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Objectives

This presentation aims to report and discuss some explicit, implicit, explicit/explicit,
explicit/implicit, semi-explicit/explicit time integration procedures to numerically analyse
large scale problems that are governed by space-time partial differential equations.

The time integration procedures that are discussed here are adaptive, locally adjusting
themselves according to the physical properties of the model, the adopted spatial
discretization, the adopted time-step value, and the evolution of the computed responses.

These solution procedures are also entirely automated, automatically dividing the spatial
domain of the model into different subdomains, at which different solution strategies are
applied, as well as automatically computing the time-step values of the analyses for optimal
computational performance.



[llustration of a time integration procedure adapting itself according to the properties of the
discretized model and its computed responses

Computed solution Time integration parameters



[llustration of automated subdivisions of a model for the application of different time
integration strategies

Model with different physical properties Subdivision for explicit/uxpllicit analyses



Discussion concerning time-stepping algorithms

When numerically solving space-time PDEs, the adopted time integration procedure should
become consonant with the adopted spatial discretization methodology, so that their errors
may be properly counterbalanced.

A proper “adaptation” of the applied time integration procedure to the employed spatial
discretization may provide much better results than more elaborated and/or higher-order
time-domain formulations.



Discussion concerning time-stepping algorithms
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Convergence curves for a simple 1D wave propagation analysis considering a regular finite element mesh and three
standard explicit time-marching techniques: (a) adopting linear finite elements; (b) adopting quadratic finite elements.
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Basic framework to introduce some adaptive time integration procedures

Once a spatial discretization technique is applied, the governing PDEs of a problem may be
numerically treated to become a semi-discrete system of equations. In order to discuss the
use of the referred adaptive time integration procedures, the following hyperbolic system of
equations is here initially considered, which may be obtained once wave propagation models
are discretized considering the Finite Element Method (FEM).
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Basic framework to introduce some adaptive time integration procedures

By time integrating the referred semi-discrete matrix equation, at an element level (subscript e),
considering a time-step Az (£#*?= ¢ + A?), the following expression can be established:
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Basic framework to introduce some adaptive time integration procedures

By considering the previous integral definitions and the following relation:
'[]'?H"l :LT?? +_1{ Aft,Tn +_1_ Aft];?+1
the previously described, locally-defined, integral equation may be rewritten as:

M, +1AfC, + L y7APK U™ =F, + (M, - L AC)U” — AtK (U7 + L /At UT)

These equations allow to compute [, once assembling is considered, and U™, defining the
recurrence relationships for a simple, single-step, truly self-starting, time-marching procedure.



Basic framework to introduce some adaptive time integration procedures

The basic properties of the method can be studied considering the features of its amplification
matrix, regarding a SDOF model.

SDOF model: i(t) + 2Ewi(t) + wu(t) = £(1).
Recurrence relationship for u"tl _[An An u" N Ly Ly fn 3 u" ‘L fn
the time-integration method: N Ay Ay | | W Lyy Ly | | /& u" fntl
Amplification matrix and A = [1 + EwWAL + %(7 - 1)\1*3.&12] /Ao Ly = %/3] A2/ A,
load operator vector: I 1
Ap = [1 + %(_y = a)wlm-’] At/ A = 2P Ar/A
Ly = prAt/Ag

Ay = —w2A2] (1/AD/A
l [ ] /AD/Ao L = 2 At/ Ao,

Agz [1 — c.HA[ — %(Il\ “At° ] /A(] Ap=1+ :“’AI + %ylva{z



Basic framework to introduce some adaptive time integration procedures

Different numerical properties are provided according to the
given values for the referred time integration parameters

Non-dissipative approach: a=1-y
Dissipative approach: a>1-y

Explicit approach: y=0
Implicit approach: y>0

D unconditionally stable
[_] conditionally stable
[ ] unconditionally unstable ’ Trapezmdal rule (O(Zl/ 2; Y:1/ 2)

. Central difference method (a=1; y=0)

Spectral radius behaviour and regions of stability for the y—a plane



Basic framework to introduce some adaptive time integration procedures

For the adaptive procedures discussed here, the following
7 — region for the time integration parameters is focused:

1\/ -k\\f
‘\r 0<y <%

az=zl-y

|:| unconditionally stable

f_] conditionally stable

D unconditionally unstable

Spectral radius behaviour and regions of stability for the y—a plane



Adaptive approach

In the adopted adaptive approach, the time integration parameters of the method are locally computed
as function of the maximal sampling frequency of the element Q™ = ™At , where ™ stands for the
element maximal natural frequency, which is evaluated as the square root of its highest eigenvalue,
considering the generalized eigenvalue problem of local matrices M, and K

max

o2 = )7 = max(eigenvalues(M,,K))

Thus, the time integration procedure may adapt to the local properties of the model and to its adopted
spatial and temporal discretizations.



