Superconducting vortices in two dimensions
Ideal superconductors carry current without
resistance and perfectly expel externally applied magnetic
fields. The superconductivity is destroyed when too great
a magnetic field is applied, and the material becomes a
normal resistive conductor. Type-II materials remain
superconducting in high magnetic fields by allowing the
magnetic flux to penetrate the material in the form of
discrete quantized vortices which repel each other and
interact with defects in the superconducting material. The
superconducting material returns to its normal resistive
state only at the center of these vortices; the remainder
of the material still carries a supercurrent. The
vortices experience a Lorentz force from the flowing current
and move through the superconductor until they are trapped,
or pinned, at defect sites. Using molecular dynamics
simulations, we explore the microscopic dynamics of
vortices interacting with pinning sites under many conditions.
Papers:
-
Reversible to irreversible flow transition in periodically driven vortices
N. Mangan, C. Reichhardt and C.J. Olson Reichhardt
Phys. Rev. Lett 100 187002 (2008).
Online version
LI>
Statics and dynamics of vortex liquid crystals
C. Reichhardt and C.J. Olson Reichhardt
Euruphys. Lett 75 489 (2006).
Online version
-
Dynamical behaviors of quasi-one-dimensional vortex states: Possible
applications to the vortex chain state
C. Reichhardt and C.J. Olson Reichhardt
Phys. Rev. B 66, 172504 (2002).
Online version
-
Critical depinning force and vortex lattice order in disordered
superconductors
C.J. Olson, C. Reichhardt, and S. Bhattacharya
Phys. Rev. B 64, 024518 (2001).
Online version
-
Transverse depinning in strongly driven vortex lattices with disorder
C.J. Olson and C. Reichhardt
Phys. Rev. B 61, R3811 (2000).
Online version
-
Dynamic vortex phases and pinning in superconductors with twin
boundaries
C. Reichhardt, C.J. Olson, and F. Nori
Phys. Rev. B 61, 3665 (2000).
Online version
-
Topological invariants in microscopic transport on rough landscapes:
Morphology, hierarchical structure, and Horton analysis of riverlike
networks of vortices
A.P. Mehta, C. Reichhardt, C.J. Olson, and F. Nori
Phys. Rev. Lett. 82, 3641 (1999).
Online version
-
Nonequilibrium dynamic phase diagram for vortex lattices
C.J. Olson, C. Reichhardt, and F. Nori
Phys. Rev. Lett. 81, 3757 (1998).
Online version
-
Fractal networks, braiding channels, and voltage noise in intermittently
flowing rivers of quantized magnetic flux
C.J. Olson, C. Reichhardt, and F. Nori
Phys. Rev. Lett. 80, 2197 (1998).
Online version
-
Plastic flow, voltage noise and vortex avalanches in superconductors
C.J. Olson, C. Reichhardt, J. Groth, S.B. Field, and F. Nori
Physica C 290, 89 (1997).
Online version
-
Superconducting vortex avalanches, voltage bursts, and vortex plastic
flow: Effect of the microscopic pinning landscape on the macroscopic
properties
C.J. Olson, C. Reichhardt, and F. Nori
Phys. Rev. B 56, 6175 (1997).
Online version
-
Vortex plastic motion in twinned superconductors
J. Groth, C. Reichhardt, C.J. Olson, S.B. Field, and F. Nori
Phys. Rev. Lett. 77, 3625 (1996).
Online version
-
Microscopic derivation of magnetic-flux-density profiles,
magnetization hysteresis loops, and critical currents in
strongly pinned superconductors
C. Reichhardt, C.J. Olson, J. Groth, S. Field, and F. Nori
Phys. Rev. B 52, 10441 (1995).
Online version
Collaborators
Shobo Bhattacharya
(NEC)
Stuart
Field (Colorado State)
Back to Home
Last Modified: 1/1/03