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We study the impact of strain localization on the stability of frictional slipping in dense amorphous
materials. We model the material using Shear Transformation Zone (STZ) Theory, a continuum
approximation for plastic deformation in amorphous solids. In the STZ model, the internal state is
quantified by an effective disorder temperature, and the effective temperature dynamics capture the
spontaneous localization of strain. We study the effect of strain localization on stick-slip instabilities
by coupling the STZ model to a non-inertial spring slider system. We perform a linear stability
analysis to generate a phase diagram that connects the small scale physics of strain localization
to the macroscopic stability of sliding. Our calculations determine the values of spring stiffness
and driving velocity where steady sliding becomes unstable, and we confirm our results through
numerical integration. We investigate both homogeneous deformation, where no shear band forms,
and localized deformation, where a narrow shear band spontaneously forms and accommodates all
of the deformation. Our results show that at a given velocity, strain localization leads to unstable
frictional sliding at a much larger spring stiffness compared to homogeneous deformation, and that
localized deformation cannot be approximated by a homogeneous model with a narrower material.
We also find that strain localization provides a physical mechanism for irregular stick-slip cycles in
certain parameter ranges. Our results quantitatively connect the internal physics of deformation in
amorphous materials to the larger scale frictional dynamics of stick-slip.

PACS numbers: 83.10.Gr,71.55.Jv,62.20.F-,46.35.+z

I. INTRODUCTION

Dense amorphous materials include a wide range of
systems, including granular materials, glassy materials,
colloids, emulsions, and possibly even biological tissue.
These materials often serve as lubricants for sheared in-
terfaces, ranging in scale from atomically thin films to
earthquake faults. While they differ vastly in scale, each
is made up of a collection of smaller particles – the thin
film contains a few layers of molecules, while the earth-
quake fault is filled with crushed grains of rock. Both the
interfacial material and the large scale system as a whole
can exhibit rich and complex dynamics. Most studies
of these systems focus on the small scale physics in the
material or the large scale dynamics of friction. In this
paper, we bridge the two approaches using a constitutive
law derived from small scale physics to investigate insta-
bilities in both the deformation in the interfacial layer
and the macroscopic friction.

Laboratory experiments show that granular materials
[1], fault rocks [2–4], and thin films [5–8] exhibit similar
frictional dynamics, including a yield stress, hysteresis,
rate dependent frictional resistance, and stick-slip. In
this study, we focus on stick-slip instabilities, which are
responsible for earthquake slip on seismic faults, noise
from automobile brakes and tires, music from a violin,
and excessive wear on frictional interfaces in machinery.
Modeling the dynamics of friction in these materials is a
challenging problem, as models must resolve the micro-

∗Electronic address: edaub@physics.ucsb.edu

scopic physics of deformation and simultaneously remain
tractable for capturing the large scale behavior.

Experimental observations of friction are sometimes di-
rectly incorporated into phenomenological friction laws,
such as the Stribeck curve [9] and the Dieterich-Ruina
rate and state depenendent friction laws [10, 11]. These
fits to data capture many important features of exper-
iments, but to date have not been derived from micro-
scopic physics and do not resolve internal dynamic insta-
bilities within the interfacial layer. Molecular dynamics
simulations have provided extensive information about
microscopic deformation and flow, but only for limited
numbers of particles and a narrow range of time scales.
Stick-slip motion has been explored in the context of con-
stitutive models [12–15] and molecular dynamics simula-
tions [16, 17].

In this paper, we use a physics-based constitutive
model that combines insights from atomistic simulations
with the tractability of a constitutive law to connect
macroscopic friction dynamics to the small scale physics
of deformation. Our friction model is based on the the-
ory of Shear Transformation Zones (STZs) [18, 19]. This
continuum approach incoporates features from molecu-
lar dynamics simulations and fundamental constraints
from nonequilibrium statistical physics and has been ap-
plied to a wide variety of materials [15, 20, 21]. The
STZ constitutive model provides physical insight into
plastic deformation, but is tractable for studying larger
scale sheared interfaces. Additionally, STZ Theory has
sufficient resolution of the microscopic scale to capture
shear band instabilities and the spontaneous localization
of strain [22–24]. When a shear band forms, deformation
localizes to a region that is much narrower than the thick-
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ness of the material. Localization plays an important role
in the frictional properties of bulk metallic glasses [25],
granular materials [26], and bubble rafts [27].

In this study, we determine the effect of the micro-
scopic physics of strain localization on the dynamics of
stick-slip. We perform a linear stability analysis with the
STZ equations to quantitatively determine how small-
scale localization impacts the large scale frictional be-
havior. We compare localized strain, where a shear band
dynamically forms, to homogeneous deformation, where
no shear band forms and the strain rate is spatially uni-
form across the interfacial layer. We find that localiza-
tion alters the parameter range where stick-slip occurs,
thus demonstrating that the small scale physics plays an
important role in the large scale dynamics of friction.

We begin with a discussion of the physics behind the
STZ model and the block slider equations in Section II.
In Section III, we present the results of our stability anal-
ysis and our numerical studies with the STZ model. Sec-
tion IV concludes with a discussion of the implications
of our work for friction and deformation in amorphous
materials.

II. MODEL EQUATIONS

A. STZ Constitutive Law

We model the constitutive response of the interfacial
material with Shear Transformation Zone (STZ) Theory.
STZ Theory is a continuum approximation for amor-
phous solids under shear. It was originally developed to
model deformation and fracture in a Lennard-Jones glass
[18, 19], but has also been applied to boundary lubri-
cation [15], granular flow [28], and dynamic earthquake
rupture [21]. Recently it has been shown that STZ The-
ory captures the dynamic instability that leads to the
formation of shear bands in glassy materials [22, 24] and
in dynamic earthquake rupture [23]. In this section, we
discuss the physics behind the STZ model and present
the basic equations. A detailed derivation of the STZ
equations is presented in Appendix A for completeness.

We consider a spring slider with negligible mass (i.e.
overdamped). The spring is pulled at a constant veloc-
ity V0. The slider is illustrated on the left in Figure 1.
The sheared interface is filled with an amorphous ma-
terial. The material has a finite thickness of 2w in the
z-direction, and is much larger and translationally invari-
ant in the other spatial directions, reducing the spatial
dependence to z only. We also assume that the material
is symmetric about z = 0, and therefore we only model
the material for 0 ≤ z ≤ w. A close-up of the amorphous
material (center in Figure 1) shows that the shear strain
can be heterogeneous within the material layer.

In STZ Theory, when a collection of particles is
sheared, the resulting particle displacements can be writ-
ten as the sum of two components: affine displacements,
where the particle motion is uniform throughout the ma-

terial, and non-affine displacements, where the particle
motion is heterogeneous. Affine displacements result in
an elastic material response, while non-affine displace-
ments can produce plastic deformation. Non-affine de-
formation can constribute to the elastic response, but
STZ Theory makes the simplifying assumption that the
non-affine deformation is purely plastic.

In simulations and experiments with dense amorphous
materials, non-affine deformation tends to occur in local-
ized regions as particles rearrange from one metastable
orientation to another [18, 19]. These zones are re-
ferred to as Shear Transformation Zones (STZs). An STZ
switching between the two orientations is shown at the
right in Fig. 1. STZ Theory assumes that all non-affine
deformation occurs in these zones. Each switch accu-
mulates a fixed strain increment, and a mimimum shear
stress must be applied for the switch to occur. Once
an STZ has switched in the direction of applied shear,
it cannot accumulate further plastic strain in that di-
rection. Therefore, to allow the material to accumulate
further plastic strain, STZs are created and destroyed as
the material is sheared and energy is dissipated. Once
STZs flip in the direction of applied shear, they are de-
stroyed, and new STZs must be created in the opposite
orientation to maintain steady plastic deformation.

