS87] S. M. Churilov and I. G. Shukhman. Note on weakly nonlinear stability theory
of a free mixing layer. Proceedings of the Royal Society of London Series A,
409:351–367, February 1987. - Cited 5 times: pages 138, 147, 154, 198 and 214 -

[CS95] S. M. Churilov and I. G. Shukhman. Critical layer and nonlinear evolution
of disturbances in weakly supercritical shear flows. Oceanographic Literature
Review, 31(4):185, 1995. - Cited 3 times: pages 138, 147 and 198 -

[CS96] S.M. Churilov and I.G. Shukhman. The nonlinear critical layer resulting from
the spatial or temporal evolution of weakly unstable disturbances in shear flows.
Journal of Fluid Mechanics, 318:189–221, 1996. - Cited 2 times: pages 147 and 198 -

[CT98] Claude N. Cohen-Tannoudji. Nobel Lecture: Manipulating atoms with photons.
Reviews of Modern Physics, 70(3):707–719, July 1998. - Cited 1 time: page 28 -

[DAC+00] Y Dancheva, G Alzetta, S Cartaleva, M Taslakov, and Ch Andreeva. Coherent
effects on the Zeeman sublevels of hyperfine states in optical pumping of Rb
by monomode diode laser. Optics Communications, 178(1–3):103–110, May
2000. - Cited 1 time: page 37 -

[Dai92] Hiroaki Daido. Order Function and Macroscopic Mutual Entrainment in Uni-
formly Coupled Limit-Cycle Oscillators. Progress of Theoretical Physics,
88(6):1213–1218, December 1992. - Cited 3 times: pages 160, 166 and 198 -

[Dai94] Hiroaki Daido. Generic scaling at the onset of macroscopic mutual entrain-
ment in limit-cycle oscillators with uniform all-to-all coupling. Physical Review
Letters, 73(5):760–763, August 1994. - Cited 1 time: page 160 -

[Dai96] Hiroaki Daido. Onset of cooperative entrainment in limit-cycle oscillators with
uniform all-to-all interactions: bifurcation of the order function. Physica D:
Nonlinear Phenomena, 91(1):24–66, March 1996. - Cited 1 time: page 160 -

[Dal88] J. Dalibard. Laser cooling of an optically thick gas: The simplest radia-
tion pressure trap? Optics Communications, 68(3):203–208, October 1988.

- Cited 2 times: pages 28 and 35 -

229 Laboratoire Jean-Alexandre Dieudonné



BIBLIOGRAPHY

[Dal14] Jean Dalibard. Une brève histoire des atomes froids, 2014.
- Cited 4 times: pages 28, 31, 33 and 34 -

[DCB13] Florian Dörfler, Michael Chertkov, and Francesco Bullo. Synchronization in
complex oscillator networks and smart grids. Proceedings of the National
Academy of Sciences, 110(6):2005–2010, February 2013. - Cited 1 time: page 165 -

[dCN98a] D. del Castillo-Negrete. Nonlinear evolution of perturbations in
marginally stable plasmas. Physics Letters A, 241(1):99–104, April 1998.

- Cited 3 times: pages 89, 107 and 198 -

[dCN98b] D. del Castillo-Negrete. Weakly nonlinear dynamics of electrostatic pertur-
bations in marginally stable plasmas. Physics of Plasmas, 5(11):3886–3900,
October 1998. - Cited 4 times: pages 89, 107, 148 and 198 -

[DCT89] J. Dalibard and C. Cohen-Tannoudji. Laser cooling below the Doppler limit by
polarization gradients: simple theoretical models. JOSA B, 6(11):2023–2045,
November 1989. - Cited 1 time: page 37 -

[Deg86] Pierre Degond. Spectral Theory of the Linearized Vlasov-Poisson Equation.
Transactions of the American Mathematical Society, 294(2):435–453, 1986.

- Cited 1 time: page 93 -

[Den85] J. Denavit. Simulations of the single-mode, bump-on-tail instability. The
Physics of fluids, 28(9):2773–2777, 1985. - Cited 1 time: page 88 -

[Dew73] R. L. Dewar. Saturation of kinetic plasma instabilities by particle trapping. The
Physics of Fluids, 16(3):431–435, March 1973. - Cited 1 time: page 88 -

[DFGV16] Helge Dietert, Bastien Fernandez, and David Gérard-Varet. Landau damping
to partially locked states in the Kuramoto model. arXiv:1606.04470 [math-ph,
physics:nlin], June 2016. arXiv: 1606.04470. - Cited 1 time: page 199 -

[Die16a] Helge Dietert. Contributions to mixing and hypocoercivity in kinetic models.
Thesis, Cambridge Centre for Analysis (CCA), Centre for Mathematical Sci-
ences, University of Cambridge, July 2016. DOI: 10.17863/CAM.7765.

- Cited 1 time: page 98 -

[Die16b] Helge Dietert. Stability and bifurcation for the Kuramoto model.
Journal de Mathématiques Pures et Appliquées, 105(4):451–489, 2016.

- Cited 5 times: pages 87, 148, 160, 163 and 197 -

[DJM+09] Gustavo Deco, Viktor Jirsa, A. R. McIntosh, Olaf Sporns, and Rolf Köt-
ter. Key role of coupling, delay, and noise in resting brain fluctuations.
Proceedings of the National Academy of Sciences, 106(25):10302–10307, June
2009. - Cited 1 time: page 177 -

[DLN+94] M. Drewsen, Ph Laurent, A. Nadir, G. Santarelli, A. Clairon, Y. Castin, D. Gri-
son, and C. Salomon. Investigation of sub-Doppler cooling effects in a cesium
magneto-optical trap. Applied Physics B, 59(3):283–298, September 1994.

