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Overview 

• Control center operations 

• Modeling the impact of uncertainty 

– Modeling the uncertainty in variable generation 
forecasts 

– Modeling the reaction to forecast deviations 

• Determining the impact of forecast deviations 

• Extensions and future work 
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CONTROL CENTER OPERATIONS & 
SITUATIONAL AWARENESS 
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Background on Power System Operations 

• Synchronized power grids 
are (arguably) the most 
complex systems ever 
constructed 
– Eastern Interconnection 

has over 100,000 miles of 
transmission, over 600 GW 
of installed capacity 

• In the North American 
power grid, system 
control is split amongst 
over 100  “balancing 
authorities” 
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Control Center Operations 

• Control centers operate 
their systems to meet 
performance standards 
set by: 
– International and 

national organizations 
(e.g., NERC) 

– Regional coordinating 
councils (e.g., NPCC, 
WECC) 

– Local rules (e.g., IESO 
and PJM Market Rules) 
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Responsibilities of Operators 

• Maintaining sufficient primary frequency 
response resources  

• Balancing power consumption and production 

• Meeting voltage requirements 

• Maintaining sufficient online and offline 
generation reserves 

• Determining dispatch and commitment 
schedules 

6 



Situational Awareness (SA) 

What do grid operators need in order to 
responsibly manage their network? 

 

Situational awareness is “*u+nderstanding the 
current environment and being able to 
accurately anticipate future problems to enable 
effective actions.” *definition from PNNL+ 

 

7 



SA in Power Systems:  
“Understanding the Current Environment” 

• In power system operations, operators must have 
a sufficient grasp of current grid conditions so 
they can identify any existing problems and, 
when necessary, take immediate corrective 
actions 

• Various data processing and visualization tools 
built into modern energy management systems 
(EMSs) for this purpose 
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Alarms 
State estimation 

Topology processing 
 

Contingency Analysis 
Dynamic security assessment 

Voltage contours 
 



Example of a Modern Control Room 
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Dynamic map board showing flows, voltages, and  status information 
from the Independent Electricity System Operator (IESO) 



SA in Power Systems: 
“Being Able to Accurately Anticipate Future Problems 
to Enable Effective Actions” 

• Knowing there are no existing problems isn’t 
sufficient—operators must also be able to 
foresee future problems so they have sufficient 
time to act 
– 4 to 6 hours for changes to generator commitment 

schedules 

• In an ideal world, the fidelity of these predictions 
would be sufficient to take any actions needed to 
maintain grid reliability 
– In reality, computational demands & forecast errors 

make this difficult 
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Impact of Poor SA on Grid Reliability 

• Of the 6 major blackouts in North America within the past 
50 years, 4 were due in part to a lack of SA 
– November 9, 1965 Blackout: Operators unaware of relay 

operations that eventually led to a cascading blackout (20,000 
MW, 30 million people) 

– December 22, 1982 Blackout: Volume and format of raw data 
made it hard to gauge the extent of a disturbance and 
determine the corrective action to take (12,350 MW, 5 million 
people) 

– August 10, 1996 Blackout: Operators unaware of insecure 
system state after initial unscheduled line openings (28,000 
MW, 7.5 million people) 

– August 14, 2003 Blackout: First Energy, MISO operators 
unaware of problems (61,800 MW, 50 million people) 
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Impact of Variable Generation on SA 

• There is a concerted effort by many federal and 
regional governments to promote generation 
technologies that are fundamentally stochastic, 
namely wind & solar generation 

• A large build-up of variable generation will impact 
the ability of operators to: 
– Identify existing problems (lack of telemetry, 

particularly for VG connected to a distribution 
network) 

– Anticipate problems  (forecast uncertainty) 
– Choose appropriate control actions (lack of actionable 

information to drive control decisions) 
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Daily Load Variation 

• The load variation throughout the day is highly 
predictable based on season, time of day, day of 
the week, and precipitation 
– Basis for time-of-use rates, which designate off-, mid-, 

and on-peak prices (and demand) for Ontario 
customers 

 

 

http://www.ieso.ca/imoweb/siteshared/tou_rates.asp 



Sample Daily Load Curve 
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Wind Variation 

• Wind power output is much less predictable than the load, so 
old thinking and old tools built around load forecasting are 
unlikely to translate over directly 
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MODELING THE UNCERTAINTY IN 
VARIABLE GENERATION FORECASTS 
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Mitigating Potential Degradation in Reliability 

• The additional operational challenges associated with 
variable generation are due primarily to the 
uncertainty of output forecasts 