The plastic strain rate γ̇ depends on two factors: the
number of STZs, and the rate at which STZs switch be-
tween orientations. The shear stress τ determines the
rate at which STZs change orientation, and the total
number of STZs is governed by an effective disorder tem-
perature χ [29]. These factors are summarized by the
following equation:

γ̇ =
1
t0
f (τ) exp (−1/χ) . (1)

This equation shows that the plastic strain rate de-
pends on the shear stress through the function f(τ), and
the effective temperature through the Boltzmann factor
exp(−1/χ). Also included in Equation (1) is the char-
acteristic time for STZ reversals t0, an important time
scale in the problem. We adopt an exponential form for
f(τ), which is discussed in the full derivation of the STZ
equations in Appendix A.

The effective disorder temperature evolves dynamically
as the material is driven away from equilibrium. The
governing partial differential equation that we adopt for
the effective temperature is

χ̇ =
γ̇τ

c0τy

(
1− χ

χ̂ (γ̇)

)
+

∂

∂z

(
Dγ̇

∂χ

∂z

)
. (2)

The effective temperature evolution equation includes
terms for energy dissipation and diffusion. The dissi-
pation term indicates that as plastic work is done on the
system, the particles are stirred. This drives the effective
temperature toward its steady state value χ̂(γ̇), which is
a function of the plastic strain rate. Diffusion of effective
temperature is observed in simulations [30], and occurs
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FIG. 1: Illustration of the spring slider modeled with STZ Theory. (left) A block of negligible mass is pulled by a spring of
stiffness k at constant velocity V0. An amorphous material lubricates the sheared interface. (center) A close-up of the amorphous
material indicates that we resolve the dynamic evolution of strain inside the material. In STZ Theory, the microscopic physics
is captured through the evolution of an effective temperature, which is heterogeneous within the material. Our model accounts
for the effect of strain localization on the motion of the block. (right) Close-up of an STZ reversal at the particle scale. As the
material is sheared, an ellipse drawn through the particles switches from one orientation to the other. The dark particles on
the right indicate where plastic deformation has occurred in the material. STZ image taken from Falk and Langer [18].

with a time scale given by the inverse strain rate and
a length scale

√
D. The diffusion length is determined

by the particles in the amorphous material – this length
might scale with a characteristic particle diameter in a
granular material, or a typical interparticle separation in
a glass. Note that because the time scale for diffusion is
the inverse plastic strain rate, diffusion of effective tem-
perature occurs only when the material is sheared.

The steady-state effective temperature χ̂(γ̇) is given by
[20]:

χ̂ (γ̇) =
χw

log
(
q0
t0γ̇

) . (3)

This form for χ̂(γ̇) is based on simulations of a glass
by Haxton and Liu [31]. Parameters include the ef-
fective temperature activation barrier χw and the non-
dimensional strain rate where STZ Theory breaks down
q0. For strain rates larger than γ̇ = q0/t0, the effective
temperature diverges and plastic deformation no longer
occurs as localized STZs. The effective temperature acti-
vation barrier χw is a very important parameter, as it de-
termines the frictional rate dependence. If χw > 1, then
the material is rate strengthening, which means that the
steady-state shear stress increases with the strain rate.
If χw < 1, then the material is rate weakening, and as
the strain rate increases, the steady-state shear stress de-
creases.

We also need boundary conditions on the effective tem-
perature at the material edges. We assume that there is
no effective temperature flux out of the boundaries of the
amorphous material, so ∂χ/∂z = 0 at z = ±w.

The STZ equations capture the spontaneous localiza-
tion of strain in amorphous materials. Localization oc-
curs because of an instability in the effective temperature
dynamics. If the effective temperature is a priori spa-
tially homogeneous, then by symmetry all subsequent de-

formation is homogeneous. The diffusion term in Equa-
tion (2) is zero, and the effective temperature evolves
in time but does not vary in space. This produces ho-
mogeneous deformation, i.e. the strain rate is uniform
across the amorphous material (z-direction). If the ef-
fective temperature is homogeneous, the STZ equations
produce a logarithmic frictional rate dependence that
matches the rate dependence of the laboratory derived
Dieterich-Ruina friction laws that are frequently used in
seismology [21].

However, a perfectly uniform effective temperature is
not physically realistic. If there is any heterogeneity
in the effective temperature, then some spatial regions
have more STZs, and therefore a larger strain rate. The
energy dissipation term in Equation (2) is proportional
to the strain rate, and the effective temperature grows
more quickly in regions where the effective temperature is
larger. This instability amplifies small inhomogeneities,
and the end result of heterogeneous initial conditions is
deformation in a single narrow shear band.

Although truly homogeneous deformation is not a
physically realistic scenario, in many cases it is a rea-
sonable approximation and therefore provides a natural
comparison with deformation in a localized shear band. If
the material is very thin, the shear band that forms may
be wider than the material. For example, boundary lu-
brication experiments are often done with thin films that
are only a few molecules thick. In this case, homogeneous
deformation serves as a good approximation because the
effective temperature varies over a length scale that is
larger than the material thickness. We analyze both the
homogeneous approximation and the full STZ equations
with localization in our study to determine the role of
the physics of strain localization on frictional sliding.
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B. Block Slider Equations

To explore the implications of microscopic strain lo-
calization on macroscopic friction, we couple the STZ
equations (Equations (1)-(2)) to a spring slider. A block
is attached to a spring pulled at a constant rate, and
the block motion causes shear deformation in the amor-
phous material (left in Figure 1). For simplicity we ignore
inertial effects. Experimental data often exhibits stick-
slip motion in overdamped regimes [32], where the block
oscillation time is much smaller than the duration of a
stick-slip event. In this regime the frictional time scales
are more important for the block dynamics than intertial
effects. Because we are in an overdamped regime, the
friction force balances the spring force. Therefore, we
only require a dynamic equation for the frictional shear
stress τ in the amorphous material to complete the sys-
tem of equations describing the STZ block slider model.
Here τ is taken to be constant in the z-direction. This
follows from our assumption that the stress equilibration
time scale is much faster than the time scales in the STZ
friction law; the static solution to the momentum conser-
vation equations in this geometry is a spatially uniform
shear stress.

Stress in the material evolves due to elastic and plastic
deformation. The spring of stiffness k is pulled at a con-
stant rate V0, which increases the shear stress by extend-
ing the spring. Meanwhile, plastic deformation occurs in
the amorphous solid and causes the material to soften.
Therefore, the shear stress τ evolves according to

τ̇ = k

(
V0 −

∫ w

0

γ̇ dz

)
. (4)

Here, dots represent a time derivative. The first term
on the right hand side represents elastic loading from the
spring, and the second term represents material softening
at a rate determined by the spatial integral of the plastic
strain rate γ̇. Because the system is overdamped, the
spatial integral of the plastic strain rate over the entire
material width is also the velocity of the slider block. The
plastic strain rate is given by the STZ equation (Equa-
tion (1)), and is a function of the stress and the effective
temperature.

C. Time Scales

The block slider equation (Equation (4)), along with
the STZ equations (Equations (1)-(2)), involve a num-
ber of different time scales. The fastest among these is
the STZ rearrangement time t0. An estimate for t0 is a
molecular vibrational time scale for a glassy material, or
a characteristic particle diameter divided by the speed of
sound in a granular material. These time scales are much
faster than all others in the problem, and rearrangements
are taken to be instantaneous in the STZ model.

The time scale for stress equilibration in the material
is of the order of the thickness of the layer divided by the

speed of sound. Note that since the layer contains many
particles, this is certainly much slower than an individ-
ual STZ rearrangement. This time scale is also taken
to be instantaneous in the model, which is implicit in
Equation (4). For the theory to be applicable, all other
processes must be slower than stress equilibration.

The time scale for effective temperature evolution is
the inverse plastic strain rate. This describes both energy
dissipation and diffusion and it must be slower than the
stress equilibration time. Large strain rates tend to occur
for large driving rates V0, and also for stick-slip motion
when the spring is very compliant. This restricts the
range of driving rates as we numerically integrate the
equations.

