Physics and phase transitions in parallel computational complexity

Jon Machta
University of Massachusetts Amherst
and
Santa Fe Institute

Physics of Algorithms
August 31, 2009
Collaborators

• Ray Greenlaw, *Armstrong Atlantic University*
• Cris Moore, *University of New Mexico, SFI*
• Stephan Mertens, *Otto-von-Guericke University Magdeburg, SFI*
• Students:
 – Ken Moriarty
 – Xuenan Li
 – Ben Machta
 – Dan Tillberg
Outline

• Parallel computing and computational complexity
• Parallel complexity of models in statistical physical
• Random circuit value problem: complexity of solving and sampling
Parallel Random Access Machine

- Each processor runs the same program but has a distinct label.
- Each processor communicates with any memory cell in a single time step.
- Primary resources:
 - Parallel time
 - Number of processors
Adding n numbers can be carried out in $O(\log n)$ steps using $O(n)$ processors.

Connected components of a graph can be found in $O(\log^2 n)$ steps using n^2 processors.
Complexity Classes and P-completeness

• **P** is the class of *feasible* problems: solvable with polynomial work.
• **NC** is the class of problems efficiently solved in parallel (polylog time and polynomial work, \(\text{NC} \subseteq \text{P} \)).
• Are there feasible problems that cannot be solved efficiently in parallel (\(\text{P} \neq \text{NC} \))?
• **P**-complete problems are the hardest problems in **P** to solve in parallel. It is believed they are *inherently sequential*: not solvable in polylog time.
• The Circuit Value Problem is **P**-complete.
Complexity Classes and P-completeness

- **P** is the class of *feasible* problems: solvable with polynomial work.
- **NC** is the class of problems efficiently solved in parallel (polylog time and polynomial work, $\text{NC} \subseteq \text{P}$).
- Are there feasible problems that cannot be solved efficiently in parallel ($\text{P} \neq \text{NC}$)?
- **P-complete** problems are the hardest problems in **P** to solve in parallel. It is believed they are *inherently sequential*: not solvable in polylog time.
- The Circuit Value Problem is **P**-complete.
Sampling Complexity

Models and algorithms in statistical physics convert random bits into typical system states.

- Models and algorithms in statistical physics convert random bits into typical system states.
Diffusion Limited Aggregation

- Particles added *one at a time* with sticking probabilities given by the solution of Laplace’s equation.
- Self-organized fractal object $d_f = 1.715\ldots$ (2D)
- Physical systems:
 - Fluid flow in porous media
 - Electrodeposition
 - Bacterial colonies

Random Walk Dynamics for DLA
The Problem with Parallelizing DLA

Parallel dynamics ignores *interference* between 1 and 3

Sequential dynamics
Complexity of DLA

Theorem: Determining the shape of an aggregate from the random walks of the constituent particles is a \mathbf{P}-hard problem.

Proof idea: Reduce the Circuit Value Problem to DLA dynamics.

Caveats:
1. $\mathbf{P} \neq \mathbf{NC}$ not proven
2. Average case may be easier than worst case
3. Alternative dynamics may be faster than random walk dynamics for sampling DLA
Sequential models with polylog parallel complexity

- Eden growth
- Invasion percolation
- Scale free networks
- Ballistic deposition
- Bak-Sneppen model
- Internal DLA

Eden growth

Scale free network

Invasion percolation
Internal DLA

Particles start at the origin, random walk and stick where they first leaves the cluster.

- Shape approaches a circle with logarithmic fluctuations.
- P-completeness proof fails. (However, IDLA is CC-complete)
Parallel Algorithm for IDLA

1. Start with seed particle at the origin and N walk trajectories
2. Place particles at expected positions along their trajectories.
3. Iteratively move particles until holes and multiple occupancies are eliminated

Average parallel time
polylogarthmic or
possibly a small power in
N.

Cluster of 2500 particles made in 6 parallel steps.
Random Monotone CVP

- Circuit arranged in levels with W gates on a level and D levels.
- $\tau_0 =$ fraction of TRUE inputs.
- $p =$ fraction of OR gates.
- Gates at level $n+1$ randomly take k inputs from gates at level n (with replacement).