• Reducing the uncertainty in renewable plant output 
can improve reliability and efficiency by: 
– Allowing operators to identify potential regulation 

shortfalls further in advance 
– Reducing the unnecessary commitment of additional 

generators or curtailment of variable generation due to 
overly conservative reserve estimates 

• Complete elimination of uncertainty is not possible, 
but characterizing and improving forecast accuracy can 
and should be done insofar as it is possible 
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Data Driven Characterization of Forecast 
Uncertainty 

• Development and population of renewable generation data 
archives is the first step towards improving the performance of 
renewable output forecasts and characterizing forecast errors 

• Example: estimating the error distribution of a vendor’s forecast 
product for a specific time horizon & output interval 
– Create a histogram of historical forecast error measurements and either 

use this directly for subsequent analyses or fit the histogram to a 
distribution via parameter estimation techniques 

– Empirical probability mass function will become a better approximation to 
the probability density function of the error as more samples are used, 
but this is limited by data availability 

– Can use results to conduct sensitivity analysis on interval length (e.g., 
evaluate the impact on NERC CPS2 performance by looking at 10-minute 
forecast errors) and forecast horizon (e.g., determine the minimum 
horizon that results in certain bounds on the forecast error) 
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ARMA Forecast Error for 1-Hour Output 
Interval with Time Horizon of 1 Hour 
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ARMA Forecast Error for 1-Hour Output 
Interval with Time Horizon of 2 Hours 
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ARMA Forecast Error for 1-Hour Output 
Interval with Time Horizon of 4 Hours 
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ARMA Forecast Error for 1-Hour Output 
Interval with Time Horizon of 8 Hours 
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Data Driven Characterization of Forecast 
Uncertainty 

• By utilizing a sufficiently large data set, such histograms could 
be used to approximate the distribution of forecast errors or 
error correlations between sites 

• Example of comprehensive wind farm data collection 
– On the HQ system, SNC-Lavalin has installed a data collection system 

(SAGIPE) that collects 45,000 telemetry points every 10 minutes from 
8 wind farms (total installed capacity of 990 MW) 

– Results in storage requirements of (45,000 x 6 x 24 x 365) = 2.365 x 
109 points per year = 8.81 GB per year (assuming single precision) 

– Extrapolating out to 4,000 MW = 35.6 GB per year 

– Manageable data requirements suggest that it should be possible to 
collect and archive the complete set of 10-minute data for every 
turbine 
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MODELING THE REACTION TO 
FORECAST DEVIATIONS 
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System Response to Forecast Error 

• Substantial deviations from forecast could exhaust reserve 
margins 
– Operating reserve margins are based on the ability of the 

system to continue operating despite the occurrence of 
instantaneous, unscheduled events (e.g., trip of a nuclear plant 
or transmission line) 
• e.g., NPCC Operating Reserve Criteria require 10-minute reserves to 

be greater than or equal to the first contingency loss & 30-minute 
reserves to be greater than or equal to the second contingency loss 

– Managing uncontrolled, sustained ramps in generation could be 
more challenging than the loss of any single unit (e.g., 2000 MW 
/ 1 hour vs. 1000 MW / instant) 

• Method of modeling the redispatch due to forecast error is 
critical in evaluating reserve adequacy with variable 
generation 
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Statement of the Problem 

• On the power grid, there must be a balance of 
produced and consumed power in the network 
– Otherwise, sustained frequency excursions will occur 

• When there is a deviation from the scheduled 
output of a VG, the shortfall/surplus in 
generation must be compensated by other 
sources of generation 

• Even if losses are neglected and a linearization of 
the power network equations is used, modeling 
the re-dispatch of the remaining system 
resources is nontrivial 
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Approaches to Redispatch Modeling 

• One common approach is to have a single 
generator (the “slack” generator) provide all 
necessary regulation 

 

• A generalization of the slack generator 
approach is to proportionally assign the 
forecast error to the controllable resources 
(a.k.a. re-dispatch using “participation 
factors”)  
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Comments on the Participation Factor 
Approach 

• The participation factor approach is based on the 
assumption that the best way to allocate the 
forecast error to the remaining resources is 
known a priori 
– If this is known, then using the participation factor 

approach can be much faster than other methods of 
modeling forecast error reaction 

– However, participation factors have to be 
redistributed when an up/down re-dispatch limit is 
hit, and so are likely to only be valid for very small 
forecast errors 
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Optimal Reaction to Forecast Error 