Because we assume that the slider is overdamped, we
ignore the inertia of the block. This amounts to taking
the time scale for oscillations of the spring slider to be
much faster than the inverse plastic strain rate. The
duration of a stick-slip event is thus much longer than the
natural oscillation period of the unencumbered block and
spring, which means that the frictional time scale dictates
the dynamics of stick-slip. Stick-slip can also occur in an
underdamped regime with a larger block mass, but we
do not consider that limit in our analysis.

D. Non-Dimensional Equations

We non-dimensionalize the equations using the follow-
ing parameters: scale all times by the STZ rearrange-
ment time t0, scale all lengths by the material width
w, and scale all stresses by the STZ yield stress τy.
The parameters can thus be redefined as follows: stress
τ ′ = τ/τy, strain rate γ̇′ = t0γ̇, driving rate V ′0 = V0t0/w,
STZ activation stress σ′d = σd/τy, diffusion length scale
D′ = D/w2, and spring constant k′ = kw/τy. The non-
dimensional equations are (dropping all primes on vari-
ables)

τ̇ = k

(
V0 −

∫ 1

0

γ̇ dz

)
, (5)

χ̇ =
γ̇τ

c0

(
1− χ

χ̂ (γ̇)

)
+

∂

∂z

(
Dγ̇

∂χ

∂z

)
. (6)

where χ̂(γ̇) = χw/ log(q0/γ̇) and γ̇ =
f(τ) exp(−1/χ). The stress factor is given by
f(τ) = 2ε exp(−f0) cosh(τ/σd)(1− 1/τ).

The non-dimensional parameters that we use in nu-
merical integration of the block slider model are given
in Table I. We keep all parameters constant except the
driving rate and spring stiffness, which we vary to explore
the parameter ranges that lead to stick-slip motion.

E. Small Scale Effects on Friction in STZ Theory

In STZ Theory, the dynamics of friction is controlled
by the evolution of the effective temperature. The effec-
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TABLE I: Dimensionless parameters for the block slider equa-
tions.

Parameter Description
ε = 10 Strain accumulated per STZ reversal
σd = 1 STZ activation stress
f0 = 11.5 STZ activation energy
c0 = 1 Effective temperature specific heat
D = 0.1 Squared effective temperature diffusion length

scale
χw = 0.8 Effective temperature activation energy
q0 = 1 Strain rate at which STZ Theory breaks down

V0 = varies Driving rate
k = varies spring constant

tive temperature is derived from the underlying statisti-
cal physics of dense, disordered solids and STZ Theory
connects macroscopic frictional behavior to the evolution
of the effective temperature. This includes resolving the
spontaneous localization of strain. Other friction laws
that do not resolve the internal dynamics of the interfa-
cial material are a priori incapable of resolving the dy-
namical shear band instability.

Manning et al. [24] showed that a key parameter that
connects the microscopic physics to the macroscopic dy-
namics in STZ Theory is the effective temperature acti-
vation barrier χw. Manning et al. performed a linear sta-
bility analysis of the STZ equations, and showed that χw
determined the stability of deformation with a spatially
uniform effective temperature. If this activation barrier
is less than unity, homogeneous deformation is linearly
unstable (χw < 1). This is precisely the conditions for
rate weakening friction. Rate weakening refers to the
strain rate dependence of the steady-state shear stress
– as the strain rate increases, the steady-state stress de-
creases. Therefore, rate weakening materials always form
shear bands given any heterogeneity in the initial effec-
tive temperature, as steady sliding is linearly unstable. If
the activation barrier is less than unity, then steady slid-
ing is stable. This corresponds to the parameter range
for rate strengthening friction, where the shear stress in-
creases as the strain rate increases. However, shear bands
can still form if χw > 1 due to transient effects [22, 24].

Although shear bands form for both rate weakening
and rate strengthening materials, we focus on rate weak-
ening materials in this study. Previous studies with
Dieterich-Ruina friction [12] and STZ Theory without
strain localization [15] showed that rate weakening is re-
quired for steady sliding to be unstable in a single degree
of freedom elastic system. When shear band formation
is included, we also find that steady sliding is unstable
only if friction is rate weakening, which we show in the
next section.

III. STICK-SLIP DYNAMICS

In this section, we explore the dynamics of the block
slider model with STZ Theory. We investigate the ef-
fects of shear band formation on the stability of frictional
sliding, and generate a phase diagram that distiniguishes
between parameters that produce stick-slip versus steady
sliding with and without shear bands. We also identify
more exotic stick-slip cycles, and connect the underlying
microscopic physics to the observed complex dynamics.
This involves both analytical and numerical studies with
the STZ equations.

For fixed material parameters, the type of motion de-
pends on the driving rate (the speed at which the spring
is loaded), and the stiffness of the spring. If we fix the
spring stiffness, large driving velocities result in steady
sliding of the block. The slider moves at the same ve-
locity as the load point (the end of the spring that is
pulled at a constant velocity), and the shear stress is at
its steady-state value. At slower driving rates, the block
undergoes repeated stick-slip cycles. If we instead fix the
driving velocity, stiff springs produce steady sliding and
compliant springs produce stick-slip. The spring stiffness
and the driving rate are both important for determining
the slider dynamics, as observed in experiments [33].

In laboratory experiments, the transition from steady
sliding to stick-slip is usually investigated by fixing the
spring stiffness and varying the driving velocity, as it is
much easier to change the driving velocity in an experi-
ment. In STZ Theory, it is more straightforward to cal-
culate the stiffness at which sliding becomes unstable as
a function of velocity, because the velocity as a function
of stiffness cannot be obtained in closed form. This is
due to the nonlinear dependence of the stress and effec-
tive temperature on the driving rate. Ultimately, both
approaches are equivalent as each determines the bound-
ary in (V0, k) space separating stick-slip and steady slid-
ing. Because we solve for the stiffness as a function of
velocity, we refer to the spring stiffness where the mo-
tion transitions from stable sliding to stick-slip as the
critical stiffness kcrit(V0). Our analytical results focus
on determining the critical stiffness as a function of the
STZ parameters, allowing us to connect stick-slip to the
microscopic physics of deformation.

An example of stick-slip with the STZ law is illustrated
in Figure 2, which shows shear stress as a function of the
slider velocity for one cycle of the motion. The slider
velocity is plotted on a logarithmic scale. The vertical
line indicates the velocity at which the spring is pulled
V0. At the left, the velocity is much smaller than the
driving velocity V0 and the slider “sticks” (i.e. creeps at
a small velocity). As the spring is loaded, the shear stress
increases until the spring overcomes the frictional resis-
tance. The block begins to slip much more rapidly than
the rate at which the spring is pulled. The shear stress
drops, and the block overshoots the load point, which
causes it to “stick” again, and the cycle repeats.

Stick-slip motion occurs when steady frictional sliding
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FIG. 2: Stress and slider velocity evolution during periodic
stick-slip motion with the STZ law. Instead of sliding steadily,
which would be a single point on this diagram, the block
cycles through successive “stick” and “slip” cycles. The “x”
on the diagram indicates the steady sliding solution. At the
far left, the block is moving much slower than the rate at
which the spring is pulled (the vertical line), and the shear
stress increases as the spring is extended. At the top, the
spring force is large enough to initiate slip and the block slips
rapidly relative to V0. The block overshoots the load point
and the spring stops the block at the bottom of the loop.
The cycle repeats as the stress build up again during the
stick phase. Note that the slider velocity is not zero during a
“stick” cycle – the block creeps much slower than the rate at
which the spring is pulled, but never truly stops.

is unstable, as shown in Figure 3. The plot shows the
frictional stress as a function of the load point displace-
ment. The slider begins sliding steadily, but the block
motion transitions to repeated stick-slip cycles. The in-
set in Figure 3(b) shows that stick-slip motion involves
elastic loading by the spring over a large load point dis-
placement during the “stick” phase. The stress drops
very rapidly during the “slip” phase, indicating a large
slider velocity.

