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Loop calculus in statistical physics and information science
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Considering a discrete and finite statistical model of a general position we introduce an exact expression for
the partition function in terms of a finite series. The leading term in the series is the Bethe-Peierls (belief
propagation) (BP) contribution; the rest are expressed as loop contributions on the factor graph and calculated
directly using the BP solution. The series unveils a small parameter that often makes the BP approximation so
successful. Applications of the loop calculus in statistical physics and information science are discussed.
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Discrete statistical models, the Ising model being the
most famous example, play a prominent role in theoretical
and mathematical physics. They are typically defined on a
lattice, and major efforts in the field focused primarily on the
case of the infinite lattice size. Similar statistical models
emerge in information science. However, the most interest-
ing questions there are related to graphs that are very differ-
ent from a regular lattice. Moreover, it is often important to
consider large but finite graphs. Statistical models on graphs
with long loops are of particular interest in the fields of error
correction and combinatorial optimization. These graphs are
treelike locally.

A theoretical approach pioneered by Bethe [1] and Peierls
[2] (see also [3]), who suggested analyzing statistical models
on perfect trees, has largely remained a useful efficiently
solvable toy. Indeed, these models on trees are effectively
one dimensional, and thus exactly solvable in the theoretical
sense, while computational effort scales linearly with the
generation number. The exact tree results have been ex-
tended to higher-dimensional lattices as uncontrolled ap-
proximations. In spite of the absence of analytical control the
Bethe-Peierls approximation gives remarkably accurate re-
sults, often outperforming standard mean-field results. The
ad hoc approach was also restated in a variational form [4,5].
Except for two recent papers [6,7] that will be discussed later
in this Rapid Communication, no systematic attempts to con-
struct a regular theory with a well-defined small parameter
and the Bethe-Peierls as its leading approximation have been
reported.

A similar tree-based approach in information science has
been developed by Gallager [8] in the context of error-
correction theory. Gallager introduced so-called low-density
parity-check (LDPC) codes, defined on locally treelike Tan-
ner graphs. The problem of ideal decoding, i.e., restoring the
most probable preimage out of the exponentially large pool
of candidates, is identical to solving a statistical model on the
graph [9]. An approximate yet efficient decoding belief-
propagation algorithm introduced by Gallager constitutes an
iterative solution of the Bethe-Peierls equations derived as if
the statistical problem was defined on a tree that locally rep-
resents the Tanner graph. We utilize this coincidence to call
the Bethe-Peierls and belief-propagation equations by the
same acronym BP. Recent resurgence of interest in LDPC
codes [10], as well as proliferation of the BP approach to
other areas of information and computer science, e.g., artifi-
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cial intelligence [11] and combinatorial optimization [12],
where interesting statistical models on graphs with long
loops are also involved, posed the following questions. Why
does the BP method perform so well on graphs with loops?
What is the hidden small parameter that ensures exceptional
performance of the BP approach? How can we systemati-
cally correct the BP equations? This Rapid Communication
provides systematic answers to all these questions.

The Rapid Communication is organized as follows. We
start with introducing notations for a generic statistical
model, formulated in terms of interacting Ising variables
with the network described via a factor graph. We next state
our main result: a decomposition of the partition function of
the model in a finite series. The BP expression for the model
represents the first term in the series. All other terms corre-
spond to closed, undirected subgraphs of the factor graph,
possibly branching yet not terminating at a node, which are
referred to as generalized loops. The simplest diagram is a
single loop. An individual contribution is the product of local
terms along a generalized loop, expressed explicitly in terms
of simple correlation functions calculated within the BP ap-
proach. We proceed with discussing the meaning of the BP
equation as a successful approximation in terms of the loop
series, followed by presenting a clear derivation of the loop
series. The derivation includes three steps. We first introduce
a family of local gauge transformations, two per original
Ising variable. The gauge transformation changes individual
terms in the expansion with the full expression for the parti-
tion function natually remaining unchanged. We then fix the
gauge in such a way that only those terms that correspond to
generalized loops contribute to the modified series. Finally,
we show that the first term in the resulting generalized loop
series corresponds exactly to the standard BP approximation.
This interprets the BP approach as a special gauge choice.
We conclude with clarifying the relation of this work to other
recent advances in the subject, and discuss possible applica-
tions and generalizations of the approach.