Adaptive approach

[t may also adapt to the computed responses. In this case, the time integration parameters may
be locally evaluated introducing numerical dissipation when and where it is necessary, activating
or not dissipative elements along the analysis.

This idea can be automatically carried out based on an oscillatory criterion. In this sense, if the

computed response of a degree of freedom of the model oscillates along time, the a parameters
of the elements surrounding this degree of freedom are modified, locally introducing numerical
dissipation into the analysis.
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Adaptive explicit/implicit time integration procedure

For the discussed explicit/implicit formulation, the following local parameters are defined:

If

L2, vI=0 > Explicit element

/€

If O >2, y7 =3tanh(3 Q) >  Implicit element

€ €

which, as illustrated below, automatically allows to define the explicit (white colour) and implicit
(orange colour) subdomains of the model, for the analysis:

Oma.x




Adaptive explicit/implicit time integration procedure
For the discussed explicit/implicit formulation, the following local parameters are defined:

Q<2 v"=0

==e /e

If Q7 >2,| y! =1tanh(3 Q)

/€

This expression is established so that:
(i) Stability is guaranteed (i.e., Q. =Qr= );
(i1)) Low dispersion errors are provided.

The proposed implicit non-dissipative formulation is always more accurate
than the trapezoidal rule, which is “the second-order accurate A-stable linear
multistep method with the smallest error constant” (Dahlquist’s theorem).



Adaptive explicit/implicit time integration procedure

For the discussed explicit/implicit formulation, the following local parameters are defined:
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Adaptive explicit/implicit time integration procedure

In automated explicit/implicit analyses, by increasing the adopted Az value, less time steps are necessary
for solution, which is beneficial for efficiency; however, simultaneously, by enlarging Az more implicit
elements may be activated, increasing the solver computational effort. Thus, an optimization algorithm
may be applied to compute an optimal Az value, so that maximal efficiency is provided.
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Adaptive explicit/explicit time integration procedure
As previously remarked, for an explicit formulation, »”= 0 is considered.

In this case, explicit/explicit analyses may be carried out dividing the discrete model into
groups of explicit elements that may have the same Az assigned, respecting their stability limit.
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Adaptive explicit/explicit time integration procedure
To provide this subdivision, the following algorithm may be followed:

(i) calculate the limiting time-steps of all elements (e.g., Af, =2/@.~"), and find the smallesAt,
of the model (i.e., At™" = min( A¢,)), which is the basic time-step for the proposed controlled
subdivision of the domain;

(i) with At™* defined, calculate subsequent time-step values as multiple of the power of 2 of
this minimal time-step value (i.e., calculate At, = 2977 At™);

(iii) associate each element to a computed time-step value (i.e., to Af,, where Af, < Af_ < At
and 7indicates the subdomain of that element);

(iv) associate a time-step value (i.e., associate a subdomain) to each degree of freedom of the

model considering the lowest time-step value of its surrounding elements.



Adaptive explicit/explicit time integration procedure

Once this subdomain division is considered, a sub-cycling
algorithm may be followed, in which values close to the
boundaries of these time-step subdomains may need to
be interpolated. In this case, the following equations may
be considered, which are consistent with the adopted
approximations of the referred time marching technique:

1
2At

U(t) = — (U™ —U")t? + Ut + U"

U() = - (U™ — U™t + 0"

Subdomain 1 3
at time t(+At = t"

Subdomain2
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Numerical applications considering explicit/implicit and explicit/explicit analyses

Initially, an acoustic infinite-domain model, submitted to an impulsive source, is analysed. For this
model, analytical answers are known (Green’s functions), allowing to analyse the accuracy of the
considered time integration techniques. The discussed explicit/implicit and explicit/explicit
formulations, as well as standard explicit methodologies, are here applied to analyse this model.
Four FEM meshes, which consider refinement towards the applied source position, are regarded for
the analyses, and Perfectly Matched Layers (PMLs) are employed to simulate the infinite domain.