A. Analytical Results

Stick-slip instabilities occur when the steady sliding
solution to the block slider equations becomes unstable
to perturbations. The system of equations describing the
block motion is

τ̇ = k

(
V0 − f (τ)

∫ 1

0

exp (−1/χ) dz
)

; (7)

χ̇ =
f (τ) exp (−1/χ) τ

c0

[
1− χ

χ̂ (γ̇)

]
(8)

+Df (τ)
∂

∂z

[
exp (−1/χ)

∂χ

∂z

]
.
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FIG. 3: Shear stress as a function of load point displacement
for stick-slip motion. The load point displacement refers to
the displacement of the end of the spring that is pulled at a
constant rate. (a) The block starts out sliding steadily, but
steady sliding is unstable and the motion evolves into stick-
slip cycles. (b) The inset shows a close up of stable, periodic
stick-slip cycle, shown in Figure 2, contained in the gray box
of the main Figure. The stress increases during the “stick”
phase due to the elastic loading of the spring, while the rapid
slip of the block suddenly drops the stress during the “slip”
phase.

These are the same equations as Equations (5)-(6), with
the strain rate written out explicitly in terms of the stress
and effective temperature. We analytically determine the
critical stiffness using a linear stability analysis of the
STZ equations. In Section III B, we confirm the results
by numerically integrating the block slider model.

Linear stability analysis determines if perturbations to
the stress and effective temperature grow or decay in
time. Mathematically, this involves finding the real part
of the eigenvalues of the Jacobian. Negative real parts
imply perturbations to the stress and effective temper-
ature decay exponentially in time, and steady sliding is
stable. Positive real parts imply steady sliding is unsta-
ble, and perturbations to the stress and effective temper-
ature grow exponentially in time.

The analysis is straightforward, though the intermedi-
ate expressions in the calculation are fairly complicated.
We calculate stability criteria for homogeneous deforma-
tion, where the strain rate is uniform throughout the ma-
terial, and for localized deformation, where the strain
rate is determined by the dynamic evolution of the ef-
fective temperature. The details of the stability analysis
are presented in Appendix B.

If deformation is homogeneous throughout the interfa-
cial material, steady sliding is unstable if the following
criteria is met:

−kV0f
′ (τ)

f (τ)
+
V0τ

c0χ̂

(
1
χw
− 1
)
> 0. (9)
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This expression is derived in Appendix B. For local-
ized deformation, we examine the stability of deforma-
tion with a steady shear band, which is an approximate
steady sliding solution to the block slider equations. This
replaces the homogeneous solution when internal degrees
of freedom of the interfacial material are resolved. In the
localized case, the instability criteria is

−kV0f
′ (τ)

f (τ)
+
γ̇τ

c0χ̂

(
1
χw
− 1
)
−2D

γ̇

χ3

(
∂χ

∂z

)2

> 0. (10)

For the derivation of this result, see Appendix B.
For both homogeneous and localized deformation, the

stability criteria (Equations (9) and (10)) depend on sev-
eral different terms. In both expressions, the first term
comes from the spring force, which is always less than
zero and is therefore always stabilizing. This term is
identical for the two cases. The second term in both
expressions results from energy dissipation in the amor-
phous material. This term can be greater than zero, and
thus can be destabilizing. Note that for homogeneous
deformation, the dissipation term is proportional to the
driving rate V0, while for localized deformation, it is pro-
portional to the plastic strain rate γ̇. The strain rate
in a shear band is larger than the overall driving rate,
so localization makes energy dissipation more destabi-
lizing. For localized deformation, the third term comes
from diffusion. This term is always negative, and is thus
stabilizes steady sliding. The increase in the energy dis-
sipation term is the larger effect, implying that localiza-
tion results in stick-slip motion over a larger range of pa-
rameters. The stability criteria connects the microscopic
physics of the effective temperature (the energy dissipa-
tion and diffusion terms) to the macroscopic frictional
behavior (the stress term).

The critical stiffness is the stiffness at which the terms
exactly cancel. For the homogeneous case this is simply

kcrit,h (V0) =
f (τ) τ (V0)
f ′ (τ) c0χ̂ (V0)

(
1
χw
− 1
)
. (11)

To determine the critical stiffness for localized deforma-
tion, we must quantitatively determine the effect of local-
ization (i.e. determine the strain rate and effective tem-
perature in the shear band). We cannot do this analyti-
cally, as the effective temperature governing equation is
highly nonlinear. We instead estimate it by assuming
that to a first approximation, the strain rate is constant
inside a shear band of thickness a, and negligible outside
the shear band. This means that the strain rate in the
shear band is V0/a, and the effective temperature inside
the shear band is χ̂(V0/a). We also must estimate ∂χ/∂z
to quantify the effect of diffusion. Because the strain rate
is negligible outside the shear band, χ̂ is not defined, so
we instead use the value of the effective temperature with
driving rate V0, χ̂(V0). Therefore, if we have an estimate
of the shear band thickness a, we can easily calculate
γ̇ = V0/a, χ̂(V0/a), and ∂χ/∂z = (χ̂(V0/a) − χ̂(V0))/a,
and use these values to estimate the critical stiffness.

We estimate the shear band thickness a by assum-
ing that dissipation and diffusion roughly balance in the
shear band. Equating these terms gives:

γ̇τ

c0
∼ Dγ̇ χ

a2
. (12)

The strain rate divides out, and solving for a yields

a ∼
√
Dc0χ

τ
. (13)

This expression shows that a scales with the diffusion
length

√
D, but also depends on the stress, the effec-

tive temperature, and the effective temperature specific
heat. Therefore, given the driving rate, we determine the
steady state shear stress and effective temperature, and
use these values to predict a.

Tests of Equation (13) through numerical integration
show that the scaling for each of the parameters is cor-
rect. However, direct use of Equation (13) underesti-
mates a. This is because the energy dissipation term
is smaller than the estimate of γ̇τ/c0, as χ is not com-
pletely negligible compared to χ̂. A better estimate can
be obtained by numerically integrating the STZ equa-
tions once to determine a constant of proportionality. We
use the half width of the shear band at half the maximum
strain rate as our estimate of a. This criteria predicts
that the shear band thickness is about 3.7 times larger
than in Equation (13) for the parameters in Table I. The
value of the critical stiffness is not very sensitive to this
proportionality factor. If the factor is changed to 3 or
4.5, the critical stiffness decreases by about 10% in both
cases. Both cases result in a decreased critical stiffness
because there are two competing localization effects, dis-
sipation and diffusion. Increasing the proportionality fac-
tor changes the dissipation effect more than the diffusion
effect, and decreasing the proportionality factor changes
the diffusion effect more than the dissipation effect.

Therefore, the shear band thickness for the parameters
in our simulations is

a = 3.7

√
Dc0χ̂(V0)

τ
, (14)

and the critical stiffness for localized deformation is

kcrit,l (V0) =
f (τ) τ (V0)

af ′ (τ) c0χ̂ (V0/a)

(
1
χw
− 1
)

(15)

−2Df (τ) (χ̂ (V0/a)− χ̂ (V0))2

(aχ̂ (V0/a))3 f ′ (τ)
.

Equations (11) and (15) determine the boundaries for
homogeneous and localized deformation in (k, V0) space
separating stick-slip and steady sliding. Above kcrit,
steady sliding is stable, and below kcrit, stick-slip occurs.
The expression for localized deformation differs from the
homogeneous expression due to the diffusion term and
the larger dissipation term. These changes have com-
peting effects – diffusion stabilizes steady sliding, while
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dissipation promotes unstable sliding. The increase in
the energy dissipation term has a larger effect, and the
critical stiffness is larger for localized shear than for ho-
mogeneous deformation. In both cases, rate weakening is
required for steady sliding to be unstable (if χw > 1, then
the critical stiffness would have to be negative, which
is unphysical). The function f(τ) is determined by the
stress dependence of the rate switching factor. In the
case of exponential stress dependence, f(τ)/f ′(τ) ≈ σd,
and the critical stiffness is proportional to the steady
sliding stress and inversely proportional to the effective
temperature. Note that the stress and effective tempera-
ture are both functions of the driving velocity V0, which
means that the critical stiffness depends on V0 for both
types of deformation. The stress decreases with increas-
ing driving rate (since friction is rate weakening), and
the effective temperature increases with the driving rate.
This means that as the driving rate increases, the critical
stiffness decreases, which is consistent with experiments
[33]. This rate dependence is not captured by Dieterich-
Ruina friction, which predicts that the critical stiffness is
independent of the driving rate.

