Energy Cascades in Granular Gases

Eli Ben-Naim

Theory Division

Los Alamos National Laboratory

with

Jon Machta

University of Massachusetts

talk, papers available: http://cnls.lanl.gov/~ebn
1. Granular gases in nature
2. Nonequilibrium distributions
3. Driven steady-states
4. Cascade dynamics and stationary states
5. Associated time dependent states
6. Conclusions & outlook
Frozen granular gases

Saturn’s rings snow avalanche

Christoph Hormann Swiss institute for snow and avalanche research
Filaments in granular gases

X Nie, S Chen, EB 02
Energy dissipation in granular matter

- Responsible for collective phenomena
 - Clustering I Goldhirsch, G Zanetti 93
 - Hydrodynamic instabilities E Khain, B Meerson 04
 - Pattern formation P Umbanhower, H Swinney 96

- Anomalous statistical mechanics
 - No energy equipartition R Wildman, D Parker 02
 - Nonequilibrium energy distributions

\[P(E) \neq \exp \left(-\frac{E}{kT} \right) \]
Experiments

- **Friction**
 - D Blair, A Kudrolli 01

- **Rotation**
 - K Feitosa, N Menon 04

- **Driving strength**
 - W Losert, J Gollub 98

- **Dimensionality**
 - J Urbach & Olafsen 98

- **Boundary**
 - J van Zon, H Swinney 04

- **Fluid drag**
 - K Kohlstedt, I Aronson, EB 05

- **Long range interactions**
 - D Blair, A Kudrolli 01; W Losert 02
 - K Kohlstedt, J Olafsen, EB 05

- **Substrate**
 - G Baxter, J Olafsen 04

Deviations from equilibrium distribution
Driven Granular gas

- Vigorous driving
- Spatially uniform system
- Particles undergo binary collisions
- Velocities change due to
 1. **Collisions**: lose energy
 2. **Forcing**: gain energy

- What is the typical velocity (granular “temperature”)?
 \[T = \langle v^2 \rangle \]
- What is the velocity distribution?
 \[f(v) \]
Non-Maxwellian velocity distributions

1. Velocity distribution is isotropic

\[f(v_x, v_y, v_z) = f(|v|) \]

2. No correlations between velocity components

\[f(v_x, v_y, v_z) \neq f(v_x)f(v_y)f(v_z) \]

Only possibility is Maxwellian

\[f(v_x, v_y, v_z) \neq C \exp \left(-\frac{v_x^2 + v_y^2 + v_z^2}{2T} \right) \]

Granular gases: collisions create correlations
Kurtosis κ

$$\kappa = \frac{\langle v^4 \rangle}{\langle v^2 \rangle^2}$$

$$\kappa = 3 + \frac{18(1 - r)^2(1 + r)}{33 - 25r + 3r^2 - 3r^3}$$

Restitution coefficient r

$$\Delta E \propto \left(1 - r^2\right) (\Delta v)^2$$

1. Velocity distribution independent of driving strength
2. Stronger dissipation yields stronger deviation

Exact solution of Maxwell’s kinetic theory: thermal forcing balances dissipation

EB, Krapivsky 02
Nonequilibrium velocity distributions

A Mechanically vibrated beads
 F Rouyer & N Menon 00

B Electrostatically driven powders
 I Aronson & J Olafsen 05

- **Gaussian core**
- **Overpopulated tail**
 \[f(v) \sim \exp(-|v|^\delta) \]
 \[1 \leq \delta \leq 3/2 \]
- **Kurtosis**
 \[\kappa = \begin{cases} 3.55 & \text{theory} \\ 3.6 & \text{experiment} \end{cases} \]

Excellent agreement between theory and experiment

balance between collisional dissipation, energy injection from walls
Inelastic Collisions

- **Relative velocity reduced by** \(0 < r < 1 \)
 \[v_1 - v_2 = -r(u_1 - u_2) \]
- **Momentum is conserved**
 \[v_1 + v_2 = u_1 + u_2 \]
- **Energy is dissipated**
 \[\Delta E \propto (1 - r)(\Delta v)^2 \]
- **Limiting cases**
 \[r = \begin{cases}
 0 & \text{completely inelastic } (\Delta E = \text{max}) \\
 1 & \text{elastic } (\Delta E = 0)
\end{cases} \]
Time dependent states