100k 150k 200k



Numerical applications considering explicit/implicit and explicit/explicit analyses
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Mesh Method At (max) (s) Relative value Error Relative value CPU time (s) Relative value Method Type Percentage of elements (%)
s0k CD 0.046038233 1.109548341 0.798011132 2.137210316 14.46070892 1.6687982343 Exp/Exp At1 = 0.046038233 1.525323910
EGa 0.041402769 1 0.785386795 2.103400182 15.08963547 1.845230906 Atz = 0.092076466 18.125245386
NB 0.08620727 2.077645625 0.790874715 2.118097771 16.12635803 1.861017997 At3 = 0184152932 80.325873576
Exp 0.046038233 1.109548341 0.52417599 1.403832066 14.00488853 1.616195645 Aty = 0.368305864 0.031400501
Exp/Exp 0.368305864 8.876386727 0.372380145 1 8.665342331 1 Imp/Exp Explicit 90.357283078
Imp/Exp 0.149255845 3.597153160 0.41960857 1.124024564 9.451821818 1.09g0762656 Implicit 9.642716921
Mesh Method At (max) (s) Relative value Error Relative value CPU time (s) Relative value Method Type Percentage of elements (%)
100k CcD 0.023370401 1.109548333 0.762614821 2.568889242 22.88965607 2.117798866 Exp/Exp Atr = 0.023370401 0.730778433
EGa 0.021062086 1 0.738738373 2.488460763 24.23314005 2.242100808 Atz = 0.046740802 7.119357154
NB 0.043761421 2.077645639 0.75148604 2.531401632 28.921098372 2.675022441 At3 = 0.093481604 35.181049609
Exp 0.023370401 1.100548333 0.500066418 1.714804301 22.65373003 2.005071412 Aty = 0.186963208 56.972802679
Exp/Exp 0.186963208 8.876386662 0.29686559 1 10.80822945 1 Imp/Exp Explicit 90.780028712
Imp/Exp 0.100516273 4.772175866 0.346039766 1.165644578 11.24567986 1.040473827 Implicit 0.219971287
Method Type Percentage of elements (%)
Mesh Method At (max) (s) Relative value Error Relative value CPU time (s) Relative value
Exp/Exp Atr = 0.012495648 0.455137404
150k CcD 0.012405648 1.109548441 0.703323102 3.318572702 50.01919365 2.326550607
Atz = 0.024901296 4.282278211
EGa 0.011261922 1 0.672640998 3.173801292 57.37683296 2.668777742
) o ) ; At3 = 0.049982502 14.6094626056
NB 0.023308284 2.077645716 0.692457897 3.267305699 64.78535271 3.013371308 ~
Atg = 0.099965184 80.363312602
Exp 0.012405648 1.109548441 0.456617029 2.154509041 50.21524048 2.335660454
: N N o : At5 = 0.109930368 0.207967804
Exp/Exp 0.199930368 17.75277506 0.211035448 1 26.38242521 1.2271209238 ) L
Imp/Exp Explicit 88.715250003
Imp/Exp 0.075032135 6.742377996 0.260082924 1.227179912 21.40929237 1 .
Implicit 11.284749906
- - - - Method Type Percentage of elements (%)
Mesh Method At (max) (s) Relative value Error Relative value CPU time (s) Relative value
Exp/Exp At1 = 0.008117472 0.135567123
200k CcD 0.008117472 1.100548451 0.666377456 3.836889795 88.7925276 2.129639558
Atz = 0.016234944 3.056004308
EGa 0.007316014 1 0.637017567 3.673022517 114.932354 2.769501536
_ ~ Atz = 0.032460888 0.350505504
NB 0.015200085 2.077645606 0.659035903 3.704618363 126.7395802 3.054017862
Aty = 0.06493977 30.706635553
Exp 0.008117472 1.100548451 0.417648045 2.404752683 89.03817305 2.145530571
) At5 = 0.129870552 56.553780490
Exp/Exp 0.120879552 17.75277521 0.173676465 1 49.48014900 1.192520051 .
~ ~ ~ ~ Imp/Exp Explicit 88.456092064
Imp/Exp 0.062027565 8.478327836 0.210533683 1.264038184 41.40020237 1

Implicit

11.543907935




Numerical applications considering explicit/implicit and explicit/explicit analyses
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Numerical applications considering explicit/implicit and explicit/explicit analyses

Analytical EG-a Imp/Exp Exp/Exp



Numerical applications considering explicit/implicit and explicit/explicit analyses

Model 2 (Elastodynamic model, discretized by 0.72M elements)

Model 1 (Elastodynamic model, discretized by 2.57M elements)

Model 3 (acoustic model, discretized by 4.86M elements)



Numerical applications considering explicit/implicit and explicit/explicit analyses

Model Method

At (max) (s)