An important implication of our analysis is that lo-
calized deformation cannot be approximated by homo-
geneous deformation with a reduced material thickness.
This is because the diffusion term in Equation (15) re-
duces the critical stiffness, an effect that the homoge-
neous model cannot incorporate. It is necessary to re-
solve the internal material instabilities in order to pro-
duce the correct macroscopic behavior.

B. Numerical Results

We confirm our analytic predictions for the dependence
of the critical stiffness on the driving rate through numer-
ical integration of the STZ equations. We perform nu-
merical simulations to ensure that our estimate for the
shear band thickness is accurate, and to explore the con-
nection between the internal disorder characterized by
the effective temperature and irregular stick-slip dynam-
ics.

We integrate Equations (7)-(8) along with the consti-
tutive law (Equation (1)). We first turn the partial dif-
ferential equation into a system of ordinary differential
equations. We approximate the spatial derivatives using
central second order finite differences, with the diffusion
term is split into two separate terms using the product
rule. We write the spatial integral in Equation (7) as a
numerical integral using the trapezoidal method. Once
the STZ equations are written as a system of ordinary
differential equations, we use a second order linearly im-
plicit trapezoidal method to advance the system in time.
Because stick-slip events involve longer periods of elastic
loading followed by rapid failure, we use an adaptive time
stepping method to efficiently resolve the slider motion.

We vary the scaled driving rate from V0 = 10−12 to
10−4, and vary the scaled spring stiffness at each velocity

to find where the transition from steady sliding to stick-
slip occurs. The other parameters are given in Table I.
For each set of V0 and k, we start the block at steady
sliding. If the stress and slider velocity do not remain
constant, then steady sliding is unstable. Figure 3(a)
illustrates an example of the stress evolution when steady
sliding is unstable – the shear stress begins to oscillate,
and the oscillations grow into stick-slip cycles.

We compare slider motion in cases involving dynamic
formation of a shear band with deformation that is homo-
geneous. To obtain homogeneous deformation, we start
the system with a spatially homogeneous effective tem-
perature. In contrast, to form a shear band, a small
perturbation of the form δχ sech(z/δz) is added to the
initial effective temperature. We find that the values of
δχ and δz do not influence the limit cycle of stick-slip mo-
tion nor the final width or amplitude of the shear band.
For simplicity, we use values of δχ = 10−4 and δz = 0.1
for all of our localized simulations.

Figure 4 shows the phase diagram in (V0, k) space that
results from our analytical and numerical studies. As ex-
pected, the critical stiffness decreases with the driving
rate, and the critical stiffness for localized deformation
is larger than that for homogeneous shear. The ana-
lytical expression for the critical stiffness with homoge-
neous shear matches extremely well with the numerical
results. For localized deformation, our analysis yields a
curve that is slightly below the curve obtained numeri-
cally. This discrepancy is due to the approximations we
used to estimate the shear band width and the magnitude
of the diffusion term. Changing the value of the correc-
tion factor in the prediction of the shear band thickness a
(Equation (14)) does not improve the analytical predic-
tions. If the value of this factor is changed from 3.7 to 3
or 4.5, the prediction of the critical stiffness decreases by
10% in both cases. As mentioned above, the critical stiff-
ness decreases as the correction factor is either increased
or decreased due to the competing effects of dissipation
and diffusion.

Our numerical results also indicate that the transition
from steady sliding to stick-slip is continuous. As the
stiffness is increased towards the critical stiffness, the
amplitude of stick-slip cycles approaches zero. The tran-
sition is continuous at all velocities tested in our study.

We also use numerical integration to explore the dy-
namics of stick-slip. We do not observe complex stick-slip
cycles for the homogeneous case. We find that localiza-
tion produces irregular stick-slip cycles in certain regions
of parameter space. Simultaneous observations of irreg-
ular stick-slip and the internal effective temperature dy-
namics establishes a connection between the small scale
physics and exotic macroscopic dynamics.

Multiple period stick-slip occurs for the lowest driv-
ing rates in our study, as shown in Figure 5. This is a
closer look at the gray box at the far left of Figure 4,
just below the localized transition from steady sliding
to stick-slip. We see that there are many types of mo-
tion that occur in this small part of parameter space,
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FIG. 4: Comparison of analytical and numerical investigations of stick-slip. The plot shows the critical stiffness as a function
of driving rate for the analytic expressions for homogeneous deformation and localized deformation (Equations (11) and (15),
respectively) and the results obtained through numerical integration of the STZ equations. If the stiffness and driving rate are
above the curve, then steady sliding is stable. If the values of the stiffness and driving rate are below the curve, motion occurs
through stick-slip cycles. The analytical result for homogeneous shear matches extremely well with the numerical results. The
prediction for localized deformation provides a good approximation of the shape of the boundary between stick-slip and steady
sliding. The small discrepancy is due to the difficulty of estimating the shear band width a, as well as the fact that the strain
rate is not constant in the shear band. The gray box indicates the region of parameter space where localized deformation
produces multiple period stick-slip. This region is examined in detail in Figure 5.

including steady sliding, single period stick-slip, double
period stick-slip, many (> 2) period stick-slip, and ma-
terial failure. Material failure refers to the fact that the
strain rate becomes so large that the effective tempera-
ture diverges. Deformation in the amorphous material
no longer occurs in isolated STZs at these large strain
rates, and instead the deformation is more fluid-like. In
the laboratory, stick-slip cycles are still likely to occur
in this regime, but would require additional physics not
included in STZ Theory to be accurately captured theo-
retically.

We look at two specific examples of the irregular slider
dynamics, one example that exhibits two period stick-slip
(the “+” in Figure 5), and one example that exhibits
many irregular stick-slip cycles (the “x” in Figure 5).
Figure 6(a) shows shear stress as a function of load point
displacement for stick-slip cycles with a doubled period.
This stick-slip motion occurs for localized deformation
with V0 = 10−10 and k = 1100. The motion consists of
a pair of alternating large and small events. The shear
stress builds up to the same level during the “stick” phase
of motion in both events, but the sticking time between
slips alternates between two values. The slider slips much
further during the big event, which relaxes the spring
and drops the stress to a lower level, resulting in a longer
sticking time following the large event compared to the
sticking time after the small event. Figure 6(b) shows the
slider velocity as a function of load point displacement.

The large events result in a block velocity that is several
orders of magnitude larger than in the small event. The
inset (Figure 6(c)) shows an enlarged plot of the slider
velocity during the “stick” phases, with labels identify-
ing the small and large events. The slider moves slightly
faster prior to the large event. However, the slider ve-
locity is nearly an order of magnitude below the driving
velocity during the “stick” phases prior to both events.

The slider slips more in the large event due to dif-
ferences in the internal state of the material within the
shear band – the strain rate profile in the material is
different during large and small events. Both the slider
velocity and the plastic strain rate are larger during the
large stick-slip events. Small differences in the effective
temperature have a large impact on the slider dynam-
ics. Figure 7 (far left) shows shear stress as a function
of load point displacement for a large and small stick-
slip event which alternate in a two period cycle. At a
series of four values of the shear stress, we plot the effec-
tive temperature as a function of z position within the
layer. Because the shear stress is equal, differences in
the stick-slip events must arise from differences in the
internal dynamics of the effective temperature.

