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First-Passage Properties of Records

. Records of correlated random variables

lI. Records of uncorrelated random variables

Two different problems, similar phenomenology



Records & Extreme value statistics
New frontier in nonequilibrium statistical physics

Biological evolution Bak, Derrida, Flyvbjerg, Jain, Krug

Population dynamics Kameney, Meerson, Dykman, Doering

Brownian motion Comtet, Majumdar, Krug, Redner
Surface gl"OWth Spohn, Halpin-Healy, Majumdar, Schehr
Transport Mallick, Krapivsky, Derrida, Lebowitz, Speer
Climate Bunde, Havlin, Krug, Wergen, Redner
Earthquakes Davidsen, Sornette, Newman, Turcotte, EB

Finance Bouchaud, Stanley, Majumdar
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Maxima of Brownian Particles
(records of correlated variables)



Brownian Positions Brownian Maxima




First-Passage Kinetics: Brownian Positions

Probability two Brownian particle do not meet

U A

® Universal probability , >»
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® Asymptotic behavior reler s

(AN t_1/2

Behavior holds for Levy flights, different mobilities, etc

Universal first-passage exponent

S. Redner, A guide to First-Passage Processes 200 |



First-Passage Kinetics: Brownian Maxima

Probability maximal positions remain ordered

X% m, m,

® Numerical simulations

S ~t P

® First-passage exponent

= 8 = 0.2503 % 0.0005

Is /4 exact? and if it is, does /4='2%"/?
Is exponent universal?



Monte Carlo simulations

10: | | |

® simulation
o t-1/4

Hints at a rational exponent

Inconclusive due to slow convergence



mi1 > mo 1if and only if my > x5

m,




From four variables to three

Four variables: two positions, two maxima

my1 >x1 and me > To
The two maxima must always be ordered
M1 > Moy
Key observation: trailing maximum is irrelevant!
mi1 > mo if and only if my > x5
Three variables: two positions, one maximum

mi1 >x1 and mq > To



From three variables to two

Introduce two distances from the maximum

u=mq1—2x1 and v =mq1 — To

Both distances undergo Brownian motion
Op(u,v,t)
ot

Boundary conditions: (i) absorption (ii) advection

B Op Op
foro i (22

Probability maxima remain ordered

P(t) = /OOO/OOO du dv p(u, v, t)

= DV?p(u, v,t)

=0

u=0
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“Backward” evolution

® Study evolution as function of initial conditions

P = P(UO, Vo, t)
® Obeys diffusion equation
5’P(u0, Vo, t)

Ot
® Boundary conditions: (i) absorption (ii) advection

_ 0 o <8P|6’P>

vo=0 Oug | Ovo
® Advection boundary condition is conjugate

— DVZP(U(), Vo, t)

P =0

U()ZO




Solution

Use polar coordinates

Vo
r=q/u?2+v2 and 6 = arctan —
0 0 ™

Laplace operator
w_ 9 10 17
or2  ror  r2002
Boundary conditions: (i) absorption (ii) advection

oP 0P
P — p—
9o =0 and (T or 8«9) |9:7r/2 !

dimensional analysis + power law + separable form

P(r,0,1) ~ (Z)Bf(ﬁ)




Selection of exponent

Exponent related to eigenvalue of angular part of Laplacian
f"(0) + (28)°f(0) =0
Absorbing boundary condition selects solution
£(6) = sin (266)
Advection boundary condition selects exponent

tan (Bm) =1

First-passage probability

P o~ t—1/4



General diffusivities

ben Avraham

Particles have diffusion constants D| and D> Leyvraz 88

x1,To) — (r1,x2) with (x1,29) = ( : )

Condition on maxima involves ratio of mobilities
D]_ s s
— M1 > M9
Do

Analysis straightforward to repeat

First-passage exponent: nonuniversal, mobility-dependent

1 | Do
_ — t o
15 - arctan D,



Numerical verification

O .3 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! | ! ! ! ! | ! ! ! !