- Energy loss: $\Delta T \sim (\Delta v)^2$
- Collision rate: $\Delta t \sim 1/(\Delta v)^\lambda$
- Energy balance equation:
 \[
 \frac{\Delta T}{\Delta t} \sim - (\Delta v)^{2+\lambda} \quad \Rightarrow \quad \frac{dT}{dt} \sim -T^{1+\lambda/2}
 \]
- Temperature decays, system comes to rest:
 \[
 T \sim t^{-2/\lambda} \quad \Rightarrow \quad f(v) \to \delta(v)
 \]

Trivial steady-state

Haff, JFM 1982
- **Collision rule (linear)** \(r = 1 - 2p, \quad p + q = 1 \)

\[(u_1, u_2) \rightarrow (pu_1 + qu_2, pu_2 + qu_1) \]

- **Boltzmann equation (nonlinear and nonlocal)**

\[
\frac{\partial P(v)}{\partial t} = \iint du_1 du_2 f(u_1)f(u_2)|u_1-u_2|^{\lambda} \left[\delta(v-pu_1-qu_2) - \delta(v-u_2) \right]
\]

Collision rate \quad Gain \quad Loss

- **Collision rate related to interaction potential**

\[
U(r) \sim r^{-\gamma} \quad \lambda = 1 - 2 \frac{d-1}{\gamma} = \begin{cases} 0 & \text{Maxwell molecules} \\ 1 & \text{Hard spheres} \end{cases}
\]

Theory: non-linear, non-local, dissipative
Are there nontrivial steady states?

- Stationary Boltzmann equation

\[0 = \int \int du_1 du_2 f(u_1) f(u_2) |u_1 - u_2|^\lambda [\delta(v - pu_1 - qu_2) - \delta(v - u_2)] \]

Naive answer: NO!

- According to the energy balance equation

\[\frac{dT}{dt} = -\Gamma \]

- Dissipation rate is positive

\[\Gamma > 0 \]
An exact solution

- One-dimensional Maxwell molecules
- Fourier transform obeys a closed equation
 \[F(k) = \int dv \, e^{ikv} f(v) \]
 \[F(k) = F(pk) F(qk) \]
- Exponential solution
 \[F(k) = \exp(-v_0 |k|) \]
- Lorentzian velocity distribution
 \[f(v) = \frac{1}{\pi v_0} \frac{1}{1 + (v/v_0)^2} \]

Nontrivial stationary states do exist!
Cascade Dynamics (1D)

- **Collision rule:** arbitrary velocities
 \[(u_1, u_2) \rightarrow (pu_1 + qu_2, pu_2 + qu_1)\]

- **Large velocities:** linear but nonlocal process
 \[v \rightarrow (pv, qv)\]

- **High-energies:** linear equation
 \[f(v) = \frac{1}{p^{1+\lambda}} f\left(\frac{v}{p}\right) + \frac{1}{q^{1+\lambda}} f\left(\frac{v}{q}\right)\]

- **Power-law tail**
 \[f(v) \sim v^{-2-\lambda}\]
Collision process: large velocities

\[\nu \rightarrow (\alpha \nu, \beta \nu) \]

Stretching parameters related to impact angle

\[\alpha = (1 - p) \cos \theta \quad \beta = \sqrt{1 - (1 - p^2) \cos^2 \theta} \]

Energy decreases, velocity magnitude increases

\[\alpha^2 + \beta^2 \geq 1 \quad \alpha + \beta \leq 1 \]

Steady state equation

\[f(\nu) = \left\langle \frac{1}{\alpha^{d+\lambda}} f \left(\frac{\nu}{\alpha} \right) + \frac{1}{\beta^{d+\lambda}} f \left(\frac{\nu}{\beta} \right) \right\rangle \]
Power-laws are generic

- Velocity distributions always have power-law tail
 \[f(v) \sim v^{-\sigma} \]