• An alternative method is to optimally re-
dispatch the remaining generation (e.g., to 
minimize cost, control movement, or line 
violations) while enforcing generation limits 
and power balance 
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DETERMINING THE IMPACT OF 
FORECAST DEVIATIONS 
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Determining the Impacts of Forecast 
Deviations 

• Assessing the impact of uncertainty is challenging, but it 
will be increasingly important as system operations 
becomes more reliant on probabilistic information 

• We want to develop tools that quantify the impact of 
forecast errors based on three principles: 
1. Forecast error distribution is important: a forecast with an 

error bound of +/- 10% at a confidence level of 99% has the 
potential to cause more trouble than a forecast with an error 
bound of +/- 1% at the same confidence level 

2. Location is important: The transmission network may restrict 
which generators can compensate which VGs’ forecast errors 

3. Speed is important: Any metrics and visualizations should be 
easy to explain, provide predictable output, and have 
computation times that make it usable in control centers 
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• Model impacts on branch flows using dc (or 
linearized ac) power flow equations 

 

 

 

• The elements within the ISF matrix are used for 
contingency analysis and transmission loading relief, 
so the need for this data is unlikely to be a stumbling 
block for implementation 

 

Modeling the Effects of VG & Non-VG 
Generator Output on Line Flows 
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Ranking System-Level Impacts 

• In contingency ranking and other techniques 
where the system impact of different events 
are being considered, penalty functions are 
often used to indicate the importance of 
violations 

• For example, to penalize branch overcurrent: 
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Determining the Worst Case  
Forecast Deviation 

• Using the models described above, the “worst case forecast 
deviation”, ΔPV

*, is defined by: 

 

 

 

 

 

 

 
 

 

• “Maximin”, infinite Stackelberg game 
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Challenges with the Original Formulation: 
Inner Equilibrium Constraint 

• One problem with the above formulation is that 
the feasible space of solutions is defined by an 
objective function (referred to as a mathematical 
programs with equilibrium constraints, or MPEC, 
in the literature) 

• Because the inner optimization is a linear 
program, the equilibrium constraint can be 
replaced by the stationarity and complementarity 
conditions which must be satisfied 

• Becomes a linear program with SOS1 constraints 
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Challenges with the Original Formulation: 
Non-Convex Outer Objective 

• The outer optimization is a maximization over 
a sum of piecewise convex functions 

• Can be rewritten as a linear program with 
SOS2 constraints  

• Using these transformations, the problem can 
be solved using a standard ILP solver (e.g., 
CPLEX, GUROBI) 
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Case Study: 
14 Bus System (Confidence Level: 50%) 
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Case Study: 
14 Bus System (Confidence Level: 75%) 
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Increased loading due to 
wider forecast error 

range 



Case Study: 
14 Bus System (Confidence Level: 95%) 
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Approaching branch 
violation limit 



Case Study: 
14 Bus System (Confidence Level: 99%) 
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Additional branch 
violation limit 



Case Study: 
37 Bus System Oneline Diagram 
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Case Study: 
37 Bus Study Parameters 

• Controllable generation capacity: 1828 MW 

• Load: 1544 MW 
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Case Study: 
37 Bus - High Forecast Error 

• Forecast: 55 MW 

• Forecast error: +5/-50 MW 

• Solution found with GUROBI in 10 seconds 

• Maximum line overload is 6.65% 

• Worst case wind error: [-50, +5, -50, -50, -50, 
+5, -50, -50] 

– Optimal re-dispatch: [+20, -166, +350, +87, -30, 
+46, -81, +63] 
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Case Study: 
37 Bus – Variation in Participation Factors 

• Tested boundary points from high forecast 
error (55 MW, +5 MW/-50 MW) set of data 
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Case Study: 
37 Bus - Low Forecast Error 

• Forecast: 15 MW 

• Forecast Error: +10/-15 MW 

• Solution found with GUROBI in 4 seconds 

• Sum of overloads: 0% 

• Maximum line overload: 0% 

• Sample re-dispatch: [-19, -174, +59, +87, +30, 
+46, 0, +40] 

 

 

 

45 



Extensions 

• Inclusion of commitment as decision variable 

• Clearly show the tradeoff between the 
confidence level used to bound the forecast 
error & the maximal loading 

• Use ramp up/down instead of line loading—
should indicate where reserves are critical 

• Extension to correlated forecast errors 
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Closing Remarks 

• Developing new tools that help operators 
understand existing and potential system 
conditions should be a top priority, since they are 
ultimately responsible for maintaining a reliable 
electricity supply 

• Thank you 

 

 
…and special thanks to Xiaoguang Li, the M.A.Sc. student 
who’s been working with me on this research. 
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