

UNIVERSITY OF SASKATCHEWAN Numerical Simulation Laboratory

Fractional-Step Methods: Theory and Practice

Raymond J. Spiteri

Department of Computer Science University of Saskatchewan

August 8-11, 2023

Orientation

Saskatchewan

ヘロト 人間 ト 人 ヨト 人 ヨト

Ξ

Orientation

Saskatchewan Easy to draw, hard to spell.

ヘロト 人間 とくほ とくほん

Acknowledgements

• Other guilty parties

S. Wei

• Support from

Environment and Climate Change Canada

3

イロト イヨト イヨト イヨト

Outline

PSRK Representation and Linear Stability Analysis

4 Conclusions and Future Work

・ロン ・回 と ・ ヨン

What?

Consider the initial-value problem

$$rac{d \mathbf{y}}{dt} = \mathbf{f}(t,\mathbf{y}) := \sum_{i=1}^N \mathbf{f}^{[i]}(t,\mathbf{y}), \quad \mathbf{y}(0) = \mathbf{y}_0.$$

イロト イヨト イヨト イヨト

E

What?

Consider the initial-value problem

$$rac{d\mathbf{y}}{dt} = \mathbf{f}(t,\mathbf{y}) := \sum_{i=1}^2 \mathbf{f}^{[i]}(t,\mathbf{y}), \quad \mathbf{y}(0) = \mathbf{y}_0.$$

イロト イヨト イヨト イヨト

E

What?

Consider the initial-value problem

$$\frac{d\mathbf{y}}{dt} = \mathbf{f}(t, \mathbf{y}) := \sum_{i=1}^{2} \mathbf{f}^{[i]}(t, \mathbf{y}), \quad \mathbf{y}(0) = \mathbf{y}_{0}.$$

One step of Godunov / Lie–Trotter splitting (first-order accurate) is

Step
$$\Delta t$$
: $\frac{d\mathbf{y}^{[1]}}{dt} = \mathbf{f}^{[1]}(t, \mathbf{y}^{[1]}), \qquad \mathbf{y}^{[1]}_n = \mathbf{y}_n.$
Step Δt : $\frac{d\mathbf{y}^{[2]}}{dt} = \mathbf{f}^{[2]}(t, \mathbf{y}^{[2]}), \qquad \mathbf{y}^{[2]}_n = \mathbf{y}^{[1]}_{n+1}.$
Set: $\mathbf{y}_{n+1} = \mathbf{y}^{[2]}_{n+1}.$

Bubble Diagram

Godunov / Lie-Trotter

《日》 《圖》 《圖》 《圖》

- feasibility
- efficiency

ヘロト 人間ト 人間ト 人間ト

Ξ

- feasibility
- efficiency

Caveat emptor!

イロト イヨト イヨト イヨト

Ξ

How?

- linear / non-linear
- physics
- stiff / non-stiff (includes geometry)
- scale
- exact flow
- co-simulation

How?

- linear / non-linear
- physics
- stiff / non-stiff (includes geometry)
- scale
- exact flow
- co-simulation

Fractional steps

Define
$$\psi_{\Delta t}^{(j)}$$
 recursively by
 $\psi_{\Delta t}^{(0)} = Id,$
 $\psi_{\Delta t}^{(j)} = \phi_{\alpha_j^{[N]}\Delta t}^{[N]} \circ \cdots \circ \phi_{\alpha_j^{[1]}\Delta t}^{[1]} \circ \psi_{\Delta t}^{(j-1)}, \qquad j = 1, 2, \dots, s.$
Then
 $\psi_{\Delta t}^{(s)} \approx \phi_{\Delta t}.$