I ® simulation ]
0.4 — theory —
03F
0.2
0.1F ]
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0 0.5 | 1.5 2 2.5 3

D,/D,
Perfect agreement
simulations can confirm a line (but not a point)



Properties

Depends on ratio of diffusion constants

B(D1,D2) =5 <&>

Do
Bounds: involve one immobile particle
1
B(0) = 5 B(o0) =0

Rational for special values of diffusion constants

p(1/3)=1/3  B(1)=1/4  ((3) =1/6

Duality: between “fast chasing slow” and “slow chasing fast”

(oe) 2 (5:) =3

Alternating kinetics: slow-fast-slow-fast



Inferior & Superior walks

Maximum is always behind or ahead of the  «rapivsky & Redner 95
average maximum of a Brownian particle EB & Krapivsky |4

; —
/

=

e
" _ I

Dy (—\/2/7) =0 A =0.241608 Dsgi1 (J2/7) =0 3 =0.382258

Different mobilities: neglect fluctuations in maximum of slower
particle (represent maximum by its average) and obtain limits

. {% ~1/D,/D; Dy < Ds

~ \/D2/D; Dy < Dy



Multiple particles

® All maxima perfectly ordered Fisher & Huse 88
mMq > Mo > 1Mg > -+ > My,
® Only one leader Bramson & Griffith 91
mi1 > Mo M1 >M3 -+ M1 > My
® Only one laggard ben Avraham & Redner 03
mi1 > My Mo > My, o0 Mip—1 > My,

® Three families of first-passage exponents
Ay ~t™  By~t P Oyt

Exponents are eigenvalues of
“angular” component of Laplace in n dimensions



Three families of exponents

Simulation results: maxima vs positions

Grassberger 03
ben Avraham 03
EB & Krapivsky 10

maxima positions
n Ay, Bn Tn An bn, Cn
2| 1/4 | 1/4 | 1/4 | 1/2 | 1/2 | 1/2
3065304320335 3/2 | 3/4 | 3/8
41 1.13 | 0.570 | 0.376 3 0.91 | 0.306
5 | 1.60 | 0.674 | 0.401 5! 1.02 | 0.265
6 | 2.01 0.759 | 0.417 | 15/2 | 1.11 | 0.234
Positions: one family is known Fisher & Huse 88
n(n —1
b, — (n —1)
4
Asymptotic behavior for large number of particles
1 1
oy ~ N Bn:nzzlnn %J%§
And a conjecture!
T — 1 Y1 = 0
w/n — ZTL o = 1/4



Scaling laws for eigenvalues
in thermodynamic limit

2 ' ! ' I ' | ' |
— DZB(ZU “erfc” (2x)) =0
1.5F * N=10> -
= N=10*
p1F
0.5F
O I I | I | I
0 0.2 04 0.6 0.8

x=m/N



Conclusions |

First-passage kinetics of extremes in Brownian motion

Problem reduces to diffusion in a two-dimensional
corner with mixed boundary conditions

First-passage exponent obtained analytically

Exponent is continuously varying function of mobilities
Relaxation is generally slower compared with positions
Open questions: multiple particles, higher dimensions
Scaling of eigenvalues in thermodynamics limit?

“Race between maxima” as a data analysis tool
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Incremental Records
(records of uncorrelated variables)



Marathon world record

Year |Athlete Country Record Improvement
2002 [Khalid Khannuchi [USA 2:05:38

2003 (Paul Tergat Kenya 2:04.55 0:43
2007 |Haile Gebrsellasie |Ethiopia 2:04:26 0:29
2008 |Haile Gebrsellasie |Ethiopia 2:03:59 0:27
2011 [Patrick Mackau Kenya 2:03:38 0:21
2013 |Wilson Kipsang  [Kenya 2:03:23 0:15

Incremental sequence of records

every record improves upon previous
record by yet smaller amount

Are incremental sequences of records common!

source: wikipedia



Incremental Records

Ya 4
Ys !

8

A L4

Y1

Incremental sequence of records

every record improves upon previous
record by yet smaller amount

random variable = {0.4,0.4,0.6,0.7,0.5,0.1}
latest record = {0.4,0.4,0.6,0.7,0.7,0.7} -
latest increment = {0.4,0.4,0.2,0.1,0.1,0.1} .

/

What is the probability all records are incremental?



Probability all records are incremental

0

10 E'””” LR L L LA L LLLLL LU LU L
N o—o simulation
I 0317621
I N
q
10 F
S I
-2
10 ¢
107 N R R I R I A
100 10 100 100 10 10 10 10 10
N
yy
Sy ~ N r = 0.31762101

Power law decay with nontrivial exponent
Question is free of parameters!



