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Diffusion-controlled two-species annihilation 
with finite number of particles

• Initial condition: uniform density in compact domain

• Number of majority & minority particles is N+ & N-

• Total number of particles

• Number difference is a conserved quantity

N = N+ +N�

� = N+ �N�

Zeldovich 88
Wilczek 83
Bramson 91
Leyvraz 92



Main result (three dimensions)

• Average number of surviving majority particles is M+ 

• Average number of surviving minority particles is M-

• Conservation law implies majority never goes extinct

• Equal populations

• Equal concentrations 

M+ ⇠ N1/2 and M� ⇠ N1/6

M+ ⇠ M� ⇠ N1/3

M+ �M� = �



Sufficiently small dimensions: extinction

• Probability a random walk returns to origin

• Separation between two random walks itself 
performs a random walk

• Two diffusing particles are guaranteed to meet

P = 1 when d  2

Above critical dimension: survival feasible
• Probability a random walk at distance r returns to origin

• Two diffusing particles may or may not meet

P ⇠ r�(d�2) when d > 2

All minority particles eventually disappear



Uniform-density approximation
• Concentrations obey reaction-diffusion equation

• Dimensionless form 

• Total number of particles obeys rate equation

• Two major simplifying assumptions
1. Particles confined to volume 

2. Spatial distribution remains uniform 

• Closed equation for number of remaining particles

V

@c�(r, t)

@t
= Dr2c�(r, t)�Kc�(r, t)c+(r, t)

dn�
dt

= �n�n+

V

D = K = a = 1



Equal populations (           )

• Particles still inside initial-occupied domain

• Mean-field like decay

• Valid until particles exit initially-occupied domain

• Diffusion time scale gives number of particles 

n(t) ⇠ N t�1

� = 0

`3/2 ⇠ t3/2 ⇠ N =) T ⇠ N2/3

EB, Krapivsky 2016n(T ) ⇠ N1/3
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Fixed number difference (           )
• Rate equation

• Average number of minority particles

• Average number of surviving minority particles

• Emergence of critical difference

� 6= 0

dn�
dt

= �n�(n� +�)

N

M� ⇠ n�(T ) =) M� ⇠ N�
�

N�(e�/N1/3 � 1) +�

n�(t) = N�
�

N�(et�/N � 1) +�

Transition from extinction to survival



Finite-size scaling
• Number of surviving particles

• Scaling laws for surviving number and critical number difference

• Universal scaling form for number of surviving particles

• Scaling function  

• Two regimes of behavior

Critical difference fully characterizes the behavior

M� ⇠ N�
�

N�(e�/N1/3 � 1) +�

M� ⇠ N1/3 and �c ⇠ N1/3

G(x) =
x

e

c x � 1

G(x) ⇠
(
1 x ⌧ 1

x e

�c x

x � 1

survival

extinction
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The critical difference 

• There is a critical number difference

• Subcritical difference: minority species survives

• Supercritical difference: minority species becomes extinct

• In particular, for typical difference (equal concentrations) 

�c ⇠ N1/3

M� ⇠ � exp(�c�/N1/3
) when � � �c

Number difference controls the behavior

M� ⇠ N1/3 when � ⌧ �c

M� ⇠ N1/2
exp(�cN1/6

) when � = bN1/2
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Theory “rescues” simulations!

M�/N
1/2 ⇠ exp(�cN1/6

)



Equal concentrations
• Massive imbalance, surviving majority population is large

• Number difference is normally distributed

• Minority survives with tiny probability

• Minority goes extinct otherwise

• Average number of surviving minority particles  

� ⇠ N1/2 =) M+ ⇠ N1/2

P (�) = (2⇡N)

�1/2
exp[��

2/(2N)] !
(
N�1/2

� < N1/2

0 � > N1/2

Lack of self-averaging, huge fluctuations
Two distinct scaling laws for majority and minority



Equal concentrations

• Number difference is normally distributed

• Separate supercritical and subcritical contributions

• System is almost always supercritical (extinction)

• Rare subcritical cases dominate the behavior (survival)

P (�) =
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General spatial dimensions
• Critical difference, one-tier scaling law

• Majority population, two-tier scaling law

• Minority population, three-tier scaling law 

Surviving minority population does not grow with N when d<8/3



Conclusions

• Diffusion-controlled two-species annihilation,  
starting with finite number of particles

• Finite number of particles escape annihilation

• Number difference controls the behavior

• Subcritical phase: minority species survives

• Supercritical phase: minority species goes extinct

• Equal concentrations: two distinct scaling laws for 
minority and majority populations

• Opposite to infinite systems: survival probability is 
enhanced as the dimension increases

• Exact analytical methods to treat finite number of particles