Consider a generic discrete statistical model defined
for an arbitrary finite undirected graph I, with bits
a,b=1,...,m with the neighbors connected by edges
(a,b),..., the neighbor relation expressed as ae b or b € a.
Configurations o are characterized by sets of binary (spin)
variables o,,==1, associated with the graph edges:
o={0,,;(a,b) e I'}. The probability of configuration o is
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FIG. 1. Example of a factor graph. Twelve possible marked
paths (generalized loops) are shown in bold in the bottom part.

p(O’):Z_lea(O'a), Z=E Hfa(o'a)s (l)

ael’ o ael

f.(0r,) being a non-negative function of o, a vector built
of o, with bea: o,={0,;b € a}. The notation assumes
0,,=0,, Our vertex model generalizes the celebrated
six- and eight-vertex models of Baxter [3]. An example of a
factor graph with m=8 that corresponds to p(o,0,,03,04)
=Z_1H§1=1fa(0-a)» where o= (0-2’ Oy, 0-8)» o= (0-1 } 0'3)’ o3
=(0y,04), 0,=(01,03,05), 05=(04,06,0%), 0= (05,07),
0,=(0¢,03), 03=(0,,05,07), is shown in Fig. 1.

The main exact result of this Rapid Communication is
decomposition of the partition function defined by Eq. (1) in
a finite series:

IT p.(0)
aeC
Z=7y 1 , 2
1" % 0o Y
(a,b)eC
mab(c) = E o-abbub(o-ab) ’ (3)
b+a
Mq = E 1_.[ (Uab_mab)ba(aa)a (4)
o, beaC

where the summation goes over all allowed (marked) paths
C, or generalized loops. They consist of bits each with at
least two distinct neighbors along the path. Twelve allowed
marked paths for our example are shown in the bottom part
of Fig. 1. A generalized loop can be disconnected, e.g., the
last one in the second row shown in Fig. 1. In Egs. (2)
b0 ), b(o,), and Z; are beliefs (probabilities) defined on
edges, bits, and the partition function, respectively, calcu-
lated within the BP approach. A BP solution can be inter-
preted as an exact solution in an infinite tree built by unwrap-
ping the factor graph. A BP solution can be also interpreted
[5] as a set of beliefs that minimize the Bethe free energy
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b,(o,) ~

f (0_ ) E 2 bztb(Uab)ln bab(o-ab),

(a.b) oy,

F=2 2 b(a,)n

under the set of realizability 0<b,(0,),b,(0,) <1, nor-
malization 2, b,(0,)=2, byl(o,)=1, and consistency
E(,a\,,abbu(a'a):bah((rab) constraints. The term associated
with a marked path is the ratio of the products of irreducable
correlation functions (4) and the quadratic magnetization
at-edge functions (3) calculated along the marked path C
within the BP approximation.

As usual in statistical mechanics exact expressions for the
spin correlation functions can be obtained by differentiating
Eq. (2) with respect to the proper factor functions. In the tree
(no loops) case only the unity term in the right-hand side
(RHS) of Eq. (2) survives. In the general case Eq. (2) pro-
vides a clear criterion for the BP approximation validity: The
sum over the loops in the RHS of Eq. (2) should be small
compared to 1. The number of terms in the series increases
exponentially with the number of bits. Therefore, Eq. (2)
becomes useful for selecting a smaller than exponential num-
ber of leading contributions. In a large system the leading
contribution comes from the paths with the number of
degree-2 connectivity nodes substantially exceeding the
number of branching nodes, i.e., the ones with higher con-
nectivity degree. According to Eq. (2) the contribution of a
long path is given by the ratio of the along-the-path product
of the irreducible nearest-neighbor spin correlation functions
associated with a bit u, to the along-the-path product of the
edge contributions 1/(1-mZ,). All are calculated within the
BP approximation. Therefore, the small parameter in the per-
turbation theory is s=Haec,ua(C)/H(uqb)EC(1—mZb). If ¢ is
much smaller than 1 for all marked paths the BP approxima-
tion is valid. We anticipate the loop formula (2) to be ex-
tremely useful for analysis and possible differentiation be-
tween the loop contributions. Whether the series is
dominated by a single-loop contribution or some number of
comparable loop corrections will depend on the problem spe-
cifics (form of the factor graph and functions). In the former
case the leading correction to the BP result is given by the
marked path with the largest €.

