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What?

Consider the initial-value problem

dy
dt = f(t, y) :=

N∑
i=1

f [i](t, y), y(0) = y0.

One step of Godunov / Lie–Trotter splitting (first-order accurate) is

Step ∆t: dy[1]

dt = f [1](t, y[1]), y[1]
n = yn.

Step ∆t: dy[2]

dt = f [2](t, y[2]), y[2]
n = y[1]

n+1.

Set: yn+1 = y[2]
n+1.
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Why?

feasibility
efficiency

Caveat emptor!
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How?

linear / non-linear
physics
stiff / non-stiff (includes geometry)
scale
exact flow
co-simulation
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Fractional steps

Define ψ(j)
∆t recursively by

ψ
(0)
∆t = Id,

ψ
(j)
∆t = ϕ[N]

α
[N]
j ∆t ◦ · · · ◦ ϕ[1]

α
[1]
j ∆t ◦ψ(j−1)

∆t , j = 1, 2, . . . , s.

Then
ψ

(s)
∆t ≈ ϕ∆t .
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Practical matters

Order conditions on α
[1]
j , α

[2]
j ,. . . , α

[N]
j , j = 1, 2, . . . , s, so that

∥ϕ∆t −ψ(s)
∆t∥ = O((∆t)p+1).

Typically, we must approximate ϕ[i]
t numerically to O((∆t)p);

e.g.,
p = 1: forward Euler for ϕ[1]

∆t , forward Euler for ϕ[2]
∆t ,

p = 1: forward Euler for ϕ[1]
∆t , backward Euler for ϕ[2]

∆t .

If ϕ[i]
∆t are approximated by Runge–Kutta methods, FS methods

can be described by (generalized) additive Runge–Kutta methods.
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Classical low-order splittings

Original Strang–Marchuk (second order):

j α
[1]
j α

[2]
j

1 1
2 1

2 1
2 0
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Classical low-order splittings

Symmetric Strang–Marchuk (second order):

j α
[1]
j α

[2]
j

1 1
2

1
2

2 0 1
2

3 1
2 0
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Symmetric Strang–Marchuk
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Classical low-order splittings

Symmetric Strang–Marchuk (second order):

j α
[1]
j α

[2]
j

1 1
2

1
2

2 1
2

1
2

O
{[1], [2]}
{[2], [1]}
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Classical high-order splitting

Third order: Ruth

j α
[1]
j α

[2]
j

1 7
24

2
3

2 3
4 −2

3
3 − 1

24 1
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Theory (Sheng–Suzuki; Goldman–Kaper)

Sheng–Suzuki Theorem:

Goldman–Kaper Theorem:

Real-valued OS methods of order greater than two require
backward time integration.

in each operator.

Unstable for some equations, e.g., parabolic.

Is this a deal breaker?

Use (G)ARK theory to understand.
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FSRK Representation

Theorem 1
An N-split FSRK method can be written as an extended Butcher
tableau of the form

c[1] c[2] . . . c[N] A[1] A[2] . . . A[N]

b[1] b[2] . . . b[N]

Raymond J. Spiteri Numerical Simulation Lab, U. Saskatchewan 18 / 39



Fractional-Step Methods
FSRK Representation and Linear Stability Analysis

Method Design and Examples
Conclusions and Future Work

FSRK Representation

where

c[ℓ] A[ℓ]

b[ℓ] =

N operators︷ ︸︸ ︷ 

s stages

0 0 · · · 0

α
[ℓ]
1 c̃[ℓ]

1
... α

[ℓ]
1 Ã[ℓ]

1
...

α
[ℓ]
1 1

... α
[ℓ]
1 1b̃[ℓ]

1
...

...
...

...
...

...
... α

[ℓ]
1 1b̃[ℓ]

1
... 0 · · · 0

α
[ℓ]
1 1+ α

[ℓ]
2 c̃[ℓ]

2
...

...
...

... α
[ℓ]
2 Ã[ℓ]

2
...(

α
[ℓ]
1 + α

[ℓ]
2

)
1

...
...