- Cited 1 time: page 37 -

Université Côte d’Azur 230



BIBLIOGRAPHY

[DMF88] C. F. Driscoll, J. H. Malmberg, and K. S. Fine. Observation of transport
to thermal equilibrium in pure electron plasmas. Physical Review Letters,
60(13):1290–1293, March 1988. - Cited 1 time: page 39 -

[DO99] Daniel H. E. Dubin and T. M. O’Neil. Trapped nonneutral plasmas, liquids, and
crystals (the thermal equilibrium states). Reviews of Modern Physics, 71(1):87–
172, January 1999. - Cited 1 time: page 39 -

[Dob79] R. L. Dobrushin. Vlasov equations. Functional Analysis and Its Applications,
13(2):115–123, April 1979. - Cited 1 time: page 20 -

[DRAW02] Thierry Dauxois, Stefano Ruffo, Ennio Arimondo, and Martin Wilkens.
Dynamics and Thermodynamics of Systems with Long Range Interactions.
Springer Science & Business Media, December 2002. - Cited 1 time: page 18 -

[Dro16] Alexis Drouot. Pollicott-Ruelle resonances via kinetic Brownian motion.
arXiv:1607.03841 [math], July 2016. arXiv: 1607.03841. - Cited 1 time: page 142 -

[DZ15] Semyon Dyatlov and Maciej Zworski. Stochastic stability of Pollicott–Ruelle
resonances. Nonlinearity, 28(10):3511, 2015. - Cited 1 time: page 142 -

[EE02] Y. Elskens and D. F. Escande. Microscopic Dynamics of Plasmas and Chaos.
CRC Press, October 2002. - Cited 1 time: page 18 -

[Erm91] B. Ermentrout. An adaptive model for synchrony in the firefly Pteroptyx
malaccae. Journal of Mathematical Biology, 29(6):571–585, June 1991.

- Cited 1 time: page 165 -

[FGRLA02] E. Freire, E. Gamero, A. J. Rodríguez-Luis, and A. Algaba. A note on the triple-
zero linear degeneracy: normal forms, dynamical and bifurcation behaviors of
an unfolding. International Journal of Bifurcation and Chaos, 12(12):2799–
2820, December 2002. - Cited 1 time: page 132 -

[FGVG16] Bastien Fernandez, David Gérard-Varet, and Giambattista Giacomin. Landau
Damping in the Kuramoto Model. Annales Henri Poincaré, 17(7):1793–1823,
July 2016. - Cited 2 times: pages 148 and 160 -

[FNP08] G. Filatrella, A. H. Nielsen, and N. F. Pedersen. Analysis of a power grid
using a Kuramoto-like model. The European Physical Journal B, 61(4):485–
491, February 2008. - Cited 1 time: page 165 -

[GA80] J. P. Gordon and A. Ashkin. Motion of atoms in a radiation trap. Physical
Review A, 21(5):1606–1617, May 1980. - Cited 1 time: page 34 -

[Gao13] David Yang Gao. Duality Principles in Nonconvex Systems: Theory,
Methods and Applications. Springer Science & Business Media, March 2013.

- Cited 2 times: pages 178 and 179 -

[Gat08] Giovanni Luca Gattobigio. Manipulation of a Large Magneto-Optical Trap:<br
/>application to Four-Wave Mixing. phdthesis, Università degli studi di Ferrara
; Université Nice Sophia Antipolis, February 2008. - Cited 1 time: page 38 -

231 Laboratoire Jean-Alexandre Dieudonné



BIBLIOGRAPHY

[GCR14] Shamik Gupta, Alessandro Campa, and Stefano Ruffo. Nonequilib-
rium first-order phase transition in coupled oscillator systems with in-
ertia and noise. Physical Review E, 89(2):022123, February 2014.

- Cited 4 times: pages 167, 174, 175 and 194 -

[GFRL+99] E. Gamero, E. Freire, A. J. Rodríguez-Luis, E. Ponce, and A. Algaba. Hyper-
normal form calculation for triple-zero degeneracies. Bulletin of the Belgian
Mathematical Society - Simon Stevin, 6(3):357–368, 1999. - Cited 1 time: page 132 -

[GH88] M. E. Goldstein and Lennart S. Hultgren. Nonlinear spatial evolution of an
externally excited instability wave in a free shear layer. Journal of Fluid
Mechanics, 197:295–330, December 1988. - Cited 1 time: page 148 -

[GH13] John Guckenheimer and P. J. Holmes. Nonlinear Oscillations, Dynamical
Systems, and Bifurcations of Vector Fields. Springer Science & Business Me-
dia, November 2013. - Cited 1 time: page 79 -

[GPLK10] G. L. Gattobigio, T. Pohl, G. Labeyrie, and R. Kaiser. Scaling laws
for large magneto-optical traps. Physica Scripta, 81(2):025301, 2010.

- Cited 3 times: pages 28, 36 and 38 -

[GSW+08] A. M. Ghez, S. Salim, N. N. Weinberg, J. R. Lu, T. Do, J. K. Dunn,
K. Matthews, M. R. Morris, S. Yelda, E. E. Becklin, T. Kremenek, M. Milosavl-
jevic, and J. Naiman. Measuring Distance and Properties of the Milky Way’s
Central Supermassive Black Hole with Stellar Orbits. The Astrophysical
Journal, 689(2):1044, 2008. - Cited 1 time: page 131 -

[GW13] Shangjiang Guo and Jianhong Wu. Bifurcation Theory of Functional
Differential Equations. Springer Science & Business Media, July 2013.

- Cited 2 times: pages 178 and 182 -

[Hal63] J. K. Hale. Linear functional-differential equations with constant coefficients.
NASA; United States, January 1963. - Cited 2 times: pages 178 and 179 -

[HC89] P. D. Hislop and J. D. Crawford. Application of spectral deformation to the
Vlasov-Poisson system. II. Mathematical results. Journal of mathematical
physics, 30(12):2819–2837, 1989. - Cited 2 times: pages 22 and 101 -

[HCK02] H. Hong, M. Y. Choi, and Beom Jun Kim. Synchronization on small-world
networks. Physical Review E, 65(2):026139, January 2002. - Cited 1 time: page 166 -

[HCPT07] Hyunsuk Hong, Hugues Chaté, Hyunggyu Park, and Lei-Han Tang. Entrain-
ment Transition in Populations of Random Frequency Oscillators. Physical
Review Letters, 99(18):184101, October 2007. - Cited 1 time: page 175 -

[HD23] E Hückel and P Debye. The theory of electrolytes: I. lowering of freezing point
and related phenomena. Phys. Z, 24:185–206, 1923. - Cited 1 time: page 42 -

[HI10] Mariana Haragus and Gérard Iooss. Local Bifurcations, Center Manifolds, and
Normal Forms in Infinite-Dimensional Dynamical Systems. Springer Science
& Business Media, November 2010. - Cited 2 times: pages 80 and 181 -

Université Côte d’Azur 232



BIBLIOGRAPHY

[HK91] Jack K. Hale and Hüseyin Kocak. Dynamics and Bifurcations. Springer Science
& Business Media, 1991. - Cited 1 time: page 134 -

[HKO+13] Kenichi Hirosawa, Seiichi Kittaka, Yu Oishi, Fumihiko Kannari, and Takayuki
Yanagisawa. Phase locking in a Nd:YVO4 waveguide laser array using Talbot
cavity. Optics Express, 21(21):24952–24961, October 2013. - Cited 1 time: page 149 -

[HL93] Jack K. Hale and Sjoerd M. Verduyn Lunel. Introduction to Functional
Differential Equations. Springer Science & Business Media, 1993.