《日》 《圖》 《圖》 《圖》

E nac

Fractional steps

Define
$$\psi_{\Delta t}^{(j)}$$
 recursively by
 $\psi_{\Delta t}^{(0)} = Id,$
 $\psi_{\Delta t}^{(j)} = \phi_{\alpha_j^{[N]}\Delta t}^{[N]} \circ \cdots \circ \phi_{\alpha_j^{[1]}\Delta t}^{[1]} \circ \psi_{\Delta t}^{(j-1)}, \qquad j = 1, 2, \dots, s.$
Then
 $\psi_{\Delta t}^{(s)} \approx \phi_{\Delta t}.$

イロト イヨト イヨト イヨト

E DQC

Fractional steps

Define
$$\psi_{\Delta t}^{(j)}$$
 recursively by
 $\psi_{\Delta t}^{(0)} = Id,$
 $\psi_{\Delta t}^{(j)} = \phi_{\alpha_j}^{[N]} \circ \cdots \circ \phi_{\alpha_j}^{[1]} \circ \psi_{\Delta t}^{(j-1)}, \qquad j = 1, 2, \dots, s.$
Then
 $\psi_{\Delta t}^{(s)} \approx \phi_{\Delta t}.$

イロト イヨト イヨト イヨト

E

Fractional steps

Define
$$\psi_{\Delta t}^{(j)}$$
 recursively by
 $\psi_{\Delta t}^{(0)} = Id,$
 $\psi_{\Delta t}^{(j)} = \phi_{\alpha_j^{[N]}\Delta t}^{[N]} \circ \cdots \circ \phi_{\alpha_j^{[1]}\Delta t}^{[1]} \circ \psi_{\Delta t}^{(j-1)}, \qquad j = 1, 2, \dots, s.$
Then
 $\psi_{\Delta t}^{(s)} \approx \phi_{\Delta t}.$

イロト イヨト イヨト イヨト

E

Practical matters

Order conditions on
$$lpha_j^{[1]}$$
, $lpha_j^{[2]},\ldots$, $lpha_j^{[\mathcal{N}]}$, $j=1,2,\ldots,s$, so that

$$\|\phi_{\Delta t}-\psi_{\Delta t}^{(s)}\|=\mathcal{O}((\Delta t)^{p+1}).$$

Typically, we must approximate $\phi_t^{[i]}$ numerically to $\mathcal{O}((\Delta t)^p)$; e.g.,

p = 1: forward Euler for φ^[1]_{Δt}, forward Euler for φ^[2]_{Δt},
p = 1: forward Euler for φ^[1]_{Δt}, backward Euler for φ^[2]_{Δt}.

If $\phi_{\Delta t}^{[i]}$ are approximated by Runge–Kutta methods, FS methods can be described by (generalized) additive Runge–Kutta methods.

Practical matters

Order conditions on
$$lpha_j^{[1]}$$
, $lpha_j^{[2]},\ldots$, $lpha_j^{[\mathcal{N}]}$, $j=1,2,\ldots,s$, so that

$$\|\phi_{\Delta t}-\psi_{\Delta t}^{(s)}\|=\mathcal{O}((\Delta t)^{p+1}).$$

Typically, we must approximate $\phi_t^{[i]}$ numerically to $\mathcal{O}((\Delta t)^p)$; e.g.,

p = 1: forward Euler for φ^[1]_{Δt}, forward Euler for φ^[2]_{Δt},
p = 1: forward Euler for φ^[1]_{Δt}, backward Euler for φ^[2]_{Δt}.

If $\phi_{\Delta t}^{[i]}$ are approximated by Runge–Kutta methods, FS methods can be described by (generalized) additive Runge–Kutta methods.