...
... α

[ℓ]
2 1b̃[ℓ]

2
...

...
...

...
...

...
...

...
...

...
...

...
...

...
... . . .(s−1∑

i=1
α

[ℓ]
i

)
1

... α
[ℓ]
1 1b̃[ℓ]

1
...

... α
[ℓ]
2 1b̃[ℓ]

2
... . . . 0 · · · 0(s−1∑

i=1
α

[ℓ]
i

)
1+ α

[ℓ]
s c̃[ℓ]

s
...

...
...

...
...

... . . . ... α
[ℓ]
s Ã[ℓ]

s
...

s∑
i=1

α
[ℓ]
i 1

...
...

...
...

...
... . . . ... α

[ℓ]
s 1b̃[ℓ]

s
...

...
...

...
...

...
...

... . . . ...
...

...
s∑

i=1
α

[ℓ]
i 1 0 α

[ℓ]
1 1b̃[ℓ]

1 0 0 α
[ℓ]
2 1b̃[ℓ]

2 0 · · · 0 α
[ℓ]
s 1b̃[ℓ]

s 0

0 α
[ℓ]
1 b̃[ℓ]

1 0 0 α
[ℓ]
2 b̃[ℓ]

2 0 · · · 0 α
[ℓ]
s b̃[ℓ]

s 0
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FSRK Representation Example

Godunov / Lie–Trotter with tableau
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Linear Stability Analysis

Theorem 2

Consider the linear test equation dy
dt =

N∑
ℓ=1

λ[ℓ]y . The stability

function of the FSRK method is given by

R(z [1], z [2], . . . , z [N]) =
s∏

k=1

N∏
ℓ=1

R [ℓ]
k (α[ℓ]

k z [ℓ]),

where z [ℓ] = ∆tλ[ℓ] and R [ℓ]
k (z [ℓ]) is the stability function of the

Runge–Kutta method at stage k applied to operator ℓ.
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Brusselator

The Brusselator problem:

∂T
∂t = D1

∂2T
∂x2 + α − (β + 1)T + T 2C ,

∂C
∂t = D2

∂2C
∂x2 + βT − T 2C ,

where T and C are concentrations of different chemical species.

Numerical PDE people “know” that integrating the diffusion
operator with an L-stable method can “better” control
high-wavenumber instability than with an A-stable method.
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Brusselator

RHeun(z) = 1 + z + z2

2 , RSDIRK(2,2)(z) = 1 + z(1 − 2γ)
(1 − γz)2

RFSRK(z) = RHeun(1zR) R2
SDIRK(2,2)

(1
2zD

)

Let zD = 1
r zR . Then

for γ = 1 + 1/
√

2,

lim
|z|→∞

|RFSRK(z)| = 2r2(1 − 2γ)2

γ4

< 1 for r <
γ2

√
2(1 − 2γ)

≈ 0.85.

L-stable + ERK can be A-stable
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Negative coefficients

Consider solving the linear equation

dy
dt = λ[1]y + λ[2]y .

For simplicity, let λ[1] = λ[2].
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Negative coefficients

Use Ruth’s method with Kutta ERK3 for operator 1 and A-stable
SDIRK(2,3) for operator 2:

R(z) = RERK3

( 7
24z

)
RERK3

(3
4z

)
RERK3

(
− 1

24z
)

RSDIRK(2,3)

(2
3z

)
RSDIRK(2,3)

(
−2

3z
)

RSDIRK(2,3) (1z)
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Negative coefficients

There’s a hole in my stability region (for z ≈ −1.9).