- Cited 2 times: pages 178 and 182 -

[HM06] Jean-Pierre Hansen and Ian R McDonald. Theory of simple liquids (Third
Edition). Elsevier, 2006. - Cited 1 time: page 52 -

[HM13] G. I. Hagstrom and P. J. Morrison. Continuum Hamiltonian Hopf Bifurcation II.
arXiv:1308.6161 [math-ph, physics:physics], August 2013. arXiv: 1308.6161.

- Cited 3 times: pages 22, 89 and 136 -

[HS75] T. W. Hänsch and A. L. Schawlow. Cooling of gases by laser radiation. Optics
Communications, 13(1):68–69, January 1975. - Cited 1 time: page 30 -

[Ich82] Setsuo Ichimaru. Strongly coupled plasmas: high-density classical plasmas and
degenerate electron liquids. Reviews of Modern Physics, 54(4):1017–1059,
October 1982. - Cited 1 time: page 39 -

[ICT16] ICTP. Conference on Long-Range-Interacting Many Body Systems: from
Atomic to Astrophysical Scales, 2016. - Cited 1 time: page 18 -

[Inc] Wolfram Research Inc. Mathematica, Version 11.2. Champaign, IL, 2017.
- Cited 2 times: pages 128 and 194 -

[ISP10] J. A. Izaguirre, C. R. Sweet, and V. S. Pande. Multiscale Dynamics of
Macromolecules Using Normal Mode Langevin. Pacific Symposium on
Biocomputing. Pacific Symposium on Biocomputing, pages 240–251, 2010.

- Cited 1 time: page 49 -

[Izh98] Eugene M. Izhikevich. Phase models with explicit time delays. Physical Review
E, 58(1):905–908, July 1998. - Cited 2 times: pages 166 and 177 -

[Jea02] James H Jeans. The stability of a spherical nebula. Philosophical Transactions
of the Royal Society of London. Series A, Containing Papers of a Mathematical
or Physical Character, 199:1–53, 1902. - Cited 1 time: page 60 -

[JH11] Pierre-Emmanuel Jabin and Maxime Hauray. Particles approximations of
Vlasov equations with singular forces : Propagation of chaos. arXiv:1107.3821
[math], July 2011. arXiv: 1107.3821. - Cited 1 time: page 20 -

[JPM+13] Peng Ji, Thomas K. DM. Peron, Peter J. Menck, Francisco A. Rodrigues,
and Jürgen Kurths. Cluster Explosive Synchronization in Complex Networks.
Physical Review Letters, 110(21):218701, May 2013. - Cited 1 time: page 165 -

233 Laboratoire Jean-Alexandre Dieudonné



BIBLIOGRAPHY

[JPRK14] Peng Ji, Thomas K. D. M. Peron, Francisco A. Rodrigues, and Jürgen Kurths.
Low-dimensional behavior of Kuramoto model with inertia in complex net-
works. Scientific Reports, 4:srep04783, May 2014. - Cited 1 time: page 166 -

[JR81] Peter A. E. M. Janssen and J. Juul Rasmussen. Limit cycle behavior of
the bump-on-tail instability. The Physics of Fluids, 24(2):268–273, 1981.

- Cited 1 time: page 88 -

[Kan98] Henry E. Kandrup. Violent Relaxation, Phase Mixing, and Gravitational Lan-
dau Damping. The Astrophysical Journal, 500(1):120, 1998. - Cited 1 time: page 88 -

[Kat95] Tosio Kato. Perturbation theory for linear operators, volume 132. Springer
Science & Business Media, 1995. - Cited 1 time: page 93 -

[KC67] W. R. Klein and B. D. Cook. Unified Approach to Ultrasonic Light Diffrac-
tion. IEEE Transactions on Sonics and Ultrasonics, 14(3):123–134, July 1967.

- Cited 1 time: page 65 -

[KHS+16] Ole Kock, Wei He, Dariusz Swierad, Lyndsie Smith, Joshua Hughes, Kai
Bongs, and Yeshpal Singh. Laser controlled atom source for optical clocks.
Scientific Reports, 6:srep37321, November 2016. - Cited 1 time: page 27 -

[KP13] Maxim Komarov and Arkady Pikovsky. Multiplicity of Singular Synchronous
States in the Kuramoto Model of Coupled Oscillators. Physical Review Letters,
111(20):204101, November 2013. - Cited 1 time: page 161 -

[KP14] M. Komarov and A. Pikovsky. The Kuramoto model of coupled oscillators with
a bi-harmonic coupling function. Physica D: Nonlinear Phenomena, 289:18–
31, December 2014. - Cited 4 times: pages 161, 167, 174 and 175 -

[Kub66] R. Kubo. The fluctuation-dissipation theorem. Reports on Progress in Physics,
29(1):255, 1966. - Cited 1 time: page 18 -

[Kur75] Yoshiki Kuramoto. Self-entrainment of a population of coupled non-linear
oscillators. In International Symposium on Mathematical Problems in
Theoretical Physics, pages 420–422. Springer, Berlin, Heidelberg, 1975. DOI:
10.1007/BFb0013365. - Cited 5 times: pages 148, 151, 165, 175 and 220 -

[Kur84] Yoshiki Kuramoto. Cooperative Dynamics of Oscillator CommunityA Study
Based on Lattice of Rings. Progress of Theoretical Physics Supplement,
79:223–240, February 1984. - Cited 1 time: page 151 -

[Kur15] Y. Kuramoto. Kuramoto talks about the Kuramoto model
https://www.youtube.com/watch?v=lac4txwybog, 2015. - Cited 1 time: page 149 -

[Kuz04] Yuri A. Kuznetsov. Elements of Applied Bifurcation Theory. Springer Science
& Business Media, April 2004. - Cited 1 time: page 134 -

[Kuz05] Yu. A. Kuznetsov. Practical computation of normal forms on center manifolds at
degenerate bogdanov–takens bifurcations. International Journal of Bifurcation
and Chaos, 15(11):3535–3546, November 2005. - Cited 1 time: page 134 -

Université Côte d’Azur 234



BIBLIOGRAPHY

[KZH02] István Z. Kiss, Yumei Zhai, and John L. Hudson. Emerging Coherence in a Pop-
ulation of Chemical Oscillators. Science, 296(5573):1676–1678, May 2002.