Relative value

CPU time (s)

Relative value

1 CD 0.003241549 1.109548407 11322.8 2.152869149
EGa 0.002921503 12283.3 2.335494543
NB 0.006060848 2.0 147731 2.808894551
Exp 0.003241549 1.109548407 11737.68 2.231752671
Exp/Exp 0.103729568 35.50554903 5883.3 1.118625609
Imp/Exp 0.004248888 1.454350075 5250.4 1
Method Type Percentage of elements (%)
Exp/Exp At1 = 0.003241549 71.323290617
Atz = 0.006483098 17.877215636
At3 = 0.012966196 4130985733
At4 = 0.0250932392 3.431895840
At5 = 0.051864784 3.231484373
At6 = 0.103729568 0.005360880
Imp/Exp Explicit 86.472245400
Implicit 13.527754599




Numerical applications considering explicit/implicit and explicit/explicit analyses

Model Method

At (max) (s)

Relative value

CPU time (s) Relative value

2 CD 0.002425544 1.109548485 8661.5 1.08558067
EGa 0.002186064 1 8991.6 2.061253496
NB 0.004541866 2.077645647 0511.1 2.18034478
Exp 0.002425544 1.109548485 8654.5 1.983975975
Exp/Exp 0.019404352 8.876387883 4362.2 1
Imp/Exp 0.003423479 1.566046831 5436.3 1.246228067 i o oo
Method Type Percentage of elements (%)
Exp/Exp At1 = 0.002425544 76.907126701
Atz = 0.004851088 10.543423241
At3 = 0.009702176 8.077792450
At4 = 0.019404352 4.472215288
Imp/Exp Explicit 83.225288263

Implicit

16774711736




Numerical applications considering explicit/implicit and explicit/explicit analyses

Model Method At (max) (s) Relative value CPU time (s) Relative value
3 CD 0.00064051 1.109548202 5233.7 1.68129397
EGa 0.000577271 1 5462.8 1.754890938
NB 0.00119936 2.077637713 5683.6 1.825821581
Exp 0.00064051 1.109548202 5261.2 1.690128176
Exp/Exp 0.00256204 4.438192807 3112.9 1
Imp/Exp 0.00086751 1.502777725 4282.5 1.375726814
Method Type Percentage of elements (%)
Exp/Exp At1 = 0.00064051 51.870546377
Atz = 0.00128102 22.653851150
At3 = 0.00256204 25.466664144
Imp/Exp Explicit 71.465666675

Implicit

28.534333324
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Discussion considering explicit/implicit and explicit/explicit analyses

* The discussed explicit/explicit formulation usually provides better accuracy, since it stands
as a more versatile approach and, consequently, it usually allows better adaptability for the
parameters of the method;

* The described explicit/implicit approach is highly straightforward and considerably easier to
implement, but it requires more memory resources (since it deals with a non-diagonal
effective matrix);

* The efficiency of each discussed adaptive approach depends on the features of the discretized
model; however, both referred explicit/implicit and explicit/explicit techniques are regularly
more effective than standard time integration procedures.



Enhanced explicit/implicit and explicit/explicit adaptive techniques

The previously presented ideas may be extended, improved and/or generalized providing enhanced
explicit/implicit or explicit/explicit formulations.

Enhanced explicit or implicit element

Enhanced explicit or extended-explicit element

Enhanced non-dissipative or dissipative element




Enhanced explicit/implicit and explicit/explicit adaptive techniques

For instance, by modifying the previously ~ (M+1A/C+17A#K)U™ =F +(M—-1AC)U" —AfK (U" +1aAtU")
presented time-marching framework: o
LTn+1 :LT" + % Af (LTn +LT?H—1)

The following recurrence relationships may be obtained:
Enhanced explicit/implicit framework: V=U"+E(F-A#(CU"+K(U"+1AU")) E=M+L1ArC @
1 extra equation U'=V-M'K 'j" @ )
+1 extra parameter U™ =U"+ 1A(U" +U™) " : :
|
Enhanced explicit/explicit framework: V=U"+E(F-Af(CU" + K(U" + 1 AfU"M))) E=M+3ArC
1 extra equation U=V _E!