Classical low-order splittings

• Original Strang–Marchuk (second order):

イロト イポト イヨト イヨト

Classical low-order splittings

Original Strang–Marchuk

・ロト ・日ト ・ヨト ・ヨト

Classical low-order splittings

• Symmetric Strang–Marchuk (second order):

j	$\alpha_j^{[1]}$	$\alpha_j^{[2]}$
1	$\frac{1}{2}$	$\frac{1}{2}$
2	0	$\frac{1}{2}$
3	$\frac{1}{2}$	0

Classical low-order splittings

Symmetric Strang–Marchuk

・ロト ・日ト ・ヨト ・ヨト

Classical low-order splittings

• Symmetric Strang–Marchuk (second order):

j	$\alpha_j^{[1]}$	$\alpha_j^{[2]}$	O
1	$\frac{1}{2}$	$\frac{1}{2}$	{[1], [2]}
2	$\frac{1}{2}$	$\frac{1}{2}$	{[2], [1]}

Classical high-order splitting

Third order: Ruth

j	$\alpha_j^{[1]}$	$\alpha_j^{[2]}$
1	$\frac{7}{24}$	$\frac{2}{3}$
2	$\frac{3}{4}$	$-\frac{2}{3}$
3	$-\frac{1}{24}$	1

・ロト ・ 四ト ・ ヨト ・ ヨト

Classical high-order splitting

Third order: Ruth

j	$\alpha_j^{[1]}$	$\alpha_j^{[2]}$
1	$\frac{7}{24}$	$\frac{2}{3}$
2	$\frac{3}{4}$	$-\frac{2}{3}$
3	$-\frac{1}{24}$	1

・ロト ・ 四ト ・ ヨト ・ ヨト

Theory (Sheng–Suzuki; Goldman–Kaper)

• Sheng–Suzuki Theorem:

Real-valued OS methods of order greater than two require backward time integration.

Theory (Sheng–Suzuki; Goldman–Kaper)

• Goldman–Kaper Theorem:

Real-valued OS methods of order greater than two require backward time integration in each operator.

Theory (Sheng–Suzuki; Goldman–Kaper)

• Goldman–Kaper Theorem:

Real-valued OS methods of order greater than two require backward time integration in each operator.

Unstable for some equations, e.g., parabolic.

Theory (Sheng–Suzuki; Goldman–Kaper)

• Goldman–Kaper Theorem:

Real-valued OS methods of order greater than two require backward time integration in each operator.

Unstable for some equations, e.g., parabolic.

Is this a deal breaker?

Theory (Sheng–Suzuki; Goldman–Kaper)

• Goldman-Kaper Theorem:

Real-valued OS methods of order greater than two require backward time integration in each operator.

Unstable for some equations, e.g., parabolic.

Is this a deal breaker?

Use (G)ARK theory to understand.

FSRK Representation

Theorem 1

An N-split FSRK method can be written as an extended Butcher tableau of the form

FSRK Representation

FSRK Representation Example

Godunov / Lie–Trotter with tableau

<ロ> <同> <同> < 目> < 目> < 目> < 目> < 目 > のへの

Linear Stability Analysis

Theorem 2

Consider the linear test equation $\frac{dy}{dt} = \sum_{\ell=1}^{N} \lambda^{[\ell]} y$. The stability function of the FSRK method is given by

$$R(z^{[1]}, z^{[2]}, \dots, z^{[N]}) = \prod_{k=1}^{s} \prod_{\ell=1}^{N} R_{k}^{[\ell]}(\alpha_{k}^{[\ell]} z^{[\ell]}),$$

where $z^{[\ell]} = \Delta t \lambda^{[\ell]}$ and $R_k^{[\ell]}(z^{[\ell]})$ is the stability function of the Runge–Kutta method at stage k applied to operator ℓ .

イロト 不得下 不足下 不足下 一足

Linear Stability Analysis

Theorem 2

Consider the linear test equation $\frac{dy}{dt} = \sum_{\ell=1}^{N} \lambda^{[\ell]} y$. The stability function of the FSRK method is given by

$$R(z^{[1]}, z^{[2]}, \dots, z^{[N]}) = \prod_{k=1}^{s} \prod_{\ell=1}^{N} \frac{R_{k}^{[\ell]}}{\alpha_{k}^{[\ell]}} (\alpha_{k}^{[\ell]} z^{[\ell]}),$$

where $z^{[\ell]} = \Delta t \lambda^{[\ell]}$ and $R_k^{[\ell]}(z^{[\ell]})$ is the stability function of the Runge–Kutta method at stage k applied to operator ℓ .