Uniform distribution

—0—0—0—0—0 ] Fo—0—00—0—

>

1/(N +1) x 1N
The variable x is randomly distributed in [0:1]
plx)=1 for 0<x<1
Probability record is smaller than x
Ry(z) =z
Average record

B N
- N +1

Number of records

AN

1 1
My =1 4 | e
N 5 3 -+



Distribution of records
Probability a sequence is inferior and record < x

GN(f) — Sy :GN(l) To = T
One variable Ty = 211
Gi(z) =2 = 51 =1 /2
Two variables
3 o 3 X
T2 — &1 > 11 G2($):—Qj — S5 = -
4 4 -

® |n general, conditions are scale invariant =z — ax

Distribution of records for incremental sequences
GN (x) — SN mN

Distribution of records for all sequences equals ="

. . Fisher-Ti 28
Statistics of records are standard & "%



Scaling behavior

ot
|
27227

i
LN

G (X)/G(1)
N_b o NN >

0.2

® Distribution of records for incremental sequences
GN(CIZ)/SN — gV = [1 — (1 — ZIZ)]N — e °

® Scaling variable
s=(1—xz)N

Exponential scaling function



Distribution of increment+records
® Probability density Sn(x,y)dxdy that:

|. Sequence is incremental
2. Current record is in range (x,x+dx)
3. Latest increment is in range (y,y+dy) with 0<y<x

® Gives the probability a sequence is incremental

1 x
SN:/ d:z:/ dy Sy (x,vy)
0 0

® Recursion equation incorporates memory

T—y
Snar(2,y) = 2 Sw (2, ) + / ay Sx(x -y, y)

old record holds a hew record is set

® Evolution equation includes integral, has memory

r—yY
35](\(;5\3;79) :—(1—:1:)SN(:E,y)+/ dy/SN(:B—yay/)

Yy




Scaling transformation

® Assume record and increment scale similarly
y~1—x~ N1
® |ntroduce a scaling variable for the increment

s=(1—xz)N and z=yN

® Seek a scaling solution
Sn(z,y) = N*Sy U(s, 2)
® Eliminate time out of the master equation

9, 9, = ,
(2—V—|—8 F s zaz>\ll(s,z)—/z dz' V(s + z,2")

Reduce problem from three variables to two



Factorizing solution

Assume record and increment decouple

U(s,z) =e " f(2)
Substitute into equation for similarity solution

0 0 = ,
(2—V—|—s+sas | zaz>\lf(s,z)—/z dz' V(s + z,2)

First order integro-differential equation

A+ C-fE) = [ ()

Cumulative distribution of scaled increment g(z)Z/oof(z’)dz’

Convert into a second order differential equation

2" (2) + (2 —v)g'(2) + e 7g(z) =0 9(0) =1
g (2) + (2 —-v)g(2) 9(2) g0)=-1/(2 —v)

Reduce problem from two variable to one



Distribution of increment

Assume record and increment decouple
29"(2) + (2 —v)g'(2) + e 7g(z) = 0
Two independent solutions

v—1

g(z) =z and ¢g(z) =const. as z — o

The exponent is determined by the tail behavior
vy =0.31762101
The distribution of increment has a broad tail
Py (y) ~ N7 ly" =7

Increments can be relatively large
problem reduced to second order ODE



Numerical confirmation

Monte Carlo simulation versus integration of ODE

15 ' | ' ' ' |

g(0) = — theory
0.8 g/(O) =—-1/2—-v) ° simulation -
0.6 .
g

04 .
0.2 n
O 2 4 6 8§ 10

y4

(52)

> 1
(5)(2)

Increment and record become uncorrelated



Generalizations:

Superior and Inferior Records
(records of uncorrelated variables)



Superior Records

® Start with sequence of random variables

,,,,,,,,,,,,,

{xlv L2y, L35+ 'CEN} 7777777777

® (Calculate the sequence of records .
{X1,X9,X3,..., XNy} where X, =max(xi,x2,...,%p}

® Compare with the expected average
{A17A27A37°”7AN} — {1/272/373/477N/(N+ 1)}

® Superior sequence = records always exceeds average

X, >A, forall 1<n<N

® What fraction Sy of sequences is superior?

measure of “performance”



Numerical simulations

0

10 | | | | |
i O—<>simu51a3tion
-1 - -0.450
10 F N
Sloag
10'3§
10-4_ | | | | | | |
10° 100 100 100 100 100 10° 10" 10°
N
Sy ~ NP B = 0.4503 + 0.0002

Power law decay with nontrivial exponent



Distribution of superior records
Cumulative probability distribution Fn(x) that:

|. Sequence is superior ( X, >A,for all n ) and
2. Current record is larger than x (Xy >x)
Gives the desired probability immediately
SN = Fn(AnN)
Recursion equation

FN_|_1(CIZ‘) :ZCFN(ZC)+(1—$)FN(AN) CE>AN_|_1

old record holds a hew record is set

Recursive solution

Fi(z)=1—2z S1=3
Fy(z) = 1 (1+ 2 — 22?) SN—:F;“N) Sz = 15
_ 19
F3(x) = —8(7—|—233—|—9:U — 18z°) S3 = 57g
| G, — 35393
Fy(z) = 525 (191 + 33x + 642° + 2882 — 576z ) 4 = 120000



Scaling Analysis
® Convert recursion equation
Fnyi(z) =2 Fy(z) + (1 —2) Fy(An)

into a differential equation (/N plays role of time!)

