Hybrid Dynamics of Wind Turbine Models

Ian A. Hiskens
Vennema Professor of Engineering
Professor, Electrical Engineering and Computer Science

Los Alamos National Laboratory
January 19, 2010
Background

- As the amount of wind generation grows, its impact on power system dynamic behavior may become significant.

- Individual utilities must sign nondisclosure agreements (NDAs) to obtain accurate models from wind turbine generator (WTG) manufacturers.
 - The NDAs prevent use of manufacturer models in system-wide multi-utility studies.

- The Western Electricity Coordinating Council (WECC) has developed generic WTG models.
 - The aim is to determine parameter sets for the generic models by matching (as best possible) their behavior to the accurate manufacturer models.

- This talk focuses on Type 3 WTGs.
 - Doubly fed induction generators (DFIGs).
Model overview

Doubly fed induction generator

Converter Control Model

Generator/Converter Model

Pitch Control Model

Wind Turbine Model

Collector System (e.g., 3.4 kV bus)
Generator model

- Controlled current source.
- Phase locked loop is modeled.
Reactive power control

- Various different control modes are used.
 - Regulate generator terminal voltage.
 - Not a good idea, as difficult to coordinate setpoints with adjacent WTGs in a windfarm.
 - Regulate power factor or reactive power output.
 - Setpoint may be established by a centralized controller that's regulating the collector bus.

Typical collector system topology
Torque control

- **Anti-windup limits on PI integrator:**
 - If P_{ord} is on its upper limit and ω_{err} is positive then the PI integrator is frozen.
 - Similar logic for lower limit.
 - This logic can result in sliding-mode behavior.
- **The error signal driving the PI integrator is** $\omega - \omega_{ref}$
 - Keep this in mind for later.
• The error signal driving the pitch control integrator is $\omega - \omega_{ref}$
 – A second integrator with this same input.
• If the pitch θ is on a limit, then a blocking strategy (similar to before) is used for the pitch control and pitch compensation integrators.
 – Again, sliding-mode behavior can result. (Example later.)
The figure shows the single-mass model; a two-mass model is also defined.

The simplified aerodynamic model is based on a simplification of the turbine C_p curves.

When $\theta_0 = 0^o$, which is normally the case, mechanical power becomes

$$P_{mech} = P_{mo} - K_{aero} \theta^2$$

- Linearizing gives $\Delta P_{mech} = 0$ and an eigenvalue becomes zero.
- The influence of pitch angle on mechanical power is lost.
Sliding-mode behavior

• Disturbance: Three-phase fault followed by line tripping.
• Initial pitch angle \(\theta_0 = 0^\circ \) therefore damping is poor.

- Hysteresis logic: If
 - Input to \(x_C \) integrator is negative AND
 - (Pitch angle is on minimum limit OR
 - (Pitch angle lies within hysteresis band AND
 - \(x_C \) is already blocked))
- Then block \(x_C \) integrator.
Sensitivity to hysteresis

- Trajectory sensitivities indicate that the width of the hysteresis band has no lasting effect on dynamic behavior.
- But hysteresis is necessary to generate solutions without resorting to Fillipov concepts.
Consequences of duplicate integrators

• Equilibrium conditions are underdetermined, and describe a 1-manifold.
 – The system can (theoretically) converge to any point on that manifold.

• Linearizing gives an A matrix that has linearly dependent rows.
 – The eigenvector corresponding to the 0-eigenvalue is locally tangent to the equilibrium manifold.
 – When x_c is free to vary, it involves only x_c, x_p
 – When x_c is fixed on a limit, it primarily involves x_p, θ but also couples with P_{ord}, T_ω
Duplicate integrators (2)

- The system model includes the two integrators:
 \[
 \frac{dT_\omega}{dt} = K_{itrq}(\omega - \omega_{ref}) \\
 \frac{dx_p}{dt} = K_{ip}(\omega - \omega_{ref})
 \]

- If an input to either integrator is slightly in error, then the only solution is \(\omega = \omega_{ref} = 0 \)

 - This corresponds to the wind turbines stopped!
Initialization at a limit

- The state x_c is usually on a limit at initialization.
- As noted previously, behavior is very different depending upon whether or not the limit is enforced.
 - These two situations generically result in different eigenvalues.
- The system cannot be linearized at an equilibrium point that sits on a switching surface.
- Switching becomes infinitely fast as the system converges to an asymptotically stable equilibrium point on a switching surface.
Conclusions

• It is very important that system-wide studies incorporate wind turbine dynamics.
 – This is only feasible with generic models.

• Wind turbine dynamics display fairly complicated interactions between continuous dynamics and discrete events.
 – A typical 10 second simulation involved 25 switching events.

• The existing WECC generic model for type 3 (DFIG) wind turbines gives rise to behavior that is mathematically rich but unintended.
 – This model is being used routinely in industry for assessing the impact of wind turbines!