- Cited 1 time: page 149 -

[Lan46] L Landau. On the vibrations of the electronic plasma. Akad. Nauk SSSR.
Zhurnal Eksper. Teoret. Fiz., 16:574–586, 1946. - Cited 2 times: pages 20 and 88 -

[LB58] A. Lenard and Ira B. Bernstein. Plasma Oscillations with Diffusion in
Velocity Space. Physical Review, 112(5):1456–1459, December 1958.

- Cited 1 time: page 139 -

[LB99] D. Lynden-Bell. Negative specific heat in astronomy, physics and chemistry.
Physica A: Statistical Mechanics and its Applications, 263(1):293–304, Febru-
ary 1999. - Cited 1 time: page 18 -

[LC04] Chunguang Li and Guanrong Chen. Synchronization in general complex dy-
namical networks with coupling delays. Physica A: Statistical Mechanics and
its Applications, 343:263–278, November 2004. - Cited 1 time: page 177 -

[LLP81] Lev Davidovich Landau, EM Lifshitz, and LP Pitaevskij. Course of theoretical
physics. vol. 10: Physical kinetics. Oxford, 1981. - Cited 1 time: page 137 -

[LMK06] G. Labeyrie, F. Michaud, and R. Kaiser. Self-Sustained Oscillations in a Large
Magneto-Optical Trap. Physical Review Letters, 96(2):023003, January 2006.

- Cited 1 time: page 38 -

[LMLY14] Keren Li, Shen Ma, Haihong Li, and Junzhong Yang. Transition to synchro-
nization in a Kuramoto model with the first- and second-order interaction terms.
Physical Review E, 89(3):032917, March 2014. - Cited 1 time: page 161 -

[LPR+89] P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I.
Westbrook. Optical molasses. JOSA B, 6(11):2084–2107, November 1989.

- Cited 1 time: page 37 -

[Man97] Giovanni Manfredi. Long-Time Behavior of Nonlinear Landau Damping.
Physical Review Letters, 79(15):2815–2818, October 1997. - Cited 1 time: page 88 -

[MBS+09] E. A. Martens, E. Barreto, S. H. Strogatz, E. Ott, P. So, and T. M. Antonsen.
Exact results for the Kuramoto model with a bimodal frequency distribution.
Physical Review E, 79(2):026204, February 2009. - Cited 3 times: pages 157, 158 and 223 -

[MDB+88] JH Malmberg, CF Driscoll, B Beck, DL Eggleston, J Fajans, K Fine, X-P
Huang, AW Hyatt, CW Roberson, and C Fred Driscoll. Experiments with pure
electron plasmas. In AIP Conference Proceedings, volume 175, pages 28–74.
AIP, 1988. - Cited 1 time: page 39 -

[MH13] Philip J. Morrison and George I. Hagstrom. Continuum Hamiltonian Hopf Bi-
furcation I. arXiv:1308.3807 [math-ph, physics:nlin, physics:physics], August
2013. arXiv: 1308.3807. - Cited 3 times: pages 22, 89 and 136 -

[Mie92] Alexander Mielke. On nonlinear problems of mixed type: A qualitative the-
ory using infinite-dimensional center manifolds. Journal of Dynamics and
Differential Equations, 4(3):419–443, July 1992. - Cited 1 time: page 85 -

235 Laboratoire Jean-Alexandre Dieudonné



BIBLIOGRAPHY

[Mil90] Jonathan Miller. Statistical mechanics of Euler equations in two dimensions.
Physical Review Letters, 65(17):2137–2140, October 1990. - Cited 1 time: page 18 -

[Mil02] Stephen C. Milne. Infinite Families of Exact Sums of Squares Formulas, Jacobi
Elliptic Functions, Continued Fractions, and Schur Functions. The Ramanujan
Journal, 6(1):7–149, March 2002. - Cited 3 times: pages 116, 123 and 208 -

[MMS09] Seth A. Marvel, Renato E. Mirollo, and Steven H. Strogatz. Identical phase
oscillators with global sinusoidal coupling evolve by Möbius group action.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 19(4):043104, Oc-
tober 2009. - Cited 1 time: page 158 -

[Mol69] B. R. Mollow. Power Spectrum of Light Scattered by Two-Level Systems.
Physical Review, 188(5):1969–1975, December 1969. - Cited 2 times: pages 37 and 72 -

[Mon16] Pierre Monmarché. Ergodicity and propagation of chaos for mean field ki-
netic particles. arXiv:1603.03179 [math], March 2016. arXiv: 1603.03179.

- Cited 1 time: page 21 -

[Mor00] Philip J. Morrison. Hamiltonian description of Vlasov dynamics: Action-angle
variables for the continuous spectrum. Transport Theory and Statistical Physics,
29(3-5):397–414, April 2000. - Cited 1 time: page 20 -

[MS79] VG Minogin and OT Serimaa. Resonant light pressure forces in a
strong standing laser wave. Optics Communications, 30(3):373–379, 1979.

- Cited 1 time: page 37 -

[MTFH13] Erik Andreas Martens, Shashi Thutupalli, Antoine Fourrière, and Oskar Hal-
latschek. Chimera states in mechanical oscillator networks. Proceedings
of the National Academy of Sciences, 110(26):10563–10567, June 2013.

- Cited 1 time: page 149 -

[Mur06] James Murdock. Normal Forms and Unfoldings for Local Dynamical Systems.
Springer Science & Business Media, April 2006. - Cited 2 times: pages 181 and 182 -

[MV11] Clément Mouhot and Cédric Villani. On Landau damping. Acta Mathematica,
207(1):29–201, September 2011. - Cited 4 times: pages 20, 88, 99 and 160 -

[MW64] J. H. Malmberg and C. B. Wharton. Collisionless Damping of Electro-
static Plasma Waves. Physical Review Letters, 13(6):184–186, August 1964.

- Cited 2 times: pages 88 and 107 -

[MWGO68] J. H. Malmberg, C. B. Wharton, R. W. Gould, and T. M. O’Neil. Plasma
Wave Echo Experiment. Physical Review Letters, 20(3):95–97, January 1968.