(‘9FN(a:) B
on = (1 —2) [Fn(AN) — Fi(2)

® Seek a similarity solution (N — oo limit)
Fyn(xr) ~ Sy®(s) with s=(1—x)N

boundary conditions ®(0)=0 and ®(1)=1 (1-:5)N 1

® Similarity function obeys first-order ODE
®'(s)+(1—Bs Hd(s) =1

Similarity solution gives distribution of scaled record



Similarity Solution

® Equation with yet unknown exponent

®'(s)+(1—-BsHd(s) =1
® General solution

1
P(s) = S/ dz z7Pes(271)
0

® Boundary condition dictates the exponent

1
/ dz 2 Belz—1) — 1
0

® Root is a transcendental number

B = 0.450265027495

Analytic solution for distribution and exponent



Distribution of records

— dd/ds

0 . | . | . | . |
0 0.2 04 0.6 0.8

S

scaling variable s = (1 — )N



Inferior records

® Start with sequence of random variables

,,,,,,,,,,,,,,,,,,,,

{CEl, CBQ, 373, .« o . ,ZL’N}

® (Calculate the sequence of records .
{X1,X9,X3,..., XNy} where X, =max(xi,x2,...,%p}

® Compare with the expected average
{Ay, As, As, ..., AN} ={1/2,2/3,3/4,...,N/(N + 1)}
® |nferior sequence = records always below average
X, >A, forall 1<n<N

® What fraction of sequences are inferior?
Iy ~N—¢

expect power law decay, different exponent



Probability sequence is inferior

Start with sequence of random variables
{A17A27A37°"7AN} — {1/272/373/477N/(N+ 1)}

One variable

< 1 — I :
X — = —
tT 9 tT 2
Two variables
< ! d < - — I ! X e _ ]

tT ° 73 ‘7273 3

Recursion equation (no interactions between variables)
N
Ing1=1
. . N+1 NN 1+
Simple solution
1 —1
Iy = In ~ N
N +1

power law decay with trivial exponent



General distributions
Arbitrary distribution function

Single parameter contains information about tail

O

a= lim N dx p(x)

N — 00 AN
Equals the exponent for inferior sequences
Iy ~N—“

Exponent for superior sequences
1
a/ dz 2z Pe(=1) = 1
0
Power-law distributions (compact support)

Rlz)~(1—-2)f = a= [F(l—l—%)r



Continuously varying exponents

Omin < 0 < OO

e T S = e 7 = 0.561459

0. GE e B (0,621127
050 :
g04 :
03t 1 0 < B < Bmax
0.2F :
0.1} :

P B B T B B B B
0 =1T"2 34 5 6 7 38

Tail of distribution function controls record statistics



Records in earthquake data
Inter-event times

o —
8 - - M>5 ]
L —_— p01sson pI'OCGSS
6
5_— - -
4r e .
3 = Harmonic-
20 ]
1 number -
O | | | Lol | | L
10° 10" 10
N

incremental

10 E

- superior
& inferior

10 | | | 1 1 | | | | 1 111
10° 10" 10> 10°
N
0‘7_ T T T T T T T T T T T | T T T T | T T T T | T T T T |
0.6 o I (data) -

o S,(data) 7
- I (poi§son) -
— Sy (poisson) —

O
i
O
O
=

QO00000000d

.()_ | | | | | | | | | | | | | | | | | | | | | | | | | | | |
5 10 15 20 25 30

good agreement with
theoretical predictions




Conclusions I

Studied persistent configuration of record sequences
Linear evolution equations (but nonlocal/memory)
Dynamic formulation: treat sequence length as time
Similarity solutions for distribution of records

Probability of persistent configuration (inferior,
superior, inferior) decays as a power-law

Power laws exponents are generally nontrivial
Exponents can be obtained analytically

Tail of distribution function controls record statistics



Take home message

® First-passage probabilities of records have power-law
tails

® First-passage exponents are generally nontrivial

Many open problems!
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