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A reversible adsorption-desorption parking process in one dimension is studied. An exact solution
for the equilibrium properties is obtained. The coverage near saturation depends logarithmically
on the ratio between the adsorption rate, k+, and the desorption rate, k−, ρeq ∼= 1− 1/ log(k+/k−),
when k+/k− � 1. A time dependent version of the reversible problem with immediate adsorp-
tion (k+ = ∞) is also considered. Both heuristic arguments and numerical simulations reveal a
logarithmically slow approach to the completely covered state, 1− ρ(t) ∼ 1/ log(t).

PACS Numbers: 68.10.Jy, 02.50.+s, 82.65.-i

I. INTRODUCTION

The adsorption of large particles such as colloids, pro-
teins, latex spheres, etc. on solid substrates is typically
an irreversible process [1,2]. Indeed, in a number of sit-
uations, the energetic barriers for desorption are much
higher than the corresponding barriers for adsorption.
Moreover, particles cannot adsorb on top of previously
adsorbed ones. This leads to the nonoverlapping ir-
reversible random sequential adsorption (RSA) models
which have been studied intensively. It was found that
in arbitrary dimension, RSA processes reach a jamming
configuration, where further adsorption events are not
possible. The final coverage as well as the temporal ap-
proach to the jammed state are of interest [2-8]. Exact
analytical results have been obtained mainly in one di-
mension, where the problem is also known as the “park-
ing” problem [2,7-8].

It is clear that the usual RSA model provides an over-
simplified description of actual adsorption processes. A
more realistic treatment should incorporate various ef-
fects such as the transport properties of the particles,
the interaction between particles, and possible desorp-
tion from the substrate to the bulk [9-13]. Very recently,
RSA models where particles diffuse in the bulk and ad-
sorb on the substrate were considered. Interestingly, in-
troduction of bulk transport did not change the coverage
and the structure of the jammed configuration. However,
it was found that the approach to the jamming limit de-
pends on the transport properties of the particles [9-10].

In this article, we study the influence of desorption on
the one-dimensional parking problem. Such a general-
ization is appropriate for many physical, chemical and
biological systems [1-17]. Allowing desorption makes the
process manifestly reversible and the system ultimately
reaches an equilibrium state. In the experimentally rel-
evant desorption-controlled limit, the system approaches
the saturated state in a non-trivial manner.

The rest of this paper is organized as follows. In Sec-
tion II, we introduce the model, write the governing rate
equations for the density of empty intervals, and then
find the exact steady state solution to these equations.
The primary result of this section is the weak logarith-
mic dependence of the equilibrium coverage on the ra-
tio of the adsorption rate to the desorption rate, in the

desorption-controlled regime. In Section III, we describe
the temporal behavior of the system near saturation in
the desorption-controlled limit. To study the evolution in
this limit, we focus on a model with an infinite rate of ad-
sorption and a finite rate of desorption. A heuristic argu-
ment as well as numerical simulations show that the cov-
erage slowly approaches saturation, 1− ρ(t) ∼ 1/ log(t).
Finally in Section IV, we discuss our findings and further
outlook.

II. THE REVERSIBLE PARKING PROBLEM

In the irreversible parking problem, identical particles
park on a line with an adsorption rate k+. Particles at-
tempt to park with an equal rate everywhere and a park-
ing attempt fails if the space is partially occupied by a
previously adsorbed particle. We are interested in the
more general situation where particles are also allowed
to desorb with a desorption rate k−. Particles desorb
regardless of their local environment. This system ulti-
mately reaches an equilibrium state independent of the
initial conditions. The primary aim of this study is to
describe this final state and the asymptotic approach to-
wards it. To this end we will apply the empty interval dis-
tribution method [14]. This technique is often applied to
RSA problems, since simple and closed equations emerge.
We generalize these equations to describe the reversible
case and solve the static equations.