- Cited 1 time: page 77 -

[MYMB10] J. J. McFerran, L. Yi, S. Mejri, and S. Bize. Sub-Doppler cooling of fermionic
Hg isotopes in a magneto-optical trap. Optics Letters, 35(18):3078–3080,
September 2010. - Cited 3 times: pages 34, 37 and 38 -

[NBS99] C. S. Ng, A. Bhattacharjee, and F. Skiff. Kinetic Eigenmodes and Discrete
Spectrum of Plasma Oscillations in a Weakly Collisional Plasma. Physical
Review Letters, 83(10):1974–1977, September 1999. - Cited 1 time: page 139 -

Université Côte d’Azur 236



BIBLIOGRAPHY

[NBS04] C. S. Ng, A. Bhattacharjee, and F. Skiff. Complete Spectrum of Kinetic Eigen-
modes for Plasma Oscillations in a Weakly Collisional Plasma. Physical Review
Letters, 92(6):065002, February 2004. - Cited 2 times: pages 141 and 143 -

[NRV+00] Z. Néda, E. Ravasz, T. Vicsek, Y. Brechet, and A. L. Barabási. Physics
of the rhythmic applause. Physical Review E, 61(6):6987–6992, June 2000.

- Cited 1 time: page 149 -

[NUS13] Anders Nordenfelt, Javier Used, and Miguel A. F. Sanjuán. Bursting frequency
versus phase synchronization in time-delayed neuron networks. Physical
Review E, 87(5):052903, May 2013. - Cited 1 time: page 177 -

[NW80] H Neunzert and J Wick. The convergence of simulation methods in plasma
physics. Mathematical methods of plasmaphysics (Oberwolfach, 1979),
20:271–286, 1980. - Cited 1 time: page 20 -

[OA08] Edward Ott and Thomas M. Antonsen. Low dimensional behav-
ior of large systems of globally coupled oscillators. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 18(3):037113, September 2008.

- Cited 5 times: pages 149, 156, 157, 181 and 197 -

[OA09] Edward Ott and Thomas M. Antonsen. Long time evolution of phase os-
cillator systems. Chaos: An Interdisciplinary Journal of Nonlinear Science,
19(2):023117, May 2009. - Cited 1 time: page 158 -

[ODL+14] F.W. Olver, Olde Daalhuis, D.W. Lozier, B.I. Schneider, R.F. Boisvert, C.W.
Clark, B.R. Miller, and B.V. Saunders. NIST Digital Library of Mathematical
Functions http://dlmf.nist.gov/8.2#E1, January 2014. - Cited 1 time: page 141 -

[Oga13] Shun Ogawa. Spectral and formal stability criteria of spatially inho-
mogeneous stationary solutions to the Vlasov equation for the Hamilto-
nian mean-field model. Physical Review E, 87(6):062107, June 2013.

- Cited 4 times: pages 94, 120, 122 and 207 -

[OHA11] Edward Ott, Brian R. Hunt, and Thomas M. Antonsen. Comment on “Long
time evolution of phase oscillator systems” [Chaos 19, 023117 (2009)]. Chaos:
An Interdisciplinary Journal of Nonlinear Science, 21(2):025112, June 2011.

- Cited 1 time: page 158 -

[OM15] Henrique M. Oliveira and Luís V. Melo. Huygens synchronization of two
clocks. Scientific Reports, 5:11548, July 2015. - Cited 1 time: page 150 -

[ONBT14] Simona Olmi, Adrian Navas, Stefano Boccaletti, and Alessandro Torcini. Hys-
teretic transitions in the Kuramoto model with inertia. Physical Review E,
90(4):042905, October 2014. - Cited 3 times: pages 165, 166 and 175 -

[OW12] Oleh E. Omel’chenko and Matthias Wolfrum. Nonuniversal Transitions to
Synchrony in the Sakaguchi-Kuramoto Model. Physical Review Letters,
109(16):164101, October 2012. - Cited 2 times: pages 174 and 175 -

[OWM71] T. M. O’Neil, J. H. Winfrey, and J. H. Malmberg. Nonlinear Interaction of a
Small Cold Beam and a Plasma. The Physics of Fluids, 14(6):1204–1212, June
1971. - Cited 2 times: pages 88 and 107 -

237 Laboratoire Jean-Alexandre Dieudonné



BIBLIOGRAPHY

[Pal94] P. L. Palmer. Stability of Collisionless Stellar Systems: Mechanisms for
the Dynamical Structure of Galaxies, volume 185 of Astrophysics and Space
Science Library. Springer Science & Business Media, 1994. - Cited 1 time: page 130 -

[Par02] R. B. Paris. A uniform asymptotic expansion for the incomplete gamma func-
tion. Journal of Computational and Applied Mathematics, 148(2):323–339,
November 2002. - Cited 1 time: page 217 -

[PCMM15] Francesco Pegoraro, Francesco Califano, Giovanni Manfredi, and Philip J. Mor-
rison. Theory and applications of the Vlasov equation. The European Physical
Journal D, 69(3):68, March 2015. - Cited 1 time: page 88 -

[Per06] Jérôme Perez. Gravity, dimension, equilibrium, and thermodynamics. Comptes
Rendus Physique, 7(3):406–413, April 2006. - Cited 1 time: page 18 -

[PPA90] P. L. Palmer, J. Papaloizou, and A. J. Allen. Neighbouring equilibria to radially
anisotropic spheres: possible end-states for violently relaxed stellar systems.
Monthly Notices of the Royal Astronomical Society, 246(3):415–432, 1990.

- Cited 2 times: pages 130 and 131 -

[PQ02] R. L. Pego and J. R. Quintero. A Host of Traveling Waves in a Model of Three-
Dimensional Water-Wave Dynamics. Journal of Nonlinear Science, 12(1):59–
83, April 2002. - Cited 1 time: page 85 -

[PR08] Arkady Pikovsky and Michael Rosenblum. Partially Integrable Dynamics of
Hierarchical Populations of Coupled Oscillators. Physical Review Letters,
101(26):264103, December 2008. - Cited 1 time: page 158 -

[PRK01] Arkady Pikovsky, Michael Rosenblum, and Jürgen Kurths. Synchronization: A
Universal Concept in Nonlinear Sciences. Cambridge University Press, 2001.