イロト 不得下 不足下 不足下 一足

Linear Stability Analysis

Theorem 2

Consider the linear test equation $\frac{dy}{dt} = \sum_{\ell=1}^{N} \lambda^{[\ell]} y$. The stability function of the FSRK method is given by

$$R(z^{[1]}, z^{[2]}, \dots, z^{[N]}) = \prod_{k=1}^{s} \prod_{\ell=1}^{N} R_{k}^{[\ell]}(\alpha_{k}^{[\ell]} z^{[\ell]}),$$

where $z^{[\ell]} = \Delta t \lambda^{[\ell]}$ and $R_k^{[\ell]}(z^{[\ell]})$ is the stability function of the Runge–Kutta method at stage k applied to operator ℓ .

イロト 不得下 不足下 不足下 一足

Brusselator

The Brusselator problem:

$$\begin{split} \frac{\partial T}{\partial t} &= D_1 \frac{\partial^2 T}{\partial x^2} + \alpha - (\beta + 1)T + T^2 C\\ \frac{\partial C}{\partial t} &= D_2 \frac{\partial^2 C}{\partial x^2} + \beta T - T^2 C, \end{split}$$

where T and C are concentrations of different chemical species.

<ロ> <同> <同> < 目> < 目> < 目> < 目> < 目 > のへの

Brusselator

The Brusselator problem:

$$\begin{aligned} \frac{\partial T}{\partial t} &= D_1 \frac{\partial^2 T}{\partial x^2} + \alpha - (\beta + 1)T + T^2 C, \\ \frac{\partial C}{\partial t} &= D_2 \frac{\partial^2 C}{\partial x^2} + \beta T - T^2 C, \end{aligned}$$

where T and C are concentrations of different chemical species.

Numerical PDE people "know" that integrating the diffusion operator with an L-stable method can "better" control high-wavenumber instability than with an A-stable method.

Brusselator

《日》《圖》《圖》《見》 [] []

Brusselator

$$R_{\text{Heun}}(z) = 1 + z + rac{z^2}{2}, \qquad R_{\text{SDIRK}(2,2)}(z) = rac{1 + z(1 - 2\gamma)}{(1 - \gamma z)^2}$$
 $R_{\text{FSRK}}(z) = R_{\text{Heun}}(1z_R) R_{\text{SDIRK}(2,2)}^2 \left(rac{1}{2}z_D
ight)$

Brusselator

L

$$R_{\text{Heun}}(z) = 1 + z + \frac{z^2}{2}, \qquad R_{\text{SDIRK}(2,2)}(z) = \frac{1 + z(1 - 2\gamma)}{(1 - \gamma z)^2}$$
$$R_{\text{FSRK}}(z) = R_{\text{Heun}}(1z_R) R_{\text{SDIRK}(2,2)}^2 \left(\frac{1}{2}z_D\right)$$
et $z_D = \frac{1}{r} z_R$. Then

$$\lim_{|z|\to\infty} |R_{\mathsf{FSRK}}(z)| = \frac{2r^2(1-2\gamma)^2}{\gamma^4}$$

<ロ> <同> <同> < 目> < 目> < 目> < 目> < 目 > のへの

Brusselator

$$R_{\text{Heun}}(z) = 1 + z + \frac{z^2}{2}, \qquad R_{\text{SDIRK}(2,2)}(z) = \frac{1 + z(1 - 2\gamma)}{(1 - \gamma z)^2}$$
$$R_{\text{FSRK}}(z) = R_{\text{Heun}}(1z_R) R_{\text{SDIRK}(2,2)}^2 \left(\frac{1}{2}z_D\right)$$

