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We study statistical properties of vibrated granular monolayers using molecular dynamics sim-
ulations. We show that at high excitation strengths, the system is in a gas state, particle motion
is isotropic, and the velocity distributions are Gaussian. As the vibration strength is lowered, the
system’s dimensionality is effectively reduced from three to two. Below a critical excitation strength,
a cluster phase occurs, and the velocity distribution becomes bimodal. In this phase, the system
consists of clusters of immobile particles arranged in close-packed hexagonal arrays, and gas particles
whose energy equals the first excited state of an isolated particle on a vibrated plate.
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Granular media, i.e., ensembles of hard macroscopic
particles exhibit rich, interesting, and only partially un-
derstood collective behavior [1–3]. The dynamics of
driven granular media is particularly important since the
external energy source balances the energy loss due to
the dissipative nature of the interactions. Understanding
of the collective behavior of such systems is therefore im-
portant for establishing a more complete theoretical de-
scription of granular media. Here, we focus on monolayer
geometries where collapse, clustering, and long range or-
der have been observed recently [4–9]. In particular, ex-
perimental studies reported that the velocity distribution
function may exhibit both Gaussian and non-Gaussian
behavior under different driving conditions.

In this study, we carry out molecular dynamics sim-
ulations of vertically vibrated granular monolayers. To
validate the simulation method, we verified the experi-
mentally observed phase transition from a gas phase in
high vibration strengths, to a cluster phase in low vi-
bration strengths [4,5,7]. Additionally, we checked that
several other details including the nature of the phase
transition, the transition point, and the statistics of the
horizontal velocities agree quantitatively with the exper-
imental results. In particular, the horizontal energy van-
ishes linearly near the transition point, and the corre-
sponding velocity distribution changes from a Gaussian
to a non-Gaussian as the vibration strength is reduced.

In contrast with the experimental studies, the simu-
lations enables us to probe the vertical motion, an im-
portant characteristic of the dynamics. Our results show
that as the system approaches the transition point, the
vertical energy drops by several orders of magnitude.
Furthermore, the cluster phase is characterized by a co-
existence of clusters of immobile particles, and energetic
gas particles, whose energy can be understood by con-
sidering an isolated particle on a vibrated plate. We also
find that the deviation from the Gaussian behavior in
the gas phase is directly related to the development of
an anisotropy in the motion, i.e., significant differences
between the horizontal and the vertical velocities.

To study the dynamics of vibrated monolayers, we used
the standard molecular dynamics simulation technique

[10]. We considered an ensemble of N identical weakly
deformable spheres of mass m, radius R, and moment of
inertia I = 2

5mR
2. The simulation integrates the equa-

tions of motion for the linear and angular momentums,
mr̈i =

∑
j 6=i Fij+mgẑ, and Iẇi =

∑
j 6=i rij×Fij , respec-

tively. Here, ri is the position of the ith particle, wi is its
angular velocity, and g is the gravitational acceleration.
The contact force in the direction normal (tangential) to
the vector rij = rj − ri is denoted by Fnij (Ftij). The
force between two particles is nonzero only when they
overlap, i.e., Fij = 0 when |rij | > 2R. When there is
an overlap, the normal contact force Fnij = Frest

ij + Fdiss
ij

between the particles is a sum of the following forces:
(a) A restoring force, Frest

ij = Y mi(|rij | − 2R)rij/|rij |,
with Y the Young’s modulus, and (b) An inelastic dis-
sipative force, Fdiss

ij = −γnmivnij . The tangential force
is the frictional force Ftij = Fshear

ij = −γsmivtij . In the
above, vnij = (vij · rij)rij/|rij |2, and vtij = vij − vnij
are projections of the relative velocities (at the point of
contact) in the normal and tangential directions, respec-
tively. The coefficients γn and γs account for the dissi-
pation due to the relative motion in the normal and tan-
gential directions, respectively. Overall, the molecular
dynamics method has the advantage that it is amenable
for parallel implementation, and that it allows handling
of collisions involving an arbitrary number of particles.

Initially, particles are randomly distributed on the vi-
brating plate, with a filling fraction ρ. The velocities
were drawn independently from an isotropic Gaussian
distribution. The plate undergoes harmonic oscillations
in the vertical direction according to zp(t) = A(t) cos(ωt)
with A(t) the (slowly varying) vibration amplitude, and
ω = 2πν with ν the frequency. When a particle collides
with the plate, it experiences the same force as if it were
to collide with an infinite mass particle moving with the
plate velocity. The simulation was carried out in a fi-
nite box with a height chosen to be large enough so that
no collisions can occur with the box ceiling, and peri-
odic boundary conditions were implemented horizontally.
Overall, the simulation parameters were chosen to be as
compatible as possible with the experimental values [4]:
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R = 0.595mm, g = 9.8ms−2, Y = 107s−2, ν = 70Hz,
N = 2000, ρ = 0.463, γs = 100s−1, and γn = 200s−1.
Without loss of generality, the particle mass is set to
unity, m = 1. The above parameters imply a restitution
coefficient of r = 0.95, and that contacts between parti-
cles last at most one thirteenth of an oscillation period.
We verified that the results reported below did not de-
pend sharply on the values of g, ν, ρ, γs, and γn, as well
as the nature of boundary conditions.