- Cited 1 time: page 150 -

[Pru12] Laurence Pruvost. Coulomb-like force induced by radiation trapping in a cold
atom cloud. In AIP Conference Proceedings, volume 1421, pages 80–92. AIP,
2012. - Cited 1 time: page 38 -

[PSDJ00] Laurence Pruvost, Isabelle Serre, Hong Tuan Duong, and Joshua Jortner. Ex-
pansion and cooling of a bright rubidium three-dimensional optical molasses.
Physical Review A, 61(5):053408, 2000. - Cited 1 time: page 38 -

[PTA+01] Pat Dallard, Tony Fitzpatrick, Anthony Flint, Angus Low, Roger Ridsdill
Smith, Michael Willford, and Mark Roche. London Millennium Bridge:
Pedestrian-Induced Lateral Vibration. Journal of Bridge Engineering, 6(6):412–
417, December 2001. - Cited 1 time: page 149 -

[RF13] Tarcísio M. Rocha Filho. Solving the Vlasov equation for one-dimensional
models with long range interactions on a GPU. Computer Physics
Communications, 184(1):34–39, January 2013. - Cited 2 times: pages 127 and 194 -

[RHV11] R. Romain, D. Hennequin, and P. Verkerk. Phase-space description of the
magneto-optical trap. The European Physical Journal D, 61(1):171–180, Jan-
uary 2011. - Cited 2 times: pages 37 and 40 -

Université Côte d’Azur 238



BIBLIOGRAPHY

[Ris89] Hannes Risken. The Fokker-Planck equation. Springer Series in Synergetics,
18, 1989. - Cited 1 time: page 139 -

[RPC+87] E. L. Raab, M. Prentiss, Alex Cable, Steven Chu, and D. E. Pritchard. Trapping
of Neutral Sodium Atoms with Radiation Pressure. Physical Review Letters,
59(23):2631–2634, December 1987. - Cited 4 times: pages 31, 38, 44 and 73 -

[RS80] Michael Reed and Barry Simon. Methods of modern mathematical physics. vol.
1. Functional analysis. Academic, 1980. - Cited 1 time: page 85 -

[RS91] R. Robert and J. Sommeria. Statistical equilibrium states for two-
dimensional flows. Journal of Fluid Mechanics, 229:291–310, August 1991.

- Cited 1 time: page 18 -

[RSB+14] Mohamed-Taha Rouabah, Marina Samoylova, Romain Bachelard, Philippe W.
Courteille, Robin Kaiser, and Nicola Piovella. Coherence effects in scattering
order expansion of light by atomic clouds. JOSA A, 31(5):1031–1039, May
2014. - Cited 1 time: page 203 -

[RTBPL14] Ana C. Ribeiro-Teixeira, Fernanda P. C. Benetti, Renato Pakter, and Yan Levin.
Ergodicity breaking and quasistationary states in systems with long-range inter-
actions. Physical Review E, 89(2):022130, February 2014. - Cited 1 time: page 18 -

[Sak88] Hidetsugu Sakaguchi. Cooperative Phenomena in Coupled Oscillator Systems
under External Fields. Progress of Theoretical Physics, 79(1):39–46, January
1988. - Cited 1 time: page 166 -

[SCF92] A. M. Steane, M. Chowdhury, and C. J. Foot. Radiation force in the magneto-
optical trap. JOSA B, 9(12):2142–2158, December 1992. - Cited 1 time: page 37 -

[SF91] A. M. Steane and C. J. Foot. Laser Cooling below the Doppler Limit
in a Magneto-Optical Trap. EPL (Europhysics Letters), 14(3):231, 1991.

- Cited 1 time: page 38 -

[SJM15] Stefan Schütz, Simon B. Jäger, and Giovanna Morigi. Thermodynamics and
dynamics of atomic self-organization in an optical cavity. Physical Review A,
92(6):063808, December 2015. - Cited 2 times: pages 18 and 92 -

[SM91] Steven H. Strogatz and Renato E. Mirollo. Stability of incoherence in a pop-
ulation of coupled oscillators. Journal of Statistical Physics, 63(3-4):613–635,
May 1991. - Cited 2 times: pages 153 and 154 -

[SM97] D. W. L. Sprung and J. Martorell. The symmetrized Fermi function and its
transforms. Journal of Physics A: Mathematical and General, 30(18):6525,
1997. - Cited 1 time: page 206 -

[SOG+02] R. Schödel, T. Ott, R. Genzel, R. Hofmann, M. Lehnert, A. Eckart,
N. Mouawad, T. Alexander, M. J. Reid, R. Lenzen, M. Hartung, F. Lacombe,
D. Rouan, E. Gendron, G. Rousset, A.-M. Lagrange, W. Brandner, N. Ageorges,
C. Lidman, A. F. M. Moorwood, J. Spyromilio, N. Hubin, and K. M. Menten.
A star in a 15.2-year orbit around the supermassive black hole at the centre of
the Milky Way. Nature, 419(6908):694–696, October 2002. - Cited 1 time: page 131 -

239 Laboratoire Jean-Alexandre Dieudonné



BIBLIOGRAPHY

[Spr05] Volker Springel. The cosmological simulation code gadget-2. Monthly
Notices of the Royal Astronomical Society, 364(4):1105–1134, December
2005. - Cited 1 time: page 49 -

[SR76] Albert Simon and Marshall N. Rosenbluth. Single-mode saturation of the
bump-on-tail instability: Immobile ions. The Physics of Fluids, 19(10):1567–
1580, October 1976. - Cited 1 time: page 88 -

[SR00] L. Saint-Raymond. The gyrokinetic approximation for the vlasov–poisson sys-
tem. Mathematical Models and Methods in Applied Sciences, 10(09):1305–
1332, December 2000. - Cited 1 time: page 21 -

[SRS88] Albert Simon, Shelden Radin, and Robert W. Short. Long-time simulation of
the single-mode bump-on-tail instability. The Physics of Fluids, 31(12):3649–
3659, December 1988. - Cited 1 time: page 88 -

[SS02] R. W. Short and A. Simon. Damping of perturbations in weakly
collisional plasmas. Physics of Plasmas, 9(8):3245–3253, July 2002.