Let $z_D = \frac{1}{r} z_R$. Then

$$\lim_{|z| \to \infty} |R_{\mathsf{FSRK}}(z)| = \frac{2r^2(1-2\gamma)^2}{\gamma^4} < 1 \quad \text{for } r < \frac{\gamma^2}{\sqrt{2}(1-2\gamma)}$$

(日) (四) (注) (注) (注) []

Fractional-Step Methods Method Design and Examples

Brusselator

 $|z| \rightarrow \infty$

$$R_{\text{Heun}}(z) = 1 + z + \frac{z^2}{2}, \qquad R_{\text{SDIRK}(2,2)}(z) = \frac{1 + z(1 - 2\gamma)}{(1 - \gamma z)^2}$$
$$R_{\text{FSRK}}(z) = R_{\text{Heun}}(1z_R) R_{\text{SDIRK}(2,2)}^2 \left(\frac{1}{2}z_D\right)$$

Let $z_D = \frac{1}{r} z_R$. Then for $\gamma = 1 + 1/\sqrt{2}$,
$$\lim_{z \to \infty} |R_{\text{FSRK}}(z)| = \frac{2r^2(1 - 2\gamma)^2}{\gamma^4} < 1 \quad \text{for } r < \frac{\gamma^2}{\sqrt{2}(1 - 2\gamma)} \approx 0.85$$

<ロ> <同> <同> < 目> < 目> < 目> < 目> < 目 > のへの

Brusselator

$$R_{\text{Heun}}(z) = 1 + z + \frac{z^2}{2}, \qquad R_{\text{SDIRK}(2,2)}(z) = \frac{1 + z(1 - 2\gamma)}{(1 - \gamma z)^2}$$
$$R_{\text{FSRK}}(z) = R_{\text{Heun}}(1z_R) R_{\text{SDIRK}(2,2)}^2 \left(\frac{1}{2}z_D\right)$$

where $z_D = \frac{1}{r} z_R$. Then for $\gamma = 1 + 1/\sqrt{2}$,
$$2r^2(1 - 2\gamma)^2 \qquad \gamma^2$$

$$\lim_{|z| \to \infty} |R_{\mathsf{FSRK}}(z)| = \frac{2r^2(1-2\gamma)^2}{\gamma^4} < 1 \quad \text{for } r < \frac{\gamma^2}{\sqrt{2}(1-2\gamma)} \approx 0.85.$$

L-stable + ERK can be A-stable

<ロ> <同> <同> < 目> < 目> < 目> < 目> < 目 > のへの

Negative coefficients

Consider solving the linear equation

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \lambda^{[1]}y + \lambda^{[2]}y.$$

For simplicity, let $\lambda^{[1]} = \lambda^{[2]}$.

イロト イポト イラト イラト 一日

Negative coefficients

Use Ruth's method with Kutta ERK3 for operator 1 and A-stable SDIRK(2,3) for operator 2:

$$R(z) = R_{\text{ERK3}} \left(\frac{7}{24}z\right) R_{\text{ERK3}} \left(\frac{3}{4}z\right) R_{\text{ERK3}} \left(-\frac{1}{24}z\right)$$
$$R_{\text{SDIRK}(2,3)} \left(\frac{2}{3}z\right) R_{\text{SDIRK}(2,3)} \left(-\frac{2}{3}z\right) R_{\text{SDIRK}(2,3)} (1z)$$

《日》 《周》 《문》 《문》

Negative coefficients

There's a hole in my stability region (for $z \approx -1.9$).

<ロ> <同> <同> < 目> < 目> < 目> < 目> < 目 > のへの

Negative coefficients

Now use Ruth's method with A-stable SDIRK(2,3) for operator 1 and Kutta ERK3 for operator 2:

$$R(z) = R_{\text{SDIRK}(2,3)} \left(\frac{7}{24}z\right) R_{\text{SDIRK}(2,3)} \left(\frac{3}{4}z\right) R_{\text{SDIRK}(2,3)} \left(-\frac{1}{24}z\right)$$
$$R_{\text{ERK3}} \left(\frac{2}{3}z\right) R_{\text{ERK3}} \left(-\frac{2}{3}z\right) R_{\text{ERK3}} (1z)$$

・ロト ・雪 ト ・ ヨ ト

Negative coefficients

No more hole in my stability region ($z \approx -7.7$).