We now turn to derivation of the loop formula. Let us
relax the condition o,,=07, in Eq. (1) and treat o,;, and o,
as independent variables. This allows us to represent the par-
tition function in the form

2=3 o) TT 272, )

a (b,c)

where there are twice more components since any pair of
variables o, and o, enters o’ independently. It is also as-
sumed in Eq. (5) that each edge contributes to the product
over (b,c) only once. The representation (5) is advantageous
over the original one (1) since o, at different bits become
independent. We further introduce a parameter vector n with
independent components 7,;, (i.€., 7, # 7p,)- Making use of
the key identity
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COSh( Mo + 77cb)(1 + O-hco-cb)
(cosh 7, + may, sinh 7,.)(cosh 7., + o, sinh 7,,)

= Vbca

Vbc(o-bc’ 0.(,‘/7) =1+ [Sll’lh( Dpe + 77(‘,17) — Ope COSh(ﬂbc + 770}))]

X [Slnh( U/ ncb) —O¢p COSh( Mpe + ncb)];
(6)

we transform the product over edges on the RHS of Eq. (5)
to arrive at

Z= ( H 2 COSh(nbc+ ncb))_lz H PaH Vbc’ (7)

(b,c) a be

Pa(o-a) =fa(a-a) 1_.[ (COSh Nab + Opa sinh 77ab) . (8)

bea

The desired decomposition Eq. (2) is obtained by choosing
some special values for the % variables (fixing the gauge)
and expanding the V terms in Eq. (7) in a series followed by
a local computation (summations over o variables at the
edges). Individual contributions to the series are naturally
identified with subgraphs of the original graph defined by a
simple rule: Edge (a,b) belongs to the subgraph if the cor-
responding “vertex” V,, on the RHS of Eq. (7) contributes
using its second (nonunity) term, naturally defined according
to Eq. (6). We next utilize the freedom in the choice of 7.
The contributions that originate from subgraphs with loose
ends vanish provided the following system of equations is
satisfied:

E [tanh( Nab + 77bu) - O-ba]Pa((ra) =0. (9)

g,

The number of equations is exactly equal to the number of »
variables. Moreover, Egs. (9) are nothing but BP equations:
simple algebraic manipulations (see [13] for details) allow
one to recast Eq. (9) in a more traditional BP form

S, Tufl o) TT) (cosh m, + 0, sinh 7,.)
S, fulo )T (cosh 7, + o sinh 7,.)
with the relation between the beliefs that minimize the Bethe

free energy F and the # fields according to

Pa(gﬂ)
2, Pdo)
The final expression Eq. (2) emerges as a result of direct
expansion of the V term in Eq. (5), performing summations
over local o variables, making use of Egs. (3) and (4), and

also identifying the BP expression for the partition function
as

[l

tanh Moa =

ba((ra) =

11, P.(a)

I1,,.,2 cosh(mye + 7.1)

ZO=

To summarize, Eq. (2) represents a finite series where all
individual contributions are related to the corresponding gen-
eralized loops. This fine feature is achieved via a special
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selection of the BP gauge (9). The condition enforces the “no
loose ends” rule, thus prohibiting anything but generalized
loop contributions to Eq. (2). Any individual contribution is
expressed explicitly in terms of the BP solution.

We expect that BP equations may have multiple solutions
for the model with loops. This expectation naturally follows
from the notion of the infinite covering graph, as different
BP solutions correspond to different ways to spontaneously
break symmetry on the infinite structure. These different BP
solutions will generate loop series (2) that are different term
by term but give the same result for the sum. Finding the
“optimal” BP solution with the smallest &, characterizing
loop corrections to the BP solution, is important for applica-
tions. A solution related to the absolute minimum of the Be-
the free energy would be a natural candidate. However, one
cannot guarantee that the absolute minimum, as opposed to
other local minima of F, is always optimal for arbitrary f,.