- Cited 4 times: pages 137, 138, 139 and 141 -

[SSK87] Hidetsugu Sakaguchi, Shigeru Shinomoto, and Yoshiki Kuramoto. Local
and Grobal Self-Entrainments in Oscillator Lattices. Progress of Theoretical
Physics, 77(5):1005–1010, May 1987. - Cited 1 time: page 166 -

[SSK88] Hidetsugu Sakaguchi, Shigeru Shinomoto, and Yoshiki Kuramoto. Mutual En-
trainment in Oscillator Lattices with Nonvariational Type Interaction. Progress
of Theoretical Physics, 79(5):1069–1079, May 1988. - Cited 2 times: pages 166 and 167 -

[ST15] Maximilian Sadilek and Stefan Thurner. Physiologically motivated multi-
plex Kuramoto model describes phase diagram of cortical activity. Scientific
Reports, 5:srep10015, May 2015. - Cited 1 time: page 177 -

[ST16] S. Sridhar and Jihad R. Touma. Stellar Dynamics around a Massive Black Hole
I: Secular Collisionless Theory. Monthly Notices of the Royal Astronomical
Society, 458(4):4129–4142, June 2016. arXiv: 1509.02397. - Cited 1 time: page 131 -

[Ste96] George Sterman. Partons, Factorization and Resummation, TASI95.
arXiv:hep-ph/9606312, June 1996. arXiv: hep-ph/9606312. - Cited 1 time: page 106 -

[Ste01] Daniel A Steck. Rubidium 87 D line data, 2001. - Cited 4 times: pages 28, 34, 37 and 45 -

[Str00] Steven H. Strogatz. From Kuramoto to Crawford: exploring the onset of
synchronization in populations of coupled oscillators. Physica D: Nonlinear
Phenomena, 143(1):1–20, September 2000. - Cited 1 time: page 154 -

[SVH+04] Bernard Smith, John Vasut, T Hyde, L Matthews, Jerry Reay, Mike Cook, and
Jimmy Schmoke. Dusty plasma correlation function experiment. Advances in
Space Research, 34(11):2379–2383, 2004. - Cited 1 time: page 48 -

[SW51] R. S Spencer and R. M Wiley. The mixing of very viscous liquids. Journal of
Colloid Science, 6(2):133–145, April 1951. - Cited 1 time: page 85 -

Université Côte d’Azur 240



BIBLIOGRAPHY

[Szn91] Alain-Sol Sznitman. Topics in propagation of chaos. In Ecole d’Eté de
Probabilités de Saint-Flour XIX — 1989, pages 165–251. Springer, Berlin, Hei-
delberg, 1991. DOI: 10.1007/BFb0085169. - Cited 1 time: page 21 -

[Tak74] Floris Takens. Singularities of vector fields. Publications Mathématiques de
l’IHÉS, 43:47–100, 1974. - Cited 1 time: page 134 -

[TDM87] S. I. Tsunoda, F. Doveil, and J. H. Malmberg. Nonlinear Interaction be-
tween a Warm Electron Beam and a Single Wave. Physical Review Letters,
59(24):2752–2755, December 1987. - Cited 1 time: page 88 -

[TLB99] M. N. Tamashiro, Yan Levin, and Marcia C. Barbosa. The one-component
plasma: a conceptual approach. Physica A: Statistical Mechanics and its
Applications, 268(1–2):24–49, June 1999. - Cited 1 time: page 39 -

[TLO97a] Hisa-Aki Tanaka, Allan J. Lichtenberg, and Shin’ichi Oishi. First Or-
der Phase Transition Resulting from Finite Inertia in Coupled Oscilla-
tor Systems. Physical Review Letters, 78(11):2104–2107, March 1997.

- Cited 6 times: pages 165, 166, 167, 175, 220 and 221 -

[TLO97b] Hisa-Aki Tanaka, Allan J. Lichtenberg, and Shin’ichi Oishi. Self-
synchronization of coupled oscillators with hysteretic responses.
Physica D: Nonlinear Phenomena, 100(3):279–300, February 1997.

- Cited 2 times: pages 165 and 220 -

[TMK10] H. Terças, J. T. Mendonça, and R. Kaiser. Driven collective instabilities
in magneto-optical traps: A fluid-dynamical approach. EPL (Europhysics
Letters), 89(5):53001, 2010. - Cited 1 time: page 38 -

[Tro86] M. Trocheris. On the derivation of the one dimensional Vlasov equa-
tion. Transport Theory and Statistical Physics, 15(5):597–628, August 1986.

- Cited 1 time: page 20 -

[TSS05] B. R. Trees, V. Saranathan, and D. Stroud. Synchronization in disordered
Josephson junction arrays: Small-world connections and the Kuramoto model.
Physical Review E, 71(1):016215, January 2005. - Cited 1 time: page 165 -

[TZT+12] Amirkhan A. Temirbayev, Zeinulla Zh. Zhanabaev, Stanislav B. Tarasov,
Vladimir I. Ponomarenko, and Michael Rosenblum. Experiments on oscillator
ensembles with global nonlinear coupling. Physical Review E, 85(1):015204,
January 2012. - Cited 1 time: page 149 -

[Van89] A. Vanderbauwhede. Centre Manifolds, Normal Forms and Elementary
Bifurcations. In Dynamics Reported, Dynamics Reported, pages 89–169.
Vieweg+Teubner Verlag, Wiesbaden, 1989. DOI: 10.1007/978-3-322-96657-
5_4. - Cited 1 time: page 87 -

[VDMvdM85] Jan-Cees Van Der Meer and Jan-Cees van der Meer. The hamiltonian Hopf
bifurcation. Springer, 1985. - Cited 1 time: page 101 -

241 Laboratoire Jean-Alexandre Dieudonné



BIBLIOGRAPHY

[VI92] A. Vanderbauwhede and G. Iooss. Center Manifold Theory in Infinite Di-
mensions. In Dynamics Reported, Dynamics Reported, pages 125–163.
Springer, Berlin, Heidelberg, 1992. DOI: 10.1007/978-3-642-61243-5_4.

- Cited 1 time: page 87 -

[Vil10] C. Villani. Landau damping, Notes for a course given in Cotonou, Benin, and
in CIRM, Luminy, 2010. - Cited 3 times: pages 85, 88 and 160 -

[VK55] N. G. Van Kampen. On the theory of stationary waves in plasmas. Physica,
21(6):949–963, January 1955. - Cited 2 times: pages 95 and 100 -

[Vla68] A. A. Vlasov. The Vibrational Propreties of an Electron Gas. Soviet Physics
Uspekhi, 10(6):721, 1968. - Cited 1 time: page 88 -

[Wal69] T J Walker. Acoustic synchrony: two mechanisms in the snowy tree cricket.
Science, 166(3907):891–894, 1969. - Cited 1 time: page 149 -

[WCS96] Kurt Wiesenfeld, Pere Colet, and Steven H. Strogatz. Synchronization Tran-
sitions in a Disordered Josephson Series Array. Physical Review Letters,
76(3):404–407, January 1996. - Cited 1 time: page 165 -

[WD75] D Wineland and Hans Dehmelt. Proposed 10^{14}\Delta \nu<\nu laser fluores-
cence spectroscopy on TI^+ mono-ion oscillator III. In Bulletin of the American
Physical Society, volume 20, pages 637–637. Amer Inst Physics Circulation
Fulfillment, 1975. - Cited 1 time: page 30 -

[Win67] Arthur T. Winfree. Biological rhythms and the behavior of populations of
coupled oscillators. Journal of Theoretical Biology, 16(1):15–42, July 1967.