Fig. 1. The gas versus the cluster phase. Shown are top-

projections of the instantaneous particle positions (left) and

the cumulative positions over 100 consecutive oscillation cy-

cles (right) for vibration intensities Γ = 1.0 (top) and Γ = 0.6

(bottom).

We are primarily interested in statistical properties of
the system in the steady state, and especially their depen-
dence on the vibration strength, which can be quantified
by the dimensionless acceleration Γ = Aω2/g. The quan-
tity Γ can be tuned by varying either ω or A. We chose to
fix the frequency and vary the vibration amplitude. This
method should be valid as long as the time scale under-
lying the variation is larger than the systems’ intrinsic
relaxation time scales. Indeed, we verified that results
obtained using slowly varying amplitudes and fixed am-
plitudes are in agreement. Each of our simulations was
initially run at ∼ 103 oscillation cycles at a constant am-
plitude A0 = 0.25mm. Then, the amplitude was slowly
reduced in a linear fashion according to A/A0 = 1− t/τ ,
with the decay time τ ∼= 103s or alternatively ∼ 105 cy-
cles. Throughout this paper we report measurements of
average quantities such as the temperature and the veloc-
ity distribution. These were obtained by averaging over
100 consecutive oscillation cycles using 100 equispaced
points per cycle.
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Fig. 2 The vertical and horizontal temperatures versus the

vibration strength.

Qualitatively, we observe that above a critical vibra-
tion intensity, Γ > Γc, particles are in a gas phase, in
which their motion is random, as seen in Fig. 1. When
Γ < Γc in addition to particles in the gas phase, hexag-
onal ordered clusters form, as shown in a snapshot of
the system. Furthermore, particles inside these hexago-
nal clusters are stationary, i.e., they are attached to the
vibrating plate, while particles outside the clusters move
appreciably. This behavior is rather robust as it holds
at least in the parameter range 100s−1 < γs < 200s−1,
50s−1 < γn < 200s−1, and 20Hz < ν < 100Hz.

Experimental measurements of the horizontal temper-
ature, defined by TH = 1

2 〈v
2
x + v2

y〉, indicate a linear de-
pendence in the vicinity of the critical point [5]

TH ∝ (Γ− Γc). (1)

Our simulations confirm this linear behavior, as shown
in Fig. 2 and Fig. 3. We have also examined the tem-
peratures corresponding to the rotational motion. The
horizontal rotational temperature is very close to the hor-
izontal temperature. In contrast, the vertical rotational
temperature is roughly 1/3 the vertical temperature for
Γ > Γc, and it is negligible otherwise. Furthermore, the
horizontal energy practically vanishes below the transi-
tion point, as this quantity decreases by 3 orders of mag-
nitude for Γ < Γc. This is reminiscent of a sharp phase
transition and it is therefore sensible to view Γc as a
critical point. This linear behavior can be used to esti-
mate the critical point, and a linear least-square-fit yields
Γc = 0.763, in good agreement with the experimental
value Γc = 0.77 [4]. We conclude that the near critical
behavior observed numerically agrees both qualitatively
and quantitatively with the experiment.

Simulations also allow measurements of the vertical ve-
locities. We find that the vertical energy TV = 〈vz2〉
decreases sharply near the transition point as well. How-
ever, in contrast with the horizontal energy, it does not
vanish below the transition point. Therefore, the veloc-
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ities develop a strong anisotropy as the vertical and the
horizontal velocities behave quite differently. This re-
flects the fact that the system is far from equilibrium.

At high accelerations the particle motion is nearly
isotropic, i.e., the ratio of horizontal to vertical energy
is of the order unity. Indeed, this ratio approaches a
value of roughly 0.5 (see Fig. 2). In addition, the velocity
distribution is an anisotropic Gaussian (see Fig. 4), and
the system is practically three-dimensional. However, as
the acceleration is decreased, the two-dimensional geom-
etry becomes more and more pronounced. The verti-
cal motion dominates over the horizontal one, and the
horizontal velocity distribution departs strongly from a
Gaussian distribution. Near the phase transition point
the large velocity tail becomes nearly exponential (see
Fig. 4). Below the transition point, a significant frac-
tion of the particles have a nearly vanishing horizontal
velocity, i.e., the distribution of horizontal velocities is
strongly enhanced near the origin.