We further briefly discuss other models related to the gen-
eral one discussed in the paper. The vertex model can be
considered on a graph of the special oriented or biparitite
type. A bipartite graph contains two families of nodes, re-
ferred to as bits and checks, so that the neighbor relations
occur only between nodes from opposite families. A bipartite
factor-graph model with an additional property that any fac-
tor associated with a bit is nonzero only if all Ising variables
at the neighboring edges are the same leads to the factor-
graph model considered in [5]. Actually, this factorization
condition means reassignment of the Ising variables, defined
at the edges of the original vertex model, to the correspond-
ing bits of the bipartite factor-graph model. Furthermore, if
only checks of degree 2 (each connected to only two bits) are
considered, the bipartite factor graph model is reduced to the
standard binary-interaction Ising model. The loop series de-
rived in this Rapid Communication is obviously valid for all
less general aforementioned models. Also note that the bipar-
tite factor-graph model was chosen in [13] to introduce an
alternative derivation of the loop series via an integral rep-
resentation, where the BP approximation corresponds to the
saddle-point approximation for the resulting integral.

Let us now comment on two relevant papers [6,7]. The
Ising model on a graph with loops has been considered by
Montanari and Rizzo [6], where a set of exact equations has
been derived that relates the correlation functions to each
other. This system of equations is underdefined; however, if
irreducible correlations are neglected, the BP result is re-
stored. This feature has been used [6] to generate a perturba-
tive expansion for corrections to the BP equations in terms of
irreducible correlations. A complementary approach for the
Ising model on a lattice has been taken by Parisi and Slanina
[7], who utilized an integral representation developed by
Efetov [14]. The saddle point for the integral representation
used in [7] turns out to be exactly the BP solution. Calculat-
ing perturbative corrections to magnetization, the authors of
[7] encountered divergences in their representation for the
partition function; however, the divergences canceled out
from the leading order correction to the magnetization re-
vealing a sensible loop correction to the BP approximation.
These papers, [6,7], became important initial steps toward
calculating and understanding loop corrections to the BP ap-
proximation. However, both approaches are very far from
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being complete and problem-free. Thus, [6] lacks an invari-
ant representation in terms of the partition function, and re-
quires operating with correlation functions instead. Besides,
the complexity of the equations related to the higher-order
corrections rapidly grows with the order. The complementary
approach of [7] contains dangerous (since lacking analytical
control) divergences (zero modes), which constitutes a very
problematic symptom for any field theory. Both [6,7] focus
on the Ising pairwise interaction model. The extensions of
the proposed methods to the multibit interaction cases that
are most interesting from the information theory viewpoint
do not look straightforward. Finally, the approaches of [6,7],
if extended to higher-order corrections, will result in infinite
series. Resumming the corrections in all orders, so that the
result is presented in terms of a finite series, does not look
feasible within the proposed techniques.

We conclude with a discussion of possible applications
and generalizations. We see a major utility for Eq. (2) in its
direct application to models without short loops. In this case
Eq. (2) constitutes an efficient tool for improving the BP
approximation through accounting for the shortest loop cor-
rections first and then moving gradually (up to the point
when complexity is still feasible) to account for longer and
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longer loops. Another application of Eq. (2) is direct use of ¢
as a test parameter for the BP approximation validity: If the
shortest loop corrections to the BP equations are not small
one should either look for another BP solution (hoping that
the loop correction will be small within the corresponding
loop series) or conclude that no feasible BP solution, result-
ing in a small &, can be used as a valid approximation. There
is also a strong generalization potential here. If a problem is
multiscale with both short and long loops present in the fac-
tor graph, a development of a synthetic approach combining
the generalized belief propagation approach of [5] (which is
efficient in accounting for local correlations) and a corre-
sponding version of Eq. (2) can be beneficial. Finally, our
approach can also be useful for analysis of standard (for
statistical physics and field theory) lattice problems. A par-
ticularly interesting direction will be to use Eq. (2) for intro-
ducing a new form of resummation of different scales. This
can be applied for analysis of the lattice models at the critical
point where correlations are long range.
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