Denote the density of empty intervals of size exactly
equal to x at time t by P (x, t). Each empty interval bor-
ders a particle to its left and to its right. Since in the
adsorption-desorption process one interval corresponds
to one particle and since the total density of particles
and intervals is equal to unity one has

1 =

∞∫
0

dx (x+ 1)P (x, t). (1)

Without loss of generality the size of particles is taken as
the unit of length. Moreover, from the same one-to-one
mapping between particles and intervals, the density of
particles can be obtained from the distribution function
of empty intervals as
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ρ(t) =

∞∫
0

dxP (x, t). (2)

To write the evolution equations one has to account
for all possible processes leading to a change of P (x, t).
For x < 1, an interval disappears when either one of
its neighboring particles desorbs. On the other hand,
an interval of size x is created when a particle parks at
one of two specific locations on an interval of size y with
y > x+ 1. These two processes give rise to the following
integro-differential equation for P (x, t)

∂P (x, t)
∂t

= −2k−P (x, t) + 2k+

∞∫
x+1

dyP (y, t), (3a)

Due to adsorption, intervals with length larger than a
particle size are destroyed with a rate k+(x − 1). In
addition, two neighboring intervals can create a larger
interval when the intervening particle desorbs. However,
the mere knowledge of the interval distribution function
is not sufficient for writing the rate equations. We intro-
duce the interval-interval distribution function P (y, z, t),
defined as the density of pairs of neighboring intervals of
length y and z, which are separated by a single particle.
We further assume that this interval-interval distribution
function is proportional to the product of single interval
densities. This assumption, also known as the indepen-
dence principle, has proved to be exact in a number of
RSA problems [18,19]. In equilibrium at least, one ex-
pects such a relation to be exact and it is a natural start-
ing point for investigating the time dependent problem.
With this assumption, one finds for the rate equation for
x > 1

∂P (x, t)
∂t

= −2k−P (x, t) + 2k+

∞∫
x+1

dyP (y, t) (3b)

+
k−
ρ(t)

x−1∫
0

dyP (y, t)P (x−1−y, t)− k+(x− 1)P (x, t)

The convolution term involves the probability of find-
ing a y interval, P (y, t), and the normalized proba-
bility for its neighbor to be of size x − 1 − y, i. e.,
P (x−1−y)/

∫∞
0
dxP (x, t).

To verify that these equations satisfy the normaliza-
tion condition of Eq. (1), one can check by direct inte-
gration of Eq. (3) that ∂

∂t

∫∞
0
dx (x+ 1)P (x, t) = 0. An-

other useful check of self-consistency of the rate equations
is provided by integration of the rate equations over all
lengths. This gives the equation describing the change of
the density,

dρ(t)
dt

= −k−ρ(t) + k+

∞∫
1

dx (x− 1)P (x, t), (4)

which can also be derived directly from the definition of
the gap distribution. Equation (4) is a generalization
of the Langmuir mean-field equation, dρ/dt = −k−ρ +
k+(1 − ρ), which is recovered by setting the integral on
the right-hand side equal to 1− ρ(t).

FIG. 1. The exact steady state coverage for the reversible
parking problem. ρeq(k+/k−) is plotted vs. k−/k+ for
k+ > k− (solid line) and vs. k+/k− for k− > k+ (dotted
line).

The steady-state interval distribution has to satisfy the
static version of Eq. (3), that is, both sides of the equa-
tion vanish. Interestingly, the simplest attempt, trying
the Poissonian distribution Peq(x) = βe−αx, is successful.
We emphasize that despite the two different equations for
x < 1 and x > 1, the solution is smooth at x = 1. From
the normalization condition of Eq. (1) the prefactor is
determined to be β = α2/(1 +α), while from Eq. (2) the
value of α is found via a transcendental equation involv-
ing k+/k−. One can now write the exact steady-state
solution as

Peq(x) =
α2

1 + α
e−αx with αeα = k+/k−. (5)

To obtain the density of particles in the steady-state
we use the correspondence between particles and inter-
vals expressed in Eq. (2). Hence, it is easily found that
ρeq = α/(1 + α). In the desorption-controlled regime,
k+/k− � 1, one finds α ' log(k+/k−), and consequently,

ρeq ∼= 1− 1
log(k+/k−)

k+/k− � 1. (6)