<ロ> <同> <同> < 目> < 目> < 目> < 目> < 目 > のへの

Negative coefficients

Explicit method for unstable integration.

<ロ> <同> <同> < 目> < 目> < 目> < 目> < 目 > のへの

FSRK method anatomy

Require:
$$\{\mathbf{F}^{[k]}\}, \{\alpha_{j}^{[k]}\}, \{\Phi_{j}^{[k]}\}, \{\mathcal{O}_{j}\}, t_{n}, t_{n+1}, \mathbf{U}_{n}.$$

1: $\tilde{\mathbf{U}}_{0} = \mathbf{U}_{n}; \Delta t_{n} = t_{n+1} - t_{n}; t^{[k]} = t_{n} \text{ for } k = 1, 2, ..., N$
2: for $j = 1$ to n_{s} do
3: for $k \in \mathcal{O}_{j}$ do
4: $(k, \alpha) = (k_{j}, \alpha_{j}^{[k]})$
5: Solve $\{\hat{\mathbf{U}}\}^{[k]} = \mathbf{F}^{[k]}(t, \{\tilde{\mathbf{U}}\}^{[k]}), \{\tilde{\mathbf{U}}(t^{[k]})\} = \tilde{\mathbf{U}}_{0}^{[k]}, t \in [t^{[k]}, t^{[k]} + \alpha \Delta t_{n}], \text{ using } \Phi_{j}^{[k]}$
6: $t^{[k]} = t^{[k]} + \alpha \Delta t_{n}$
7: $\{\tilde{\mathbf{U}}_{0}\}^{[k]} = \{\tilde{\mathbf{U}}\}^{[k]}(t^{[k]})$
8: end for
9: end for
10: Return $\mathbf{U}_{n+1} = \tilde{\mathbf{U}}_{0}$

イロト イヨト イヨト イヨト

FSRK method design principles

- match desirable characteristics of sub-integrator to operator
- minimize unstable sub-integration / maximize method stability
- maximize accuracy
- minimize computational expense

イロト イポト イヨト イヨト 二日

Niederer benchmark: problem

Monodomain model, 3D, TTP cell model PDE:

$$\chi C_m \frac{\partial \mathbf{v}}{\partial t} = \nabla \cdot \left(\frac{\lambda}{1+\lambda} \sigma_i \nabla \mathbf{v} \right) - \chi \left(I_{\text{ion}}(\mathbf{s}, \mathbf{v}) + I_{\text{stim}}(t, \mathbf{x}) \right)$$
$$\frac{\partial \mathbf{s}}{\partial t} = \mathbf{g}(\mathbf{s}, \mathbf{v})$$

Discretized and split:

$$\begin{bmatrix} \dot{\mathbf{V}} \\ \dot{\mathbf{S}} \end{bmatrix} = \underbrace{\begin{bmatrix} \frac{1}{C_m \chi} \sigma^{-1} \mathbf{D} \mathbf{V} \\ \mathbf{0} \end{bmatrix}}_{\mathbf{F}^{[1]}} + \underbrace{\begin{bmatrix} -\frac{1}{C_m} (\mathbf{I}_{\text{ion}}(\mathbf{S}, \mathbf{V}) + \mathbf{I}_{\text{stim}}(t)) \\ \mathbf{G}(\mathbf{S}, \mathbf{V}) \end{bmatrix}}_{\mathbf{F}^{[2]}}$$