+1 extra parameter Lvn—l :U" +_12At(tn +~Cn—l)

Introduce numerical damping



Enhanced explicit/implicit and explicit/explicit adaptive techniques

For instance, by modifying the previously =~ (M+1A#C+1yAFK)U™ =F + M—-1A/C)U" —AtK (U" +1 At U")

presented time-marching framework:

LT»+1 :LTn + % Af (]-'Jn +]:J"+1)

The following recurrence relationships may be obtained:

Enhanced explicit/implicit framework:
Computed only if necessary

(i.e., if numerical damping is locally necessary)

Enhanced explicit/explicit framework:
Computed only if necessary

(i.e., if numerical damping and/or extended
stability limits are locally necessary)

V=U"+E(F-A#(CU" + K(U" + 1 AfU"M)))

: p+1 .1 N
R (DU DS

Un—l =Un+—éAT(tn _'_-[':n—l)

V=U"+E'(F-At(CUZK

vz k@ @

Lvn—l _Ln+ IAI‘(LN +L~n—l

+1AUM))

E=M+1ACHo')

Provide enhanced
accuracy

E=M-+1AC



Enhanced explicit/implicit and explicit/explicit adaptive techniques

For instance, by modifying the previously (M +1A/C+1y7AFK)U™ =F +(M-1AC)U" —AfK (U" +1 oAt U")
presented time-marching framework: o
-Un+1 ZLT” + % Af (U»n +LT»+1)

The following recurrence relationships may be obtained:

Enhanced explicit/implicit framework:
For a non-dissipative formulation:
= 0, for explicit elements (0 < 2™ <2)
= 0, for extended-explicit elements (2 < M <4 )

Enhanced explicit/explicit framework: V=U"+E(F-A¢(CU" +K(U" +1A/U")) E=M+1AC

Computed only if necessary e T K(a', U” + a', V)

- — v

(i.e., if numerical damping and/or extended U™ =U"+1A 1 U +U ”‘1)
stability limits are locally necessary) )



Enhanced explicit/implicit time integration

Solution algorithm for each time step of the analysis.

n+1

I. Compute vector F by time integrating the force vector: F = f,',, F(r)dr:

2. Compute the velocity vector:
2.1 Solve: EAU =F — At(CU" + K(U" + 1 ArU));
(where E is defined by the assembling of M, + w._\t( +a'5K,)
2. Compute: Ut = U" + AU;
3. Update the computed velocity vector:
3.1 Compute ¢, for each degree of freedom 5 of the model:
If (U"+‘U” < 0), ¢, = 1; otherwise, ¢, = 0;

3.2 lmtlahze \ector V =0 and, for each element ¢ of the spatial discretization:

If [ ¢yl > 0, assemble Ke(a"{U" +a 7l”*') into V;
3.3 Update: U"! = Ut — M~ v,

Adaptive parameters (

e _ 1 A2 e
o' = 5Ar°a;).

4. Compute the displacement vector: U+l = U + L A¢(U7 + Urtl);  Explicit ot =0
L (Q;nax < 2) aqi? — 2(] _ Q‘P]&XSL’)Q‘?]Z{X —4
as = 2 Qmaxl _ Qma\;g) _ ])Qmax —4
Imp]icit a6 — :]2_ ’)de_\—
af = (%Qma\ ’)E )Q¢9mx_3
aj = (’%de\/’7 ’)t:e)_anax—.’s




Enhanced explicit/implicit time integration
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Spectral radii for 2™ (= (2.) = 1, 1.25, ..., 10 (lighter to darker grey colour), considering explicit-implicit analyses without
updating the computed velocity values (non-dissipative approach): (a) & = 0.0; (b) £ = 0.1. Results for the CD and the TR are depicted as
black dotted and dashed lines, respectively, for reference.



Enhanced explicit/implicit time integration
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Spectral radii for 2™ (= 2,) =1, 1.25, ..., 10 (lighter to darker grey colour), considering explicit-implicit analyses updating the

computed velocity values (dissipative approach): (a) £ = 0.0; (b) £ = 0.1. Results for the CD and the TR are depicted as black dotted and
dashed lines, respectively, for reference.



Enhanced explicit/implicit time integration

Period Elongation

Perled Elongation
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errors for the dissipative approach



Enhanced explicit/implicit time integration
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Convergence analysis considering the n-substep CD (dotted lines, results for n = 1, 2, 4, 8 and 10 are depicted), the n-substep TR
(dashed lines, results for n = 1, 2, 4, 8 and 14 are depicted), and the new single-step technique without updating the computed velocity
values (non-dissipative approach) for 2" = 2.46 (solid line).



Enhanced explicit/explicit time integration

Solution algorithm for each time step of the analysis.