Notice that in the limiting case k+/k− → ∞ the line
is completely filled with particles at the steady state, in
contrast to the case of no desorption where asymptotic
coverage is ρjam

∼= 0.7475 [7,8]. However, as the adsorp-
tion rate increases while the desorption rate is kept fixed,
the coverage increases very weakly, since the correspond-
ing correction is logarithmic. Moreover, the gap distri-
bution is regular at the origin, contrary to the logarith-
mic divergence occurring in the irreversible case. Thus,

2



the presence of desorption, even if slight, significantly
changes the long-time behavior. Note also that in the
adsorption-limited case, the coverage displays an obvious
linear dependence on the rate ratio, ρeq ∼= α ∼= k+/k−.

To test the theoretical predictions we performed
Monte-Carlo simulations of the reversible parking pro-
cess. We have found that the equilibrium properties
are essentially identical to the analytical results shown
in Fig. (1). We also confirmed the Poissonian nature
of the density of empty intervals. Furthermore, the re-
laxation to the the steady state have been investigated.
As expected, the approach to the steady state coverage
is exponential ρeq − ρ(t) ∝ e−t/τ , where the relaxation
time τ appears to be proportional to k+/k− with possi-
ble logarithmic corrections. Note that the corresponding
approach to the jammed state in the irreversible case
has a power-law dependence on time ρjam − ρ(t) ∝ t−1.
The distribution function P (x, t) exhibits a transient dis-
continuous derivative at x = 1 due to the discontinuous
structure of Eq. (3) . That feature does not permit us
to construct an analytic solution for the time dependent
problem.

We now outline the solution for the lattice version
[15,16] of the reversible parking problem. In this model,
objects occupy r lattice sites and will be referred to as
r-mers. Analogous to the continuous case, r-mers land
uniformly on a lattice with a rate k+ and adsorb if all sites
are empty. We define P (m, t) as the density of empty in-
tervals of exact length m. The equivalent to Eqs. (1-3)
simply follows and we merely quote the final results. The
density of empty intervals is again Poissonian

Peq(m) =
(1− λ)2

λ+ r(1− λ)
λm with

λr

1− λ
=
k−
k+

. (7)

Using the equivalent of Eq. (2) ρeq =
r
∑∞

0 Peq(m), we can find the steady state cover-
age ρeq = r(1− λ)/

(
λ+ r(1− λ)

)
. In the desorption-

controlled case, k+/k− � 1 we find that
ρeq = 1− (k−/k+)1/r/r. As the size of the r-mer in-
creases, the exponent of the power-law r−1 decreases
and ultimately the aforementioned logarithmic nature
is reached. Indeed, the solution to the continuous case
given by Eqs. (5-6) can be found from Eq. (7) by taking
the proper limits x→ m/r and k+ → k+/r.

III. DYNAMICS IN THE
DESORPTION-CONTROLLED LIMIT

The second part of our study focuses on the dynami-
cal properties of the system in the desorption-controlled
limit. To attain this regime, immediate adsorption (k+ =
∞) is imposed while the desorption rate is kept finite.
Redefining the time t → k−t, corresponds to taking the
desorption rate equal to unity. The evolution may be di-
vided into two stages. First, the system instantaneously
reaches a jammed state and then desorption comes into

play. Since both the final coverage and the asymptotic
behavior do not depend on the initial conditions pro-
duced at the end of first stage, one can use any initially
jammed configuration satisfying the normalization con-
straint of Eq. (1). In the simulations, we have chosen a
distribution where all gaps between particles are equal to
x0 with x0 < 1,

P (x, t = 0) =
δ(x− x0)

1 + x0
. (8)

Once a desorption event has occurred, either one or two
adsorption events are possible depending on the length
of the two intervals bordering the particle. We have
adopted a natural scheme where the first particle lands
on a randomly picked segment in the open interval and
then, if feasible, the second particle lands randomly on
the remaining interval. Thus, after each desorption and
subsequent adsorption event(s) the number of particles
is either left unchanged or increased by one. Numerical
simulations indicate that this process approaches com-
plete coverage in the long-time limit.