Figure 7(a) shows the effective temperature at the
stress peaks. Prior to the large event, the effective tem-
perature is slightly elevated at the center of the material.
Dynamic feedbacks in the effective temperature evolu-
tion during slip amplify this difference. The slightly el-
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FIG. 5: Diagram of parameter space where multiple period stick-slip occurs. This is a close-up of the gray box at the far left of
Figure 4, just below the transition from steady sliding to stick-slip for localized deformation. In this smaller region of parameter
space, many types of motion occur, including steady sliding, single period stick-slip, double period stick-slip, many (> 2) period
stick-slip, and material failure. All of the curves are plotted for localized deformation, as multiple period stick-slip does not
occur for homogeneous shear. Material failure means that strain rates during the “slip” cycles are so large that STZ Theory
breaks down. A laboratory slider would likely still exhibits stick-slip motion in this part of parameter space, but additional
physics would have to be added to STZ Theory to model the motion theoretically. The circles indicate the specific values of k
at fixed V0 where we observe a transition from one type of stick-slip motion to another. The “+” at V0 = 10−10 indicates the
specific example of double period stick-slip that we examine in Figures 6-7, and the “x” at V0 = 10−12 indicates the specific
example of many period stick-slip that we examine in Figure 8.

evated effective temperature implies a higher density of
STZs at the center of the material. The strain rate is
also larger, and so the material dissipates more energy.
Energy dissipation leads to faster growth of the effective
temperature, which produces the profiles in Figure 7(b).
The difference is further amplified in Figure 7(c), and in
Figure 7(d) the difference between the effective tempera-
tures correspond to nearly a factor of 1000 increase in the
plastic strain rate. As the effective temperature grows,
the stress drops more rapidly during the large event due
to dynamic weakening. Because the stress drop is larger,
the block slides farther due to the decreased frictional
resistance.

This mechanism leads to further period doublings as
the spring stiffness decreases, until the cycles are irregu-
lar. Figure 8(a) shows the shear stress as a function of
load point displacement for a series of irregular stick-slip
events. This block slider system is driven at V0 = 10−12

with a spring stiffness of k = 1700. The shear stress at
which the slip cycle begins is very similar for both smaller
and larger events. Figure 8(b) shows the evolution of
stress and slider velocity during the four stick-slip events
in the gray box in Figure 8(a). The slider velocity ranges
over many orders of magnitude in the slip events. There
is variation in the block velocity during the “stick” phase,
though it is always well below the load point velocity V0,
shown by the horizontal line. The block velocity during
the “stick” phase is largest following a small event, and
smallest after a large event. However, the slider velocity

during the “stick” phase is not completely indicative of
the size of the next event, as the slider velocity during
the “stick” phase takes on a range of values prior to both
large and small slip events.

Figures 8(a) also shows that there are groups of smaller
slip events followed by a larger slip event. The groups
often have three or four stick-slip events, with several
small events followed by a large event. Consecutive larger
events can also occur, as can be seen around a load point
displacement of 0.3 in Figure 8(a). The consecutive large
events exhibit a smaller stress drop than the large events
in the set of three or four events.

The small scale physics of strain localization leads to
the various sizes of slip events due to the same mech-
anism described above for the double period stick-slip
cycles. The effective temperature is largest in the center
of the material prior to the largest events, and then dy-
namic feedbacks cause the effective temperature to grow
more rapidly, similar to the plots in Figure 7. The tran-
sitions to complex, chaotic behavior in our model arise
from variations in the internal state of the material rather
than instabilities associated with three (or more) macro-
scopic phenomenological degrees of freedom in a dynamic
system, providing physical insight into the mechanisms
that give rise to exotic friction behavior.
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FIG. 6: Two period stick-slip, with V0 = 10−10 and k = 1100.
This point in the parameter space is shown by a “+” in Fig-
ure 5. (a) Shear stress as a function of load point displace-
ment. Instead of a single stick-slip event, there are two dif-
ferent stress drop sizes. The stress builds up to the same
level to initiate failure in both event sizes, but the recurrence
time differs between the events. The block slips more in the
large event due to the microscopic effects of localization. (b)
Stress and slider velocity evolution during two period stick-
slip. The slider velocity is several orders of magnitude larger
in the large stick-slip event. The velocity evolution during the
“stick” phase leading up to failure is very similar in the large
and small events. The stick-slip events have different sizes be-
cause of the internal effective temperature profile, which we
examine in detail in Figure 7.

IV. DISCUSSION

Our study shows that strain localization plays an im-
portant role in stick-slip instabilities in amorphous ma-
terials. The critical spring stiffness is larger for localized
deformation than for homogeneous deformation, and our
analytic expressions for the critical stiffness are in good
agreement with numerical integration. The primary ef-
fect that increases the critical stiffness for localized strain
is an increase in the strain rate in the shear band. Dif-
fusion also plays a role by mitigating the increase in the
critical stiffness, though the increased strain rate is the

dominant effect in determining the stability of steady
sliding. Our analysis shows that the localization effect
cannot be replicated in a homogeneous model by simply
reducing the thickness of the material, and that resolving
the microscopic dynamics is important for capturing the
large scale friction.

Other constitutive laws such as Dieterich-Ruina also
predict stick-slip motion [12]. In the Dieterich-Ruina law,
the critical stiffness is independent of the driving rate,
while in STZ Theory the stiffness decreases with increas-
ing driving rate. This general trend is in agreement with
laboratory experiments [33], and previous studies with
STZ Theory that did not resolve the dynamic strain lo-
calization instability [15].

We also find that localized stick-slip can occur in ir-
regular cycles. The effective temperature profile imme-
diately before large and small events is slightly different,
and this change in the microscopic physical state leads to
macroscopically different friction dynamics. Phenomeno-
logical constitutive laws find that stick-slip can occur
with irregular periods, though this requires additional
state variables to provide the degrees of freedom neces-
sary for chaotic stick-slip [13]. Our model instead relates
irregular stick-slip to the internal physics of localization.

Many experiments show irregular stick-slip [1, 8, 34].
The exotic phenomena could arise from many different
sources of complexity, such as additional time scales as-
sociated with the apparatus and/or complex molecules
in the interfacial layer which have their own internal dy-
namics or entanglements. Our study shows that even
for simple interfacial materials, the small scale physics
of strain localization can also be a source of complexity.
Experiments on simpler amorphous materials that can si-
multaneously examine the dynamics of strain localization
(e.g. experiments that can image particle displacements)
could examine the region in parameter space where we
observe irregular stick-slip to test the connection STZ
Theory makes between the microscopic physics and the
microscopic dynamics.

Our model assumes that the effective temperature is
only a function of position across the layer thickness.
This simplifies the modeling, but experiments show that
amorphous materials are heterogeneous in other spatial
directions [35]. Extending slider models to additional di-
mensions may be important for fully capturing the com-
plex stick-slip dynamics seen in various experiments.

Molecular dynamics simulations of amorphous mate-
rials show that stick-slip motion often occurs due to a
phase transition from a solid to a fluid in the material
[16]. This behavior is also observed in experiments [5].
The STZ model does not include the physics of this tran-
sition – melting occurs at the strain rate where the ef-
fective temperature diverges, but STZ Theory does not
include a constitutive description of the material once it
melts. At these high strain rates, plastic deformation no
longer occurs in isolated STZs, and the material instead
flows like a fluid. Future modeling efforts that incor-
porate this melting transition can determine its effects
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FIG. 7: Close-up of the effective temperature shear band in large and small stick-slip events. The far left plot shows the shear
stress as a function of load point displacement for a large and a small stick-slip event. At four different values of the stress,
shown by the dots on the two different curves, we plot the effective temperature profile across the layer (z-direction). Because
the stress is identical for the pair of curves in each of the four plots, the only difference between the block sliders is the effective
temperature profile – the physical internal state of the sheared material is responsible for any differences in the dynamics. (a)
At the peak stress prior to the slip event, the effective temperature profile is slightly different – the shear band is narrower and
the effective temperature is larger in the center prior to the large event. (b) Because of feedbacks in the effective temperature
dynamics, this difference is amplified, and the elevated effective temperature in the center point grows faster during the large
event. This further increases the effective temperature at the center as the plots in (c) and (d) illustrate. Because the effective
temperature is larger during the small event, the strain rate is larger and the shear stress drops to a lower value due to dynamic
weakening. This is why the shear stress in the large event drops nearly twice as much as in the small event.

on stick-slip for comparison with simulations and exper-
iments.