— — gn+l
Compute vector F by time integrating the force vector: F = _]:,, F(r)dr:
Compute vector V: V= U" + E-/(F — ArCU" — ArK(U" + {;Ar(f" );

Initialize vector A = 0 and, for each element ¢ of the spatial discretization:

| O

3L I [ ¢ple = 0, &'y =af and a’'y = @3: otherwise, @'y =@} and o’y = @5:
3.2. If (¢’ #0 or o’ #0), assemble Kt,(a'lUij +a»V,) into A;

Compute the velocity vector: U =V —E~TA;

Compute the displacement vector: U1 = U" + JA#(U" + U1

AN

For each degree of freedom n of the model, update the oscillatory parameter ¢,:
If (U7 < 0), ¢y = 1; otherwise, ¢, = 0;




(a)
Enhanced explicit/explicit time integration
Adaptive non-dissipative parameters @] and @3.
0 < Qmax <2 @ =0
a5 =0
2 < QM <2./2 @ = ArX(— QMg — Qma (4g2 4 1) 4 4)Qmax
@ = A g, — QM (4E2 _ 1) — gQME, — 4)omar
2V2 < QM < 4 T = LA (—4E, - 1)
@ = e ArdE + 1)
Adaptive dissipative parameters & and @5.
0 < QM < | & = ArH(=£2 + 1)
&5 = Ar’(—£ — &) (b)
1 < 0P <3 & = ArP(- QM g2 4 por
F = Ar2(Qmecg, _ Qma’(g2 _ 1) _ g Qmaxg, _ 1)Qmac
& = — AR 2 - 22 + £,)
+ M 64 _ge3 4 1452 — 8¢, + 1)
3 < QU <4 Lpmacierd oaelaopl_osr 1)
+ 2™ (954 — 2483 + 82 — 16§, + 8)
+™N(6E2 145, + 8) — (952 — 248, + 16)™="
& = —A2(OQM (g4 — 263 1 £2)
— QW (6e4 — 1683 + 1262 — £,)
+ma’ (9g4 _ 363 4 4562 — 18¢,)

+QMX(1863 — 5462 + 46E, — 8) + (92 — 24¢, + 16)) 2>
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Spectral radii for 2™ = 1.0, 1.1, ..., 4.0 (lighter to darker grey colour):

(a) non-dissipative formulation (b) dissipative formulation
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Enhanced explicit/explicit time integration
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Enhanced explicit/explicit time integration
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Convergence analysis considering the n-substep CD (dotted lines, results for n = 1, 5 and 10 are depicted),
the n-substep NB (dashed lines, results for n = 1, 2, 3 and 4 are depicted), and the discussed technique



Numerical applications considering enhanced approaches

A rod and a membrane are here analysed, for which analytical answers are known:

. RAL — (=1F=* on—1 2n — 1
u=>0 >0 ualx,t) = 2 Z 1P sin < T (l —cos| —7 rrc*f)
& n=1 " b= i
u=20
u>0 u=>0 Ualx, v, 1) =24 Z[ , [\l;ﬁ:;[:L’\/'L s sinh (”“Li_‘L") sin (lZ; ) +

00 nL -(cos(mm)—1)

4A nmwx mmy
e —/’ — 55— 1) sin sin :
+ﬁ2 Zm Zn m(L m2 +L 2,2y - f'””( ) ( Ly ) ( Ly )

u=>~0



Numerical applications 0015
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Numerical applications

Computed results for the enhanced explicit/implicit approach:
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Computed results along the membrane, considering a mesh with 8ok elements and At = 2-1074s:
reference response (top); new explicit-implicit (middle); composite Bathe (bottom); at t = 0.1 s (left);
and t = 0.2 s (right).




Numerical applications

Adopted discretizations and computed errors for the enhanced explicit/explicit approach:

0.005 —r . S . .

0.004

0,003

Error
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Adopted meshes for the rod analysis and computed Q7" values:
discretization 1 (4k elements); discretization 2 (9k elements); discretization 3 (16k elements)



Numerical applications

Adopted discretizations and computed errors for the enhanced explicit/explicit approach:
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QT values for discretization 1 (20k elements); discretization 2 (40k elements); and discretization 3 (80k elements)
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Numerical applications

Computed results for the enhanced explicit/explicit approach: 08
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Computed results along the membrane: reference response (top); new explicit/explicit (middle);
NB (bottom); t = 0.1 s and discretization 2 (left); t = 0.2 s and discretization 3 (right).

Zoomed view of the axial displacements at the middle of the rod
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Alternative time integration procedures

Several other adaptive time integration procedures may be elaborated, providing different numerical

properties and computational performances, which may be more suitable and/or better explored,
according to the features of the model.