- Cited 1 time: page 150 -

[Win80] Arthur T. Winfree. The Geometry of Biological Time. Springer, New York,
1980. - Cited 1 time: page 150 -

[WS93] Shinya Watanabe and Steven H. Strogatz. Integrability of a globally cou-
pled oscillator array. Physical Review Letters, 70(16):2391–2394, April 1993.

- Cited 1 time: page 158 -

[WSW90] Thad Walker, David Sesko, and Carl Wieman. Collective behavior of optically
trapped neutral atoms. Physical Review Letters, 64(4):408–411, January 1990.

- Cited 4 times: pages 28, 36, 57 and 59 -

[WW96] E. T. Whittaker and G. N. Watson. A Course of Modern Analysis. Cambridge
University Press, September 1996. - Cited 1 time: page 208 -

[XVF+15] G. Xu, D. Vocke, D. Faccio, J. Garnier, T. Roger, S. Trillo, and A. Picozzi.
From coherent shocklets to giant collective incoherent shock waves in nonlocal
turbulent flows. Nature Communications, 6:ncomms9131, September 2015.

- Cited 1 time: page 18 -

[XVS08] D. Xenides, D. S. Vlachos, and T. E. Simos. Synchronization in com-
plex systems following a decision based queuing process: rhythmic applause
as a test case. Journal of Statistical Mechanics: Theory and Experiment,
2008(07):P07017, 2008. - Cited 1 time: page 149 -

Université Côte d’Azur 242



BIBLIOGRAPHY

[YS99] M. K. Stephen Yeung and Steven H. Strogatz. Time Delay in the Kuramoto
Model of Coupled Oscillators. Physical Review Letters, 82(3):648–651, Jan-
uary 1999. - Cited 6 times: pages 166, 177, 181, 187, 188 and 198 -

[ZGS01] Tie Zhou, Yan Guo, and Chi-Wang Shu. Numerical study on Landau damp-
ing. Physica D: Nonlinear Phenomena, 157(4):322–333, October 2001.

- Cited 1 time: page 88 -

[Zwo15] Maciej Zworski. Scattering resonances as viscosity limits. arXiv:1505.00721
[math-ph], May 2015. arXiv: 1505.00721. - Cited 1 time: page 142 -

243 Laboratoire Jean-Alexandre Dieudonné



BIBLIOGRAPHY

Université Côte d’Azur 244



RÉSUMÉ

Les systèmes en interaction à longue portée sont connus pour avoir des propriétés statistiques et dyna-
miques particulières. Pour décrire leur évolution dynamique, on utilise des équations cinétiques décrivant
leur densité dans l’espace des phases. Ce manuscrit est divisé en deux parties indépendantes. La première
traite de notre collaboration avec une équipe expérimentale sur un Piège Magnéto-Optique. Ce dispositif à
grand nombre d’atomes présente des interactions coulombiennes effectives provenant de la rediffusion des
photons. Nous avons proposé des tests expérimentaux pour mettre en évidence l’analogue d’une longueur
de Debye, et son influence sur la réponse du système. Les expériences réalisées ne permettent pour l’instant
pas de conclure de façon définitive. Dans la deuxième partie, nous avons analysé les modèles cinétiques
de Vlasov et de Kuramoto. Pour étudier leur dynamique de dimension infinie, nous avons examiné les bi-
furcations autour des états stationnaires instables, l’objectif étant d’obtenir des équations réduites décrivant
la dynamique de ces états. Nous avons réalisé des développements en variété instable sur cinq systèmes
différents. Ces réductions sont parsemées de singularités, mais prédisent correctement la nature de la bifur-
cation, que nous avons testée numériquement. Nous avons conjecturé une réduction exacte (obtenue via la
forme normale Triple Zero) autour des états inhomogènes de l’équation de Vlasov. Ces résultats génériques
pourraient être pertinents dans un contexte astrophysique. Les autres résultats s’appliquent aux phénomènes
de synchronisation du modèle de Kuramoto pour les oscillateurs avec inertie et/ou interactions retardées.

Mots-clés : Dynamique, Réduction Dimensionelle, Non Linéaire, Hors d’Équilibre, Interactions à Longue
Portée, Équation Cinétique Sans Collisions, Vlasov, Fokker-Planck, Triple Zero, Oscillateurs Couplés, Syn-
chronisation, Kuramoto, Piège Magnéto-Optique, Atomes Froids, Longueur de Debye

ABSTRACT

Long-range interacting systems are known to display particular statistical and dynamical properties. To
describe their dynamical evolution, we can use kinetic equations describing their density in the phase space.
This PhD thesis is divided into two distinct parts. The first part concerns our collaboration with an exper-
imental team on a Magneto-Optical Trap. The physics of this widely-used device, operating with a large
number of atoms, is supposed to display effective Coulomb interactions coming from photon rescattering.
We have proposed experimental tests to highlight the analog of a Debye length, and its influence on the
system response. The experimental realizations do not allow yet a definitive conclusion. In the second part,
we analyzed the Vlasov and Kuramoto kinetic models. To study their infinite dimensional dynamics, we
looked at bifurcations around unstable steady states. The goal was to obtain reduced equations describing
the dynamical evolution. We performed unstable manifold expansions on five different kinetic systems.
These reductions are in general not exact and plagued by singularities, yet they predict correctly the nature
and scaling of the bifurcation, which we tested numerically. We conjectured an exact dimensional reduction
(obtained using the Triple Zero normal form) around the inhomogeneous states of the Vlasov equation.
These results are expected to be very generic and could be relevant in an astrophysical context. Other re-
sults apply to synchronization phenomena through the Kuramoto model for oscillators with inertia and/or
delayed interactions.

Keywords: Dynamics, Dimensional Reduction, Nonlinear, Out-of-Equilibrium, Long-Range Interactions,
Collisionless Kinetics Equations, Vlasov, Fokker-Planck, Triple Zero, Coupled Oscillators, Synchroniza-
tion, Kuramoto, Magneto-Optical Trap, Cold Atoms, Debye Length
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