Experiments could determine the thickness of shear
bands during stick-slip motion to test our quantitative
predictions for the effect of localization. In thin films,
the material is often only a few molecules thick [34]. So,
for these systems, localization may not be important as
the shear band thickness may be wider than the entier
material. In thicker materials such as granular materi-
als, this effect is more likely to be important. Daniels and
Hayman [1] observed stick-slip events in a granular ma-
terial and imaged particle displacements before and after
the event. They found that slip occurred only over a
few particle diameters in the layer for some of the stick-
slip events. Experiments on granular materials where
grains can be imaged, or experiments with fault gouge
that examine gouge microstructures following the exper-
iment [4] can determine the shear band thickness. Such
experiments could potentially test our predictions for the
effect of shear bands on stick-slip instabilities.

Our model for stick-slip does not include inertial ef-
fects. We assume that the frictional time scale dominates
stick-slip motion, and that oscillations of the spring/mass
system occur much faster than the inverse plastic strain
rate time scale. Inertial effects are important in some
regimes [17], and can be included in the block slider
equations for numerical studies. However, these dynam-
ical systems involve additional variables and analytical
studies are consequently much more difficult. Stick-slip
motion may require that the inverse plastic strain rate,
mass/spring oscillation time, and stress equilibration
time all be similar. This requires substantially more com-
plicated modeling to resolve stress equilibration and wave
propagation through the amorphous material. Addition
of a mass resulted in chaotic motion with Dieterich-Ruina
friction [36], so inertial dynamics could produce interest-
ing dynamic phenomena in the STZ model.

Stick-slip instabilities are an important aspect of fric-
tion that must be understood to better constrain the dy-
namics of interfaces. Our results show that strain lo-
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FIG. 8: Irregular stick-slip events due to strain localization,
with V0 = 10−12 and k = 1700. This point in parameter
space is shown by an “x” in Figure 4. (a) Shear stress as
a function of load point displacement. Stress drops of many
sizes occur, with irregular recurrence times. The peak stress
is similar for all events, though there are some small varia-
tions. Events usually occur in groups of two or three, with
one or two smaller events preceding a large event, but there
can also be several consecutive larger sized events. (b) Stress
and slider velocity evolution during complex stick-slip cycles.
The plot shows the four stick-slip cycles in the gray box in
(a). The innermost loop is the first small stick-slip, and the
subsequent events are progressively larger. The vertical green
line indicates the load point velocity V0. The block velocity
during sliding varies over many orders of magnitude. Dur-
ing the “stick” phase, there is variation in the velocity of the
block. Small events are followed by increased block velocity
during the “stick” phase, while the slider velocity is lower af-
ter large events. However, the slider velocity prior to a slip
event does not determine its size.

calization plays an important role in the macroscopic
dynamics. Increasing the resolution of other relevant
small scale phenomena in models of macroscopic dynam-
ics should ultimately improve our ability to predict the
deformation and failure in amorphous materials.
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Appendix A: Full Derivation of the STZ Equations

STZ Theory relates the plastic strain rate γ̇ to the the
shear stress τ and the effective temperature χ [29]. The
shear stress quantifies the rate at which STZs switch ori-
entations, and the effective temperature determines the
total number of STZs in the material. Here, we present
the details of the assumptions of the theory and derive
the STZ equation used in this paper (Equation (1)).

In STZ Theory, plastic strain occurs in localized soft
spots that are susceptible to rearrangement under applied
shear stress. These regions, called Shear Transformation
Zones (STZs), switch between two metastable orienta-
tions, denoted “positive” and “negative.” In the model,
an STZ changing from “positive” to “negative” accumu-
lates a positive fixed strain increment, and an STZ chang-
ing from “negative” to “positive” accumulates a negative
fixed strain increment. An STZ undergoing a switch from
“positive” to “negative” is shown in Figure 1 (rightmost
figure). An STZ in the “negative” orientation cannot
shear further at that location, and to sustain plastic flow
STZs are constantly created and destroyed as energy is
dissipated in the material.

Quantitiatively, the basic premise of STZ Theory can
be written as follows:

γ̇ =
2ε

n∞t0
[R (+τ)n+ −R (−τ)n−] . (A1)

The plastic strain rate γ̇ is found from the number of
STZs in each orientation, n+ and n−, and the rate at
which STZs change orientation. The rate switching func-
tion R(τ) describes the rate at which STZ reversals take
place in response to the applied shear stress. The other
parameters are the strain increment per STZ reversal ε,
a reference STZ population n∞, and the time scale for
STZ reversals t0.

Equation (A1) is usually rewritten with the following
change of variables:

Λ =
n+ + n−
n∞

, m =
n− − n+

n+ + n−
. (A2)

The variable Λ is proportional to the total number of
STZs, and m quantifies the bias. After performing this
change of variables, Equation (A1) becomes

γ̇ =
2ε
t0
C (τ) Λ [T (τ)−m] . (A3)
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The constitutive law is written here with two functions
of the rate switching function C(τ) = (R(τ) + R(−τ))/2
and T (τ) = (R(τ)−R(−τ))/(R(τ) +R(−τ)).

We assume an exponential form for R(τ) [37]:

R (τ) = exp (−f0 + τ/σd) . (A4)

The rate switching function depends on an activation
stress σd, and an activation energy scaled by the energy
required to form an STZ. This form for R(τ) is used in
other formulations of STZ Theory [15, 38] and repro-
duces the logarithmic rate dependence of the Dieterich-
Ruina law [21]. The rate switching function combina-
tions are then C(τ) = exp(−f0) cosh(τ/σd) and T (τ) =
tanh(τ/σd). For the parameters in our study, τ >> σd.
Under this approximation, we set T (τ) ≈ 1.

The STZ populations dynamically evolve as STZs
switch between orientations, and energy dissipation cre-
ates and destroys STZs. The evolution equations that we
adopt for the STZ populations are

dn±
dt

=
1
t0

[R (∓τ)n∓ −R (±τ)n±] (A5)

+
γ̇τ

ε (n+ + n−) τy

[n∞
2

exp (−1/χ)− n±
]
.

The first term accounts for STZs switching between the
two possible orientations, and the second term incorpo-
rates STZ creation and annihilation. The overall cre-
ation/annihilation rate is proportional to the rate at
which energy is dissipated in the material. Energy dissi-
pation in the material drives the STZ population towards
a Boltzmann distribution, and the stress τy determines
the fraction of dissipated energy that creates STZs. The
stress τy also turns out to be the yield stress, the stress
below which the material is jammed.

In the Λ and m variables, the evolution equations are

dΛ
dt

=
γ̇τ

n∞Λτy
[exp (−1/χ)− Λ] ; (A6)

dm

dt
=

γ̇

εn∞Λ

{
1− τm

τy
[1 + exp (−1/χ)− Λ]

}
.(A7)

Note that both the Λ and m equations are inversely pro-
portional to the number of STZs n∞Λ. STZ Theory pos-
tulates that STZs occur in local, isolated regions. There-
fore, because the number of STZs is small, the factor
1/(n∞Λ) is large, and the STZ populations evolve much
faster than the stress and effective temperature. With
this in mind, we assume the total number of STZs is al-
ways at its steady state value Λ = exp(−1/χ), which is
set by the local effective temperature.

If we set the total number of STZs to steady state,
then the STZ bias is m = τy/τ . The STZ bias cannot
exceed m = 1, which corresponds to all the STZs in the
“negative” orientation. When this occurs, the material is
jammed (γ̇ = 0) and cannot be sheared further because
there are no regions susceptible to deformation. If τ >
τy, then the material flows. Therefore, the steady state

value for the STZ bias is dependent on the shear stress
as follows:

m =
{

1, τ < τy;
τy/τ, τ ≥ τy.

(A8)

The STZ dynamics determine if the material is jammed
or flowing, but otherwise the stress and effective temper-
ature have the dominant effect on the friction dynamics.

