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Diffusion-controlled two-species annihilation

with finite number of particles

|. Equal populations

2. Fixed number difference

3. Equal concentrations




Diffusion-controlled two-species annihilation
with finite number of particles
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Initial condition: uniform density in compact domain

Number of majority & minority particles is N+ & /V.

Total number of particles

N=N, +N_
Number difference is a conserved quantity
A — N_|_ — N_



Main result (three dimensions)

Average number of surviving majority particles is M-+
Average number of surviving minority particles is M-
Conservation law implies majority never goes extinct
M, —M_=A
Equal populations
M, ~ M_ ~ N/3

Equal concentrations

My ~NY%2 and M_ ~ N6



Sufficiently small dimensions: extinction

® Probability a random walk returns to origin

P=1 when d<2

® Separation between two random walks itself
performs a random walk

® [wo diffusing particles are guaranteed to meet
All minority particles eventually disappear

Above critical dimension: survival feasible
® Probability a random walk at distance » returns to origin
Pr~r= =2 when d>2

® Two diffusing particles may or may not meet



Uniform-density approximation
® Concentrations obey reaction-diffusion equation

86_8(;'775) :DVQC—( t) — Kc_(r,t)cq(r, 1)

® Dimensionless form D=K =a=1

® TJotal number of particles obeys rate equation
dn _

n_(t) :/drc_(r,t) — = —/drc_(r,t) cy(r,t)

® [wo major simplifying assumptions
|. Particles confined to volume V 0:‘.‘,"

2. Spatial distribution remains uniform

® (Closed equation for number of remaining particles

dn _ n_14

dt V



Equal populations (A = 0)
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Particles still inside initial-occupied domain

an n?
—_— n_ — 2 ~J —_— = ——
ny =mn n/2 & V ~N = N

Mean-field like decay
n(t) ~ Nt
Valid until particles exit initially-occupied domain
PR32 N = T~ N?3

Diffusion time scale gives number of particles

1/3
n(T) ~ N EB, Krapivsky 2016



Numerical simulations |
equal populations ( A =0)
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Fixed number difference (A # 0)

® Rate equation

dn_  n_(n_+A)
dt N
® Average number of minority particles
A
n_(t) = N_

N_(etA/N — 1)+ A
® Average number of surviving minority particles

A

® Emergence of critical difference
N1/3 A N1/3
v { <

A exp(—cA/N/3) A > N3

Transition from extinction to survival



Finite-size scaling

® Number of surviving particles

A
M_ ~ N_

N_(eA/NY? 1)+ A

® Scaling laws for surviving number and critical number difference

M_ ~NY3 and A,~ N3

® Universal scaling form for number of surviving particles

M_/NY3 = @ (A/N1/3)

® Scaling function

Gl2) = ——
6(333 _
® Two regimes of behavior
1 r < 1 survival
G(z) ~ {
re °F x>1 extinction

Critical difference fully characterizes the behavior



Numerical simulations |l

finite-size scaling
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The critical difference

There is a critical number difference
Ac N N1/3
Subcritical difference: minority species survives

M_ ~ NY3 when A< A,
Supercritical difference: minority species becomes extinct
M_ ~ Aexp(—cA/NY3) when A > A,

In particular, for typical difference (equal concentrations)

M_ ~ NY2exp(—eNY®) when A =0bN'/2

Number difference controls the behavior



Numerical simulations Il
Typical difference (A = N'/2)
M_/NY? ~ exp(—cN'/6)
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Theory “rescues” simulations!



Equal concentrations

® Massive imbalance, surviving majority population is large
A~NY? = M, ~N?
® Number difference is normally distributed

’N—1/2 A < N1/2
—1/2 2
P(A) = (2nN) / exp|—A“/(2N)] — <« 0 A s N1/2

\

® Minority survives with tiny probability
A < A, with probability N2 x N3 ~ N—1/6
® Minority goes extinct otherwise
A > A, with probability 1 — N—1/6
® Average number of surviving minority particles

M~ N—1/6 ¢ N1/3 N N1/6

Lack of self-averaging, huge fluctuations
Two distinct scaling laws for majority and minority



Equal concentrations

Number difference is normally distributed

P = (5r5) o (a)

Separate supercritical and subcritical contributions

N1/3 1/2 9

1

e [ i ()" e () v
0 27TN

o 1\ Y2 A2 A
+/N1/3 dA <—27TN> exp <_ﬁ) X Aexp( N1/3>

System is almost always supercritical (extinction)

Rare subcritical cases dominate the behavior (survival)



Numerical simulations |V
equal concentrations
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General spatial dimensions

® C(ritical difference, one-tier scaling law

A ~NS 5= y .
® Majority population, two-tier scaling law
i R
® Minority population, three-tier scaling law
0 d<$
M_~NP- p_=¢38 8 <4<y
=2 4<d

Surviving minority population does not grow with N when d<&/3



Conclusions

Diffusion-controlled two-species annihilation,
starting with finite number of particles

Finite number of particles escape annihilation
Number difference controls the behavior
Subcritical phase: minority species survives
Supercritical phase: minority species goes extinct

Equal concentrations: two distinct scaling laws for
minority and majority populations

Opposite to infinite systems: survival probability is
enhanced as the dimension increases

Exact analytical methods to treat finite number of particles