A simple heuristic argument explains the behavior of
the system near saturation. Let us imagine that a seg-
ment of length L = N + 2 is occupied by N particles.
Consider a typical situation where the gaps between the
particles are comparable (∼ 1/N). A successful density-
increasing adsorption event may take place only as a
result of a number of ordered cooperative desorption-
adsorption events. First, the leftmost particle has to
desorb and then adsorb near the left end of the segment.
Second, the next leftmost particle has to desorb and then
adsorb near the right side of the previous particle etc..
Finally, a gap larger than the unit length is cleared at
the right edge of the segment, and an additional par-
ticle successfully adsorbs. The probability for the first
event is R/N since the leftmost particle is desorbed first
among N particles; the probability for the second event is
R/(N − 1) etc.. The factor R < 1 accounts for the prob-
ability that the corresponding adsorption event happens
in the proper location. The total probability for the co-
operative event can be written as p ∼ RN/N !. We can
now evaluate the time dependence of N(t). The time re-
quired for a unit change in N is inversely proportional to
p and one has

dN

dt
∝ ∆N

∆t
∝ p ∝

(
eR

N

)N
. (9)

In the last step the Stirling’s formula N ! ∼ (N/e)N was
used. Solving Eq. (9) yields the following asymptotic
relation for N(t), N ∼ log(t)/ log

(
log(t)

)
. Since the un-

covered fraction obeys 1 − ρ(t) ∝ 1/N , an unexpectedly
slow long-time behavior of the density emerges,

1− ρ(t) ∝
log
(
log(t)

)
log(t)

. (10)
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We describe now a simpler heuristic argument that
also predicts inverse logarithmic behavior but without
double logarithmic correction. We observe that when
the system approaches to the completely covered state
the time interval between successive density-increasing
adsorption events increases. Hence, the system has
time to “equilibrate” and one can approximate the gap
distribution by the Poissonian equilibrium distribution
P (x, t) = α2e−αx/(1+a). To solve for the density we write
Eq. (4) with a vanishing desorption term

dρ(t)
dt

=

∞∫
1

dx (x− 1)P (x, t) =
1

1 + α
e−α. (11)

On the other hand, one has ρ(t) = α/(1 + α) from
Eq. (2) and consequently, the time derivative of the den-
sity can be expressed as dρ(t)/dt = (dα/dt)/(1+α)2. By
equating the two expressions obtained for dρ(t)/dt we
have

dα

dt
= (1 + α)e−α. (12)

Solving this differential equation we arrive at the asymp-
totic behavior of the density, that is, α ∝ log(t) and

1− ρ(t) ∝ 1
log(t)

. (13)

Both estimates predict that the desorption-limited pro-
cess gives rise to a very slow inverse logarithmic approach
to the completely covered state. Thus we conclude that
in the desorption-controlled limit the dynamics of the
system exhibits “glassy” relaxation.

Numerical simulations of the desorption-limited pro-
cess were performed using the following simple proce-
dure. A list of intervals {li < 1} is kept, while the loca-
tions of the particles are ignored. A simulation step con-
sists of choosing randomly a pair of neighboring intervals,
{li, li+1}. Then the total length li+ li+1 is redivided ran-
domly to two new intervals, l̃i and l̃i+1. If one of these
new intervals is larger than unity, an additional parti-
cle adsorbs. Given l̃i > 1, two new intervals are created
randomly with their total length equal to l̃i − 1. Time
is updated after each event by the inverse of the total
number of intervals in the system. To verify the pre-
dicted logarithmic approach to the saturated state, we
write f(t) =

(
1− ρ(t)

)
log(t). The simulation results for

f(t) and f(t)/ log
(
log(t)

)
are shown in Fig. 2(a). Both

functions are slowly varying in time. Since the former is
an increasing function and the latter a decreasing one,
we conclude that the estimates (10) and (13) provide the
upper and lower bounds for the uncovered fraction, re-
spectively. It seems that the upper bound provides a
slightly better approximation for f(t).

