Opinion Dynamics:
Rise and Fall of Political Parties

Eli Ben-Naim

Complex Systems (T-13)

With: Paul Krapivsky, Sidney Redner (Boston/CNLS)
Thanks: Lev Tsimring (San Diego), Michael Cross (Caltech), Harvey Rose (T-13)

papers, talk available at http://cnls.lanl.gov/~ebn
Plan

1. Motivation: modeling social dynamics
2. Noisy opinion dynamics
 -- Single party dynamics
 -- Two party dynamics
 -- Multiple party dynamics
3. Noiseless opinion dynamics

E. Ben-Naim, cond-mat/0411427
Modeling social dynamics

- Ultimate goal: predictive models of human opinions
- Relevance: politics, economics, consumer, sports

Questions

• Are “physics” concepts useful?
 Microscopic interactions \rightarrow collective phenomena

• Are humans predictable?

This should help

• Large data sets available
• Large number of humans $N \sim 10^9$
• Human opinions can be quantified
Quantifying opinions

Web Site Customer Satisfaction Survey

Please help us serve you and others better by completing our Web Site Customer Satisfaction Survey. Answering the questions below should only take a few minutes. Your participation is completely voluntary and will help us ensure that our Web site is useful, accurate, and complete. If you have questions about how we will use this information, please review our Privacy Notice.

What were you looking for on our Web site?

Did you find what you were looking for? (1=Exactly, 5=Not At All)

How useful is the information you found? (1=Very Useful, 5=Not At All)

Did you find our site easy to navigate? (1=Easy To Navigate, 5=Very Difficult)

Please provide additional information or comments:
Do not use this comment box to submit questions. We cannot reply to questions you submit through the survey form. If you have a question, please refer to our Contact Us page.
Humans interact, opinions evolve

tendency to reach consensus?

NCAA Football Bowl Season

Rankings: Week 17

<table>
<thead>
<tr>
<th>Division I-A Polls</th>
<th>USA Today/ESPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP Top 25</td>
<td>USA Today/ESPN</td>
</tr>
<tr>
<td>1. USC (44)</td>
<td>1. USC (35)</td>
</tr>
<tr>
<td>2. Oklahoma (14)</td>
<td>2. Oklahoma (16)</td>
</tr>
<tr>
<td>3. Auburn (7)</td>
<td>3. Auburn (9)</td>
</tr>
<tr>
<td>5. Utah</td>
<td>5. Texas</td>
</tr>
<tr>
<td>6. Texas</td>
<td>6. Utah</td>
</tr>
<tr>
<td>7. Louisville</td>
<td>7. Georgia</td>
</tr>
<tr>
<td>8. Georgia</td>
<td>8. Louisville</td>
</tr>
</tbody>
</table>
The Compromise Process

- Opinion measured by a single variable

 \[- \Delta < n < \Delta\]

- Compromise: reached via pairwise interactions

 \((n_1, n_2) \rightarrow \left(\frac{n_1 + n_2}{2}, \frac{n_1 + n_2}{2}\right)\)

- Conviction: restricted interaction range

 \[|n_1 - n_2| \leq \delta\]

- Minimal, one parameter model
- Mimics competition between compromise and conviction

Individuals may change opinion spontaneously

\[n \xrightarrow{D} n \pm 1 \]

- Adds noise ("temperature")
- Linear process: no interaction
- Mimics unstable, varying opinion
- Influence of environment, news, editorials, events
Rate equations

simplest compromise process
total opinion, total population conserved

\[(n - 1, n + 1) \rightarrow (n, n) \quad \delta = 2\]

Probability distribution \(P_n(t)\)

Kinetic theory: nonlinear rate equations

\[
\frac{dP_n}{dt} = 2P_{n-1}P_{n+1} - P_n(P_{n-2} + P_{n+2}) + D(P_{n-1} + P_{n+1} - 2P_n)
\]

- Numerical integration of probability distribution
- Monte Carlo simulation of stochastic process
Single party dynamics

- Initial condition: large isolated party
 \[P_n(0) = m(\delta_{n,0} + \delta_{n,-1}) \]

- Steady-state: compromise and diffusion balance
 \[DP_n = P_{n-1}P_{n+1} \]

- Core of party: localized to a few opinion states
 \[P_{-1} = P_0 = m \quad P_1 = D \quad P_2 = D^2m^{-1} \]

- Compromise negligible for n>2

Well defined core
The Tail

- Diffusion dominates outside the core
 \[\frac{dP_n}{dt} = D(P_{n-1} + P_{n+1} - 2P_n) \quad P << D \]

- Standard problem of diffusion with source
 \[P_n \sim m^{-1} \Phi(\sqrt{nt}) \]

- Tail mass
 \[M_{tail} \sim m^{-1} t^{1/2} \]

- Party dissolves when
 \[M_{tail} \sim m \quad \Rightarrow \quad \tau \sim m^4 \]