<ロ> <同> <同> < 目> < 目> < 目> < 目> < 目 > のへの

Niederer benchmark: problem

Monodomain model, 3D, TTP cell model

<ロ> <同> <同> < 目> < 目> < 目> < 目> < 目 > のへの

Niederer benchmark: ingredients

OS methods:

- Ruth (6 sub-integrations)
- main method from Emb 3/2 AKS (6 sub-integrations, palindromic, optimized LEM)
- OS(4,3)[7] (7 sub-integrations, optimized LEM)

Sub-integrators:

- reaction: explicit Kutta method (3 stages)
- diffusion: SDIRK (2 stages, A-stable)

イロト イヨト イヨト ヨー つくや

Niederer benchmark: stability (Ruth, AKS3)

 $\lambda_D = 0.001 \lambda_R$

Niederer benchmark: stability (Ruth, AKS3)

 $\lambda_D = 0.001 \lambda_R$

Method	Δt	Error (%)	CPU (s)
Ruth DR	0.0028	0.07	10,794
Ruth RD	0.0062	0.039	4,314
AKS3	0.0031	2.3	9,970

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <

Niederer benchmark: stability $\overline{(OS(4,3)[7])}$

 $\lambda_D = 0.001 \lambda_R$

Niederer benchmark: stability $\overline{(OS(4,3)[7])}$

 $\lambda_D = 0.001 \lambda_R$

Method	Δt	Error (%)	CPU (s)
DR	0.0057	1.50	6,290
RD	0.0041	0.081	8,555

Niederer benchmark: stability (OS(4,3)[7])

 $\lambda_D = 0.001 \lambda_R$

Method	Δt	Error (%)	CPU (s)
DR	0.0057	1.50	6,290
RD	0.0041	0.081	8,555

Niederer benchmark: stability (OS(4,3)[7])

 $\lambda_D = 0.001 \lambda_R$

Method	Δt	Error (%)	CPU (s)	
DR	0.0057	1.50	6,290	
RD	0.0041	0.081	8,555	
DR ERK3-	0.0057	1.50	5,157	

Niederer benchmark: stability (OS(4,3)[7])

 $\lambda_D = 0.001 \lambda_R$

Method	Δt	Error (%)	CPU (s)	
DR	0.0057	1.50	6,290	
RD	0.0041	0.081	8,555	
DR ERK3-	0.0057	1.50	5,157	

Niederer benchmark: stability (OS(4,3)[7])

 $\lambda_D = 0.001 \lambda_R$

Method	Δt	Error (%)	CPU (s)
DR	0.0057	1.50	6,290
RD	0.0041	0.081	8,555
DR ERK3-	0.0057	1.50	5,157
DR FE ⁻	0.01	1.3	2,228

Niederer benchmark: preliminary observations

Summary of preliminary observations:

- simulations are stability constrained at 5% MRMS error level
- using explicit methods for unstable implicit sub-integration removes poles in linear stability regions
- using low-order integration for unstable sub-integration reduces computation time without loss of accuracy

Conclusions

- FSRK methods can be represented as (G)ARK methods.
- Linear stability of FSRK methods is the product of individual sub-integrators with modified argument.
- Order of sub-integrations matters for linear stability if $\alpha^{[\ell]}$ are not permutations of each other.
- High-order splitting not doomed to fail; negative coefficients can lead to poles in bad places, but there is a potential fix.
- Splitting/sub-integrators/design principles not crystal clear, but some progress and working on it.

Conclusions

- FSRK methods can be represented as (G)ARK methods.
- Linear stability of FSRK methods is the product of individual sub-integrators with modified argument.
- Order of sub-integrations matters for linear stability if $\alpha^{[\ell]}$ are not permutations of each other.
- High-order splitting not doomed to fail; negative coefficients can lead to poles in bad places, but there is a potential fix.
- Splitting/sub-integrators/design principles not crystal clear, but some progress and working on it.

Collaborators welcome!

Future Work

• Applications in hydrology and plasma physics

イロト イポト イラト イラト 一日