Similar to the general reversible case, the gap distribu-
tion is an important characteristic of the process. Rather
cumbersome rate equations describe the time evolution

of P (x, t) in this case. We do not write these rate equa-
tions since we have not been able to obtain meaningful
new results by analytical means. Instead, in Fig. 2(b) we
present Monte-Carlo simulational results for the gap dis-
tribution function. In the long-time limit, the gap distri-
bution function appears to be again Poissonian, at least
over a significant range of the gap size. We believe that
this supports the argument leading to the lower bound
(13). However, the tail of the distribution, crucial for the
adsorption of new particles, cannot be determined from
these data.

The success of the Poissonian approximation suggests
that the process is mean-field in nature. To check this
feature, a mean-field variant of the above Monte-Carlo
simulation was also considered. In this model, the two
randomly chosen intervals are not required to be neigh-
bors. In fact, the pair is chosen randomly from all avail-
able pairs. Simulations have shown little quantitative
change and practically no qualitative change in the data
similar to those presented on Fig. 2. We performed other
numerical experiments including, e. g., computation of
the pair correlation function. Again, simulational re-
sults revealed an excellent agreement between the one-
dimensional and the mean-field versions.

IV. DISCUSSION

We have considered near saturation properties of two
one-dimensional adsorption-desorption processes. In the
reversible case, we have obtained an exact solution that
exhibits a slowly varying dependence of the coverage ver-
sus the rate ratio k+/k−, when k+ � k−. In the case
of immediate adsorption, when the system approaches
to the completely covered state, we have shown that
1− ρ(t) ∼ 1/ log(t). We have performed numerical simu-
lations both for the 1D model and for the mean-field ver-
sion of the model. Comparison of numerical results have
revealed a remarkably good agreement between both
models. Despite the apparent difference in the defini-
tion of the reversible model and the desorption-controlled
model the underlying physical mechanism for increase in
coverage is similar. In a configuration where the cov-
erage is large, ρ <∼ 1, a growing number of cooperative
desorption-adsorption events are necessary for an addi-
tional adsorption to occur. Moreover, the slow nature
of the process allows for perfect mixing of different gaps
and hence leads to a Poissonian distribution of gaps.

The situation found in this adsorption-desorption pro-
cess is reminiscent of that encountered in a number of
one-dimensional systems where phase transitions occur
at zero temperature. Indeed, noting that in the park-
ing problem the rate ratio k+/k− plays the role of tem-
perature we conclude that all basic features of the re-
versible model such as disordered steady state and expo-
nential approach towards equilibrium correspond to typ-
ical behaviors above the point of phase transition. In the
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desorption-controlled case, the system reaches the per-
fectly ordered final state while the approach towards it
shows a critical slowing down. Furthermore, this anal-
ogy suggests that in the two-dimensional case a phase
transition in the adsorption-desorption system may take
place at a finite k+/k−. The desorption-controlled limit
in two dimensions seems very interesting since the system
can reach numerous metastable states which include, e.
g., two ordered perfect crystal structures, triangular and
square, and a number of polycrystalline structures with a
network of defects. Metastable states should be respon-
sible for remanance effects, slow relaxation, and sensitiv-
ity to initial conditions. Elucidating properties of these
metastable states and their basins of attraction, “glassy”
phase transitions, etc., is left for future studies.

After completing this article we became aware of sim-
ilar results, derived by independent means, for the dy-
namics in the desorption-controlled limit [20]. We thank
J. Talbot for letting us know of his work and for a use-
ful correspondance. We are also thankful to D. ben-
Avraham for pointing out some relevant references and
especially to S. Redner for numerous discussions and
for reading the manuscript. We gratefully acknowledge
ARO grant #DAAH04-93-G-0021, NSF grant #DMR-
9219845, and to the Donors of The Petroleum Research
Fund, administered by the American Chemical Society,
for partial support of this research.
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FIGURE CAPTION

Fig. 2 Monte-Carlo simulation results for the infinite
adsorption case. The simulation was performed on a ring
of length 100,000. (a) The temporal approach to the fully
occupied state. Shown are f(t), f(t) =

(
1 − ρ(t)

)
log(t)

vs. t (circles) and f(t)/ log
(
log(t)

)
vs. (t) (squares). (b)

The gap distribution at the 65536 time step.
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