Monotone CVP is P-complete but how hard is it on average to evaluate the circuit in parallel?
Recursion relations, $k=2$

- Let τ_n be the expected fraction of gates evaluating to TRUE at level n.

\[\tau_{n+1} = p(1 - (1 - \tau_n)^2) + (1 - p)\tau_n^2\]

Absorbing fixed points at $\tau = 0$ and $\tau = 1$.
Recursion relations, $k=2$

- Let τ_n be the expected fraction of gates evaluating to TRUE at level n.

$$\tau_{n+1} = p(1 - (1 - \tau_n)^2) + (1 - p)\tau_n^2$$

- For $p < 1/2$, mainly AND
- For $p > 1/2$, mainly OR
Linearize around fixed points

Near the $\tau = 0$ fixed point for $p < 1/2$ the linearized recursion relations are:

$$\tau_{n+1} = 2p\tau_n + \mathcal{O}(\tau_n^2)$$

Let T be the time to saturation to all FALSE,

$$\tau_T \approx 1/W$$

$$T \sim \frac{\ln W}{-\ln(2p)}$$
Time to saturation T as a function of circuit width W for various fractions p of OR gates.
Slope of the logarithmic scaling of the saturation time vs. p. The solid line is the prediction, $-1/\ln(2(1-p))$.
Critical point at $p=1/2$

The number of gates, X_n evaluating to TRUE at level n obeys a stochastic recursion relation,

$$X_{n+1} = \mathcal{B}(W, X_n/W)$$

Here $\mathcal{B}(n,p)$ is a binomial random variable.

After taking the continuum limit, one obtains a diffusion process with absorbing endpoints and a diffusion coefficient that vanishes at the endpoints.
Critical Saturation Time

Using known results for mean first passage times with the spatially non-uniform diffusion coefficient

\[D(x) = \frac{x}{2} \left(1 - \frac{x}{W} \right) \]

we obtain a linear saturation time:

\[T = -2W \left[\tau_0 \ln \tau_0 + \left(1 - \tau_0 \right) \ln \left(1 - \tau_0 \right) \right] \]
\[2 \left[\tau_0 \ln \tau_0 + (1 - \tau_0) \ln(1 - \tau_0) \right] \]

Slope of the linear scaling of the saturation time vs. \(W \).
Summary for two input gates

• For $p \neq 1/2$

 $$T \sim \ln W$$

 Circuit evaluation easy

• For $p = 1/2$

 $$T \sim W$$

 Circuit evaluation hard
$k > 2$

- For $p < \frac{1}{k}$ or $p > 1 - \frac{1}{k}$ have $T \sim \ln W \Rightarrow Fast \ circuit \ evaluation.$

- For $\frac{1}{k} < p < 1 - \frac{1}{k}$ have non-trivial fixed point:

\[0 < \tau^* < 1 \]

Circuit does not saturate to a single value except via a large deviation $\Rightarrow Slow \ circuit \ evaluation.$
Generating Circuit+Solution Pairs

• Q: How difficult is it to simultaneously generate an instance of random monotone CVP together with its evaluation?

• A: For any values of the parameters, a random instance chosen from the correct distribution and its evaluation can be generated in polylog parallel time on a PRAM.
Fast Parallel Sampling of Circuit Evaluation Pairs

• Idea: In parallel generate an instance of each level—gates and their inputs and outputs—then put the levels together into a complete circuit+evaluation.

• Difficulty: Inputs to layer $n+1$ are not known until layer n is evaluated.

• Solution: The number of TRUE inputs is all that is required to generate a random level. In parallel construct $W+1$ instances of each level, one for each number of TRUE inputs.
Construct one level

Given: 2 TRUE, 1 FALSE
Attaching levels into a circuit+evaluation

Tuesday, September 1, 2009
Wiring the circuit
Conclusion

- Parallel computational complexity provides a unique perspective on models in statistical physics.
- Simple methods yield interesting results for random ensembles of CVP revealing phase transitions in complexity.
- Although CVP is hard to solve in parallel, it is easy to generate random instances and solutions simultaneously.