Party lifetime grows fast with its size
Core versus Tail

Party height = m
Party depth $\sim m^{-1}$

Self-similar shape
Gaussian tail
Qualitative features

- Exists in a quasi-steady state
- Tight core localized to a few sites
- Random opinion changes of members do not affect party position
- Party lifetime grows very fast with size
- Ultimate faith of a party: demise
- Its remnant: a diffusive cloud
- Depth inversely proportional to size, the larger the party the more stable
Two party dynamics

- **Initial condition:** two large isolated parties
 \[P_n(0) = m_1(\delta_{n,0} + \delta_{n,-1}) + m_2(\delta_{n,l+2} + \delta_{n,l+3}) \]

- **Interaction between parties mediated by diffusion**
 \[0 = P_{n-1} + P_{n+1} - 2P_n \]

- **Boundary conditions set by parties depths**
 \[P_0 = 1/m_1 \quad P_l = 1/m_2 \]

- **Steady state:** linear profile
 \[P_n = \frac{1}{m_1} + \left(\frac{1}{m_2} - \frac{1}{m_1} \right) \frac{n}{l} \]
Merger

- Steady flux from small party to larger one
 \[J \sim l^{-1}(1/m_\prec - 1/m_\succ) \sim (lm_\prec)^{-1} \]
- Merger time
 \[T \sim m_\prec / J \sim l(m_\prec)^2 \]
- Lifetime grows with separation (“niche”)
- Outcome of interaction is deterministic
- Larger party position remains fixed throughout merger process

Small party absorbed by larger one
Merger: numerical results

\[P_n \]

\[n \]

\[P_n \]

\[n \]
Multiple party dynamics

- **Initial condition**: large isolated party
 \[P_n(0) = \text{randomly chosen number in } [1 - \varepsilon : 1 + \varepsilon] \]

- **Linear stability analysis**
 \[P_n - 1 \sim \exp[ikn + \lambda t] \]

- **Growth rate of perturbations**
 \[\lambda = 2(2\cos k - \cos 2k - 1) + 2D(\cos k - 1) \]

- **Long wavelength perturbations unstable**
 \[k < k_0 \quad \cos k_0 = D / 2 \]

\[P=1 \text{ stable only for strong diffusion } D > D_c = 2 \]
Strong noise (D>D_c)

- Regardless of initial conditions
 \[P_n \to \langle P_n(0) \rangle = 1 \]
- Relaxation time
 \[\lambda \equiv (D_c - D)k^2 \quad \Rightarrow \quad \tau \sim (D - D_c)^{-2} \]

No parties, disorganized political system
Three scenarios

- $D=0$
- $D>D_c$
- $D>D_c$

Early | Intermediate | Late
Weak noise ($D < D_c$): Coarsening

- Smaller parties merge into large parties
- Party size grows indefinitely
- Assume a self-similar process, size scale m
- Conservation of populations implies separation:
 \[l \sim m \]
- Use merger time to estimate size scale:
 \[t \sim lm^2 \sim m^3 \implies m \sim t^{1/3} \]
- Self-similar size distribution:
 \[P_m \sim t^{-1/3} F(mt^{-1/3}) \]

Lifshitz-Slyozov ripening
Parties are static throughout process.
A small party with a large niche may still outlast a larger neighbor!
Conclusions: noiseless dynamics

- **Isolated parties**
 - Tight, immobile core and diffusive tail
 - Lifetime grows fast with size

- **Interaction between two parties**
 - Large party grows at expense of small one
 - Deterministic outcome, steady flux

- **Multiple parties**
 - Strong noise: disorganized political system, no parties
 - Weak noise: parties form, coarsening mosaic
 - No noise: pattern formation
Problem Setup

- Given initial distribution (continuous opinions)
 \[P_0(x) = \begin{cases}
 1 & |x| < \Delta \\
 0 & |x| > \Delta
\end{cases} \]

- Find final distribution (frozen)
 \[P_\infty(x) = ? \]

- Multitude of final states
 \[P_\infty(x) = \sum_{i=1}^{N} m_i \delta(x - x_i) \quad |x_i - x_j| > 1 \]

- Dynamics selects one (deterministically)

Multiple localized clusters (parties)
Numerical integration of probability distribution

\[\frac{\partial}{\partial t} P(x,t) = \int \int \delta_{\leq 1} dx_1 dx_2 P(x_1,t) P(x_2,t) \left[2 \delta(x - (x_1 + x_2)/2) - \delta(x - x_1) - \delta(x - x_2) \right] \]

Direct simulation of stochastic process
Rise and fall of central party

0 < \Delta < 1.871

1.871 < \Delta < 2.724

Central party may or may not exist!
Reemergence of central party

$2.724 < \Delta < 4.079 \quad \quad 4.079 < \Delta < 4.956$
Emergence of extremists

Tiny parties (mass $<10^{-3}$)
Bifurcations and Patterns

![Graph showing bifurcations and patterns](image)

- Major
- Central
- Minor
Self-similar structure, universality

- **Periodic sequence of bifurcations**
 1. Nucleation of minor cluster branch
 2. Nucleation of major cluster branch
 3. Nucleation of central cluster

- **Alternating major-minor pattern**

- **Clusters are equally spaced**

- **Period gives major cluster mass, separation**

\[x(\Delta) = x(\Delta + L) \quad L = 2.155 \]
How many political parties?