- Exponent varies with parameters
 \[1 - 2F_1 \left(\frac{d+\lambda-\sigma}{2}, \frac{\lambda+1}{2}, \frac{d+\lambda}{2}, 1-p^2 \right) = \frac{\Gamma\left(\frac{\sigma-d+1}{2}\right)\Gamma\left(\frac{d+\lambda}{2}\right)}{\Gamma\left(\frac{\sigma}{2}\right)\Gamma\left(\frac{\lambda+1}{2}\right)} \]

- Tight bounds \(1 \leq \sigma - d - \lambda \leq 2 \)

- Elastic limit is singular \(\sigma \to d+2+\lambda \)

Dissipation rate always divergent
Energy finite or infinite
The characteristic exponent σ varies with spatial dimension, collision rules.
Monte Carlo Simulations

- **Compact** initial distribution
- Inject energy at very large velocity scales only
- Maintain constant total energy
- "Lottery" implementation:
 - Keep track of total energy dissipated, E_T
 - With small rate, boost a particle by E_T

Excellent agreement between theory and simulation
Further confirmation

Maxwell molecules (1D, 2D)

Hard spheres (1D, 2D)

\[N = 10^7 \]

\[N = 10^5 \]

<table>
<thead>
<tr>
<th>d</th>
<th>theory</th>
<th>simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1.995</td>
</tr>
<tr>
<td>2</td>
<td>3.19520</td>
<td>3.19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d</th>
<th>theory</th>
<th>simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2.994</td>
</tr>
<tr>
<td>2</td>
<td>4.14922</td>
<td>4.15</td>
</tr>
</tbody>
</table>
Injection, cascade, dissipation

- Energy is injected at large velocity scales
- Energy cascades from large velocities to small velocities
- Energy dissipated at small velocity scales

Experimental realization?
Energetic particle “shot” into static medium

Energy balance
\[\Gamma \sim \gamma V^2 \]
Energy balance

- Energy injection rate γ
- Energy injection scale V
- Typical velocity scale v_0
- Balance between energy injection and dissipation

\[\gamma \sim V^\lambda (V/v_0)^{d-\sigma} \]

- For “lottery” injection: injection scale diverges with injection rate

\[V \sim \begin{cases}
\gamma^{-1/(2-\lambda)} & \sigma < d + 2 \\
\gamma^{-1/(\sigma-d-\lambda)} & \sigma > d + 2
\end{cases} \]
Traditional forcing: Injection, dissipation

- **Energy injection:** thermal forcing *(at all scales)*
 \[\frac{d v}{d t} = \eta \]

- **Energy dissipation:** inelastic collision
 \[v \rightarrow (p v, q v) \]

- **Steady state equation**
 \[0 = D \frac{d^2 f(v)}{d^2 v} + v^\lambda \left[\frac{1}{p^{1+\lambda}} f \left(\frac{v}{p} \right) + \frac{1}{q^{1+\lambda}} f \left(\frac{v}{q} \right) - f(v) \right] \]

- **Stretched exponentials**
 \[f(v) \sim \exp \left(-v^{1+\lambda/2} \right) \]

T van Noije, M Ernst 97
Self-similar collapse

- Self-similar distribution
 \[f(\nu, t) \sim \nu^{-\sigma} \Phi \left(\frac{\nu}{V(t)} \right) \]

- Cutoff velocity decays
 \[V(t) \sim t^{-1/\lambda} \]

- Scaling function
 \[\Phi(x) = \sum_{n=1}^{\infty} A_n \exp \left[-(2^nx)^\lambda \right] \]
 \[A_n = \prod_{\substack{k=1 \atop k \neq n}}^{\infty} \frac{1}{1 - 2^\lambda(n-k)} \]

Hybrid between steady-state and time dependent state
A third family of solutions exists

Numerical confirmation

Velocity distribution

Scaling function
Conclusions

- New class of nonequilibrium stationary states
- Energy cascades from large to small velocities
- Power-law high-energy tail
- Energy input at large scales balances dissipation
- Associated similarity solutions exist as well
- Temperature insufficient to characterize velocities
- Experimental realization: requires a different driving mechanism
Outlook

- Spatially extended systems
- Spatial structures
- Polydisperses granular media
- Experimental realization

E. Ben-Naim and J. Machta, PRL 91 (2005) cond-mat/0411473