One last adaptive time integration procedure is discussed here, which not only enables stable analyses
and reduced solver efforts (as in the referred explicit/implicit techniques), but also allows to avoid
iterative computations (as, for instance, in nonlinear analyses, decoupled solutions of multiphysic
applications etc.). This procedure is here referred to as an adaptive semi-explicit/explicit approach.



Adaptive semi-explicit/explicit time integration procedure

Consider the following nonlinear system of equations: MU + CUGt) + P(t) = F(1)

(where the nonlinear relations of the model are represented within vector P)

By introducing a dissipative time integration parameter a,

] . ) : Tim ‘ ']n N n—1 _ fn
this system can be rewritten, at a given time instant n, as: MU* +CU" + (1 + )P ok ¥

which, after considering the standard central difference

. . . . . . Fn I n+ ™ n—
method to approximate its time derivatives (as described U= U =2Um + U
on the right), may generate the following, locally-written, 0" — Lt _
recurrence relationship, once a modified mass matrix is 24t

considered (as in selective mass scaling techniques):

— 1 ‘ — 1
(M, + - ArC, WU = AP(F! — (1 +o)P! + /P + M, QU — U2 + ;ArC(,UZ"

This modified mass matrix is here properly defined as: M, =M, + Ar*a’ K"

(where K; stands for the tangent nonlinear stiffness matrix of the model)



Adaptive semi-explicit/explicit time integration procedure

In this case, similarly to the discussed explicit/implicit approach, the parameters of the semi-
explicit/explicit procedure may be adaptively computed as follows:

If Q™ <2 4% =0

. 1
If QP > 2.af = - tanh( (2

e

Ne

n+l § :H“n-*-l_ n— li | 1_1—]_”;1|_’ no_ N IH

=1

11‘( or (goj:(n). " =0
j=n—m

3 n 2 QQEM g;ih
[ um/ (go # 0) o = —((1 PY—
j=n—m ¢ { ]6[“‘“ 2 e € 2 pe pm ax

.,
max=-\1/2
a2 )< —




Adaptive semi-explicit/explicit time integration procedure

For a nonlinear model, the following updating criterion for the local tangent matrices K, may be

established, based on stability aspects, avoiding their continuous (and computationally demanding)
updating for each time step:

| 5 D)
> n n< _T1 HMmax~ __ 3 T
If [( =0l i, —a, |42, > 1, update K

4

where ", stands for the instantaneous degree of nonlinearity of the element (for u = 1, linear behaviour
is reproduced).



Adaptive semi-explicit/explicit time integration procedure

As highlighted, this formulation may become very effective to analyse multiphysic applications, allowing
decoupling their governing equations. The numerical solutions of two coupled problems are discussed
next, both of them considering solid/fluid interactions. In the first model, the referred coupling occurs
through a common interface between the different subdomains of the model, whereas, in the second
case, it takes place through the governing PDEs of the problem.

— Acoustic/elastodynamic models — — Porodynamic models

PDEs for some coupled
wave propagation models: (Kpi)i—pp—Ep+S=0 Oijj — Ppti — S + p,, by =0
(with index notation)

0ijj—pPiii—pli;+pb; =0 oéii — (Kijpyi )i +(1/Q)p+a=0
interface: ii, — (1/p)g =0 where: 0, = g;; + 00;p
w+p=0 &= (U j+uj;)/2

+ boundary and initial conditions + boundary and initial conditions




Adaptive semi-explicit/explicit time integration procedure

Coupled acoustic/elastodynamic models

The following matrix equation is obtained, once the FEM is applied to
spatially discretize the acoustic/elastodynamic subdomains of the model: MX(7) + CX(7) + KX(7) = F(r) + R(1)

Bhiid subdomains: M,, = f Vf ps Ngd IT

I,

C”:i/ NI e Nod 1T
I,

K = / B!D,B,d1I
11,

Fw:/ Xim+/'wbuu7
I I,

2(‘

<&m:]'WEW:/‘meﬂrm:Qﬁmz—wmoghz—qﬁw
I I

ie ie



Adaptive semi-explicit/explicit time integration procedure

Coupled acoustic/elastodynamic models

The following matrix equation is obtained, once the FEM is applied to
spatially discretize the acoustic/elastodynamic subdomains of the model: MX(7) + CX(7) + KX(7) = F(r) + R(1)

Solution procedure (for each subdomain):

¥ I 9 r r AT g g l 7
(M, + = ArCOXI = AP2(F? + RE — K (1 +a)X” — o/X"™1) + M, QX! — X271 + 2 ArC,X!!