The deviation from the Gaussian behavior can be
quantified using the kurtosis, defined via the second and
fourth moments of the distribution, κ = 〈v4〉/〈v2〉2. In-
deed, in the limit of high vibration intensities, Γ � 1,
this parameter approaches the Gaussian value κ → 3.
On the other hand, near the phase transition point,
i.e., as Γ → Γc, this parameter approaches the expo-
nential value κ → 6. It proves useful to examine how
the kurtosis depends on TH/TV , the ratio between the
horizontal and the vertical energies. As shown in the
inset to Fig. 4, the smaller the ratio (or equivalently,
the larger the anisotropy), the larger the deviation from
a Gaussian distribution. Hence, whether the velocity
distribution is Gaussian or not reflects the degree of
anisotropy in the particle motion. Non-Gaussian dis-
tributions has been observed experimentally [4,5,7], the-
oretically [11–14], and numerically [9,13,15,16] in one-,
two-, and three-dimensional geometries.
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Fig. 3 Near critical behavior of the horizontal temperature.

The critical acceleration Γc = 0.763 was determined from the

linear fit TH = B(Γ− Γc).
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Fig. 4 The distribution of horizontal velocities in the gas

state, and in the vicinity of the critical point. The velocities

were normalized by the RMS velocity vrms = 〈v2
x〉1/2. A Gaus-

sian distribution is plotted as a reference. The inset plots κ

the kurtosis of the distribution of horizontal velocities versus

TH/TV the ratio of horizontal to vertical energies. The two

extremal points correspond to the data sets plotted in this

figure, i.e., Γ = 0.8 and Γ = 6.

The distribution of vertical velocities can be used to
distinguish between cluster and gas particles. Indeed, the
vertical velocity distribution changes its character from a
unimodal to a bimodal distribution in the cluster phase
(see Fig. 5) with the low velocity peak corresponding to
the cluster particles, and the high velocity peak corre-
sponding to the gas particles. Interestingly, the location
of the high velocity peak does not change as Γ decreases.
In fact, the nonvanishing energy level of Fig. 2 can be
understood by considering the first excited state energy
of a single particle bouncing on a vibrating plate, which
can be calculated to be [6]

E1 =
1
6

(πg
ω

)2

, (2)

or in our case E1 = 8.16 cm2s−2. We verified this re-
sult by simulating the motion of a single particle on a
vibrating plate. Remarkably, the energy of the gas par-
ticles falls within less then 10% of this value. Therefore,
below the phase transition point particles residing in clus-
ters are in the ground state, i.e., they are moving with
the plate. Furthermore, the rest of the particles are in
the first excited state of an isolated ball on a vibrating
surface. Additionally, these gas particles collide mostly
(> 95%) with the plate, rather than with other parti-
cles. This indicates that the gas particles are essentially
noninteracting.

The vertical velocity distribution can be used to study
the fraction of particles in each phase by simply inte-
grating the area under the respective energy peaks. As
shown in Fig. 6, P0, the fraction of particles in clusters is
almost independent of the vibration intensity below the

3



transition point. As the transition point is approached,
this fraction rapidly decreases and ultimately vanishes
for Γ � Γc. Although this quantity does not undergo a
sharp transition, its behavior is consistent with our pre-
vious estimate of the transition point from the horizontal
energy behavior.
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Fig. 5 The distribution of vertical velocities in the cluster

phase for Γ = 0.6.

In summary, we have studied the dynamics of vibrated
granular monolayers using molecular dynamics simula-
tions. We find that the transition between the gas and
the cluster phases can be regarded as a sharp phase tran-
sition, and that the horizontal energy decreases linearly
near the transition point. We have shown that at high
vibration strengths, the particle motion is isotropic, and
the velocity distributions are Gaussian. The deviations
from a Gaussian distribution were found to be closely re-
lated to the degree of anisotropy in the motion. We have
also shown that below the phase transition point, the ve-
locity distribution is bimodal. The cluster particles move
with the plate, while the gas particles are noninteracting,
as they collide primarily with the plate, and their energy
agrees with the first excited state of an isolated vibrated
particle.

Our results agree both qualitatively and quantitatively
with the experimental data. This shows that the under-
lying phenomena can be explained solely by the simu-
lated interactions, i.e., dissipative contact forces. Other
mechanisms, possibly present in the experiment, such as
electrostatic forces, etc., are therefore not responsible for
the phase transition. It will be interesting to use molec-
ular dynamics simulations to determine the full phase
diagram of this system by varying the density and the
driving frequency.
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Fig. 6 The fraction of particles moving with the plate ver-

sus the vibration strength. The fraction P0 was obtained from

the horizontal velocity distribution by integrating the area en-

closed under the low velocity peak (see Fig. 5).
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