Raymond J. Spiteri Numerical Simulation Lab, U. Saskatchewan 27 / 39



Fractional-Step Methods
FSRK Representation and Linear Stability Analysis

Method Design and Examples
Conclusions and Future Work

Negative coefficients

Now use Ruth’s method with A-stable SDIRK(2,3) for operator 1
and Kutta ERK3 for operator 2:

R(z) = RSDIRK(2,3)

( 7
24z

)
RSDIRK(2,3)

(3
4z

)
RSDIRK(2,3)

(
− 1

24z
)

RERK3

(2
3z

)
RERK3

(
−2

3z
)

RERK3 (1z)
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Negative coefficients

No more hole in my stability region (z ≈ −7.7).
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Negative coefficients

Explicit method for unstable integration.
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FSRK method anatomy
Require:

{
F[k]

}
,

{
α

[k]
j

}
,

{
Φ[k]

j

}
, {Oj}, tn, tn+1, Un.

1: Ũ0 = Un; ∆tn = tn+1 − tn; t [k] = tn for k = 1, 2, . . . , N
2: for j = 1 to ns do
3: for k ∈ Oj do
4: (k, α) =

(
kj , α

[k]
j

)
5: Solve

{ ˙̃U
}[k]

= F[k]
(

t,
{

Ũ
}[k]

)
,

{
Ũ(t [k])

}
= Ũ[k]

0 ,

t ∈
[
t [k], t [k] + α∆tn

]
, using Φ[k]

j

6: t [k] = t [k] + α∆tn

7:
{

Ũ0
}[k]

=
{

Ũ
}[k]

(t [k])
8: end for
9: end for

10: Return Un+1 = Ũ0
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FSRK method design principles

match desirable characteristics of sub-integrator to operator
minimize unstable sub-integration / maximize method stability
maximize accuracy
minimize computational expense
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Niederer benchmark: problem

Monodomain model, 3D, TTP cell model
PDE:

χCm
∂v
∂t = ∇ ·

(
λ

1 + λ
σi∇v

)
− χ

(
Iion(s, v) + Istim(t, x)

)
∂s
∂t = g(s, v)

Discretized and split:V̇
Ṡ

 =

 1
Cmχσ−1DV

0


︸ ︷︷ ︸

F[1]

+

− 1
Cm

(
Iion(S, V) + Istim(t)

)
G(S, V)


︸ ︷︷ ︸

F[2]
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Niederer benchmark: problem

Monodomain model, 3D, TTP cell model
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Niederer benchmark: ingredients

OS methods:
Ruth (6 sub-integrations)
main method from Emb 3/2 AKS (6 sub-integrations,
palindromic, optimized LEM)
OS(4,3)[7] (7 sub-integrations, optimized LEM)

Sub-integrators:
reaction: explicit Kutta method (3 stages)
diffusion: SDIRK (2 stages, A-stable)

Raymond J. Spiteri Numerical Simulation Lab, U. Saskatchewan 34 / 39



Fractional-Step Methods
FSRK Representation and Linear Stability Analysis

Method Design and Examples
Conclusions and Future Work

Niederer benchmark: stability (Ruth, AKS3)
λD = 0.001λR

Method ∆t Error (%) CPU (s)
Ruth DR 0.0028 0.07 10,794
Ruth RD 0.0062 0.039 4,314

AKS3 0.0031 2.3 9,970
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Niederer benchmark: stability (OS(4,3)[7])
λD = 0.001λR

Method ∆t Error (%) CPU (s)
DR 0.0057 1.50 6,290
RD 0.0041 0.081 8,555

DR ERK3− 0.0057 1.50 5,157
DR FE− 0.01 1.3 2,228
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Niederer benchmark: preliminary observations

Summary of preliminary observations:

simulations are stability constrained at 5% MRMS error level
using explicit methods for unstable implicit sub-integration
removes poles in linear stability regions
using low-order integration for unstable sub-integration
reduces computation time without loss of accuracy
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Conclusions

FSRK methods can be represented as (G)ARK methods.
Linear stability of FSRK methods is the product of individual
sub-integrators with modified argument.
Order of sub-integrations matters for linear stability if α[ℓ] are
not permutations of each other.
High-order splitting not doomed to fail; negative coefficients
can lead to poles in bad places, but there is a potential fix.
Splitting/sub-integrators/design principles not crystal clear,
but some progress and working on it.

Collaborators welcome!
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Future Work

Applications in hydrology and plasma physics

wind profile
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