If we set the STZ populations to their steady state
values, then we have the exact form for Equation (1):

γ̇ =
2ε
t0

exp (−f0) cosh [τ/σd] exp (−1/χ)
[
1− τy

τ

]
,

(A9)
unless τ < τy, in which case γ̇ = 0. The strain rate de-
pends on the shear stress, and the internal physics of the
material is described by the effective temperature. We
discuss the dynamic equation for the effective tempera-
ture in Section II A in the main text.

Appendix B: Linear Stability Analysis for the STZ
Equations

1. Homogeneous Deformation

First, we perform the stability analysis with the as-
sumption that the effective temperature is spatially ho-
mogeneous. In this case, the diffusion term in the effec-
tive temperature equation is zero, and the spatial integral
in Equation (7) is

∫
exp(−1/χ)dz = exp(−1/χ). The dy-

namical system for homogeneous deformation is

τ̇ = k (V0 − f (τ) exp (−1/χ)) ; (B1)

χ̇ =
f (τ) exp (−1/χ) τ

c0

[
1− χ

χ̂ (γ̇)

]
. (B2)

The Jacobian of the STZ equations for homogeneous de-
formation is

J11 =
∂τ̇

∂τ
= −kf ′ (τ) exp (−1/χ) ; (B3)

J12 =
∂τ̇

∂χ
= −kf (τ) exp (−1/χ)

χ2
; (B4)

J21 =
∂χ̇

∂τ
=

[f ′ (τ) τ + f (τ)] exp (−1/χ)
c0

(
1− χ

χ̂

)
+
f (τ) exp (−1/χ) τ

c0

χ

χ̂2

∂χ̂

∂τ
; (B5)

J22 =
∂χ̇

∂χ
=

f (τ) exp (−1/χ) τ
c0χ2

(
1− χ

χ̂

)
+
f (τ) exp (−1/χ) τ

c0

(
χ

χ̂2

∂χ̂

∂χ
− 1
χ̂

)
.(B6)

The maximum effective temperature is a function of the
strain rate, which means that χ̂ depends on both the
stress and the effective temperature. When evaluated
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at steady state (V0 = f(τ) exp(−1/χ) and χ = χ̂), this
becomes

J11 =
∂τ̇

∂τ
= −kf

′ (τ)V0

f (τ)
; (B7)

J12 =
∂τ̇

∂χ
= −kV0

χ2
; (B8)

J21 =
∂χ̇

∂τ
=

V0τ χ̂

c0χw

f ′ (τ)
f (τ)

; (B9)

J22 =
∂χ̇

∂χ
=

V0τ

c0χ̂

(
1
χw
− 1
)

; (B10)

since the derivatives of χ̂ with respect to stress and ef-
fective temperature are

∂χ̂

∂τ
=

χ̂2

χw

f ′ (τ)
f (τ)

; (B11)

∂χ̂

∂χ
=

χ̂2

χ2

1
χw

. (B12)

The real part of the eigenvalues is the trace of the Jaco-
bian, as near the transition from stable sliding to unsta-
ble sliding, the eigenvalues are complex. Steady sliding is
unstable if the trace of the Jacobian is greater than zero:

Tr (J) =
∂τ̇

∂τ
+
∂χ̇

∂χ
= −kV0f

′ (τ)
f (τ)

+
V0τ

c0χ̂

(
1
χw
− 1
)
> 0.

(B13)
Equation (9) reveals that stability is determined by two
competing effects. The first term in Equation (B13)
comes from the spring force. This term is always neg-
ative, as the spring force is always a restoring force that
pushes the block towards equilibrium. The second term
in Equation (9) comes from the energy dissipation term in
the effective temperature evolution equation. This term
is destabilizing only if χw < 1 (i.e. for rate weakening
parameters).

2. Localized Deformation

We now determine the role of localization by perform-
ing a linear stability analysis on the full STZ equations
(Equations (7)-(8)). This involves the same steps as the
homogeneous case, but with the inclusion of the diffusion
term in Equation (8) and the spatial integral in Equa-
tion (7). We study how perturbations to a steady shear
band solution to the effective temperature equations grow
in time. To simplify the analysis, we assume that the per-
turbations to the effective temperature are not a function
of z. Spatially varying perturbations can be considered
through an analysis of normal modes. However, it turns
out that the zero wavenumber mode is the least stable
(the diffusion term in Equation (8) results in the higher
wavenumber modes being more stable), so nothing extra
is gained with a perturbation that varies with z.

For localized deformation, the Jacobian of the system
is:

J11 =
∂τ̇

∂τ
= −kf ′ (τ)

∫ 1

0

exp (−1/χ) dz; (B14)

J12 =
∂τ̇

∂χ
= −kf (τ)

∫ 1

0

exp (−1/χ)
χ2

dz; (B15)

J21 =
∂χ̇

∂τ
=

[f ′ (τ) τ + f (τ)] exp (−1/χ)
c0

(
1− χ

χ̂

)
+
f (τ) exp (−1/χ) τ

c0

χ

χ̂2

∂χ̂

∂τ

+Df ′ (τ)
∂

∂z

[
exp (−1/χ)

∂χ

∂z

]
; (B16)

J22 =
∂χ̇

∂χ
=

f (τ) exp (−1/χ) τ
c0χ2

(
1− χ

χ̂

)
(B17)

+
f (τ) exp (−1/χ) τ

c0

(
χ

χ̂2

∂χ̂

∂χ
− 1
χ̂

)
+Df (τ)

∂

∂χ

{
∂

∂z

[
exp (−1/χ)

∂χ

∂z

]}
.

Perturbations to the effective temperature are indepen-
dent of z, so the χ derivative in the diffusion term in J22

only acts on the exp(−1/χ) factor:

∂

∂χ

{
∂

∂z

[
exp (−1/χ)

∂χ

∂z

]}
(B18)

=
∂

∂z

[
exp (−1/χ)

χ2

∂χ

∂z

]
(B19)

=
1
χ2

∂

∂z

[
exp (−1/χ)

∂χ

∂z

]
(B20)

−2 exp (−1/χ)
χ3

(
∂χ

∂z

)2

.

When evaluated at steady-state, where V0 =
f(τ)

∫
exp(−1/χ) dz and the diffusion and energy

dissipation terms balance, the Jacobian becomes:

J11 =
∂τ̇

∂τ
= −kf

′ (τ)V0

f (τ)
; (B21)

J12 =
∂τ̇

∂χ
= −kf (τ)

∫ 1

0

exp (−1/χ)
χ2

dz; (B22)

J21 =
∂χ̇

∂τ
=

f (τ) exp (−1/χ)
c0

(
1− χ

χ̂

)
+
f (τ) exp (−1/χ) τ χ̂

c0χw

f ′ (τ)
f (τ)

; (B23)

J22 =
∂χ̇

∂χ
=

f (τ) exp (−1/χ) τ
c0χ̂

(
1
χw
− 1
)

−2Df (τ) exp (−1/χ)
χ3

(
∂χ

∂z

)2

.(B24)

As with homogeneous deformation, the eigenvalues turn
out to be complex at steady state. The real part of the
eigenvalues is the trace of the Jacobian. Therefore, if the
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trace of the Jacobian is greater than zero, steady sliding
is unstable:

Tr (J) =
∂τ̇

∂τ
+
∂χ̇

∂χ
(B25)

= −kV0f
′ (τ)

f (τ)
+

γ̇τ

c0χ̂

(
1
χw
− 1
)

−2D
γ̇

χ3

(
∂χ

∂z

)2

> 0.

There are two important differences between this expres-

sion and the equivalent expression for homogeneous de-
formation (Equation (B13)). First is the presence of the
diffusion term, which is negative and therefore stabilizes
the growth of perturbations. The other important differ-
ence is that the energy dissipation term (the second term
in Equation (B25)) depends on the strain rate rather than
the average strain rate. This term is much larger when
a shear band forms due to the elevated strain rate in the
shear band. Ultimately this implies that stick-slip mo-
tion occurs for a larger spring stiffnesses when a shear
bands forms.
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