- Data: CIA world factbook 2002
- 120 countries with multi-party parliaments
- Average=5.8 standard deviation=2.9
- Masses are periodic
 \[m(\Delta) = m(\Delta + L) \]
- Major mass
 \[M \rightarrow L = 2.155 \]
- Minor mass
 \[m \rightarrow 3 \times 10^{-4} \]
Scaling near bifurcation points

- Minor mass vanishes

\[m \sim (\Delta - \Delta_c)^\alpha \]

- Universal exponents

\[\alpha = \begin{cases}
3 & \text{type 1} \\
4 & \text{type 3}
\end{cases} \]

L-2 is the small parameter explains small saturation mass
Heuristic derivation of exponents

- Perturbation theory \(\Delta = 1 + \varepsilon \)
- Central cluster \(x(\infty) = 0 \)
- Extremist minor cluster \(x(\infty) = 1 + \varepsilon / 2 \)

- Rate of transfer from minor cluster to major cluster
 \[
 \frac{dm}{dt} = -mM \quad \rightarrow \quad m(t) \sim \varepsilon e^{-t}
 \]

- Process stops when
 \[
 x \sim e^{-t_f/2} \sim \varepsilon
 \]

- Final minor cluster mass
 \[
 m(\infty) \sim m(t_f) \sim \varepsilon^3
 \]
Consensus

- **Integrable for** $\Delta < 1/2$
 \[
 \langle x^2(t) \rangle = \langle x^2(0) \rangle e^{-\Delta t}
 \]

- **Final state: localized**
 \[
 P_\infty(x) = 2\Delta \delta(x)
 \]

- **Rate equations in Fourier space**
 \[
 p_t(k) + P(k) = P^2(k/2)
 \]

- **Self-similar collapse dynamics**
 \[
 \Phi(z) \propto (1 + z^2)^{-2} \quad z = \frac{x}{\langle x^2(t) \rangle}
 \]

Pattern selection

- **Linear stability analysis**

 \[P - 1 \propto e^{i(kx + \omega t)} \quad \Rightarrow \quad \omega(k) = \frac{8}{k} \sin \left(\frac{k}{2} - \frac{2}{k} \sin k - 2 \right) \]

- **Fastest growing mode**

 \[d\omega / dk = 0 \quad \Rightarrow \quad L = \frac{2\pi}{k} = 2.2515 \]

- **Traveling wave (FKPP extremal selection)**

 \[d\omega / dk = \text{Im}(\omega) / \text{Im}(k) \quad \Rightarrow \quad L = \frac{2\pi}{k} = 2.0375 \]

Patterns induced by wave propagating from boundary. However, emerging period is different L=2.155!

Pattern selection intrinsically nonlinear
Traveling waves

\[p - 1 \propto \exp[-\lambda(x - vt) + i(kx + wt)] \]

Discrete opinions

\[
\begin{align*}
L_{\text{max}} &= 6 \\
L &= 5.67 \\
L_{\text{trav wave}} &= 5.31
\end{align*}
\]
Exponential initial conditions

- Bifurcations induced at the boundary
- Periodic structure, nontrivial period
- Two types of bifurcations
 1. Nucleation of major branch
 2. Nucleation of minor branch

Central cluster is stable
Two kinds of opinions

symmetry breaking, packing
Conclusions: noiseless dynamics

- Clusters form via bifurcations
- Periodic structure
- Alternating minor-major pattern
- Central party not always exists
- Power-law behavior near transitions
Outlook

- Pattern selection criteria
 - Gaps
 - Role of initial conditions, classification
 - Role of spatial dimension, correlations
 - Disorder, inhomogeneities
 - Tiling/Packing in 2D
 - Discord dynamics (seceder model, Halpin-Heally 03)

Many open questions
General features

- Dissipative system, volume contracts
- Energy (Lyapunov) function exists: $<x^2>$
- No cycles or strange attractors
- Uniform state is unstable (Cahn-Hilliard)

\[P_i = 1 + \phi_i \quad \phi_t + \left(\phi + a \phi_{xx} + b \phi^2 \right)_{xx} = 0 \]

Discrete case yields useful insights
Discrete opinions

- Compromise process
 \[(i-1, i+1) \rightarrow (i, i)\]

- Master equation
 \[
 \frac{dP_i}{dt} = 2P_{i-1}P_{i+1} - P_i(P_{i-2} + P_{i+2})
 \]

- Example: 6 states

- Symmetry + normalization:
 two-dimensional problem

Initial conditions determine final state

Isolated fixed points, lines of fixed points