where M, =M, + ¢, A’K, + b At*W;, i Q™ <2 a4, =0

l l .
] , ~ ] if max - 9 = _ ()max
Wi = QM) e 2 2 de=guanh(z 0

W.)s = QL,(M7):Q, " :
( ) ng( fe ) Q(c 11 FE’ m F{ = @. l)t’ — ()
|

if I'.NI; # 2, /)t,=1



Adaptive semi-explicit/explicit time integration procedure

Coupled acoustic/elastodynamic models

The following matrix equation is obtained, once the FEM is applied to
spatially discretize the acoustic/elastodynamic subdomains of the model: MX(7) + CX(7) + KX(7) = F(r) + R(1)

: . I _ -
Solution procedure: (M, + = ArC;,)U = A2QIPL
2(F — K T l
+._\I"(F’Slé, — I\st(( l + a;’e )lT:f — a;’gl}:f—l )) + I\lsé(ZlTZ _ lT:Z—l ) + ;J’(‘StlT:_l
— 1 o ’ ’ <
(Mo + = ArCp)PrH! = Q[ (ULF — 207, + UL

5 — I
+Ar7(F, — Ko ((1 + o, )P, — af;-t,PZ" )+ M (2P" — P + ;;\z(?.,-t,lﬁf—‘



Adaptive semi-explicit/explicit time integration procedure

Coupled acoustic/elastodynamic models
mgii + csit + ks — qsp — fs =0
Stability analysis, considering an equivalent group of scalar equations:  m jp+c;p+ksp+qyii — fr =0

Recursive u"t! Ay A A Ap u" L, u"
relationship: u" A Asy Ase A, yn—1 L, =)
P n+l | = 2! - > o n + 1 =A n + L
p A3l Ax Axz Ay p L p
pn A_“ A-I.Z A43 A a4 pn— l L-l pn— |

where: Ay = Qm my + 2a;m kAt — (1 4 ag)m sk At* 4 2bsq 1qs At)] A Asy = (Zm?,-mf + I)Ii-l)IS(‘S;\f + (2bs +2b; — 1)gpqsm ymg At?

| 5 5 b 2 . A+s2 Yoy o 2l As2
Ap =(=mgm; + —mysc; At — (a; — ag)m gk At* — byqpq; At”)/ Ay +2asmymsks At + Qay — oy — Dmymiks At

2 | -
Ays = m g, A%/ A, +5Qay —ay — Dmygmscsk s At? + byqrgsm ey At
A=0 +Qay — oy — Dasm pmeksk f At* + Qay — ay — Dbsm;q rqsk ¢ At
Ay = +2bragm pq pqsks At* + 2bsbsq3q7 Ar) /A
= l R ,
Ap =0 Asg = (=msmy + smscp At — (ay —ap)msk g At~ —brqeqr At*)) Ay
Awg =0 -
A_' () A_“ = ()
u = Aus = 0 and:
Az =qrmym(c; At + (1 + a; ks At?)/A Ay =1 Ay =myxs + bsqrqs At? Xj=mj+ %Cj.;\f +ajk;j At?

Ax = —qrmmg(cs At + asks At*)/A Au =0 A =msxs+ b.,-qsq',dr2 A= A Ay



Adaptive semi-explicit/explicit time integration procedure

Coupled acoustic/elastodynamic models

The roots A of the characteristic polynomial p,(2) of the amplification matrix A determine the stability properties of the method. In order to
ensure stability, the modulus of all these roots must be less or equal to one (when the modulus is unity, the root must be a simple one). If A is
replaced by (z +1)/(z —1), the equivalent requirement for stability is that all roots z of the polynomial (z—1)4 p, ((z+1)/(z—1)) fulfil the condition
Re(z) < o (where roots with a vanishing real part have to be simple ones) and the well-known Routh-Hurwitz criterion can be applied.

Modified characteristic equation of the amplification matrix: at+ a2+t +asz+a; =0

where, by adopting b, = b; = Y4 and, for simplicity, a; = a; = Y4: @142 — aas = 2q7q; (m%csks + mic k) At

+8q rgsm ym((qrqs + crcs)mscy +mgcs)

+2(m%ecks +micpky) +mpmg(csk p + ¢ k) Ar®
+32m13,-mf(((/.,-qs +creg)imgey +mycs) + (m»z,-c,rkx +m?c k) At?

ay = mymgk ok, At

ay = 2m gmy(csk ¢ + c pks) AL

ay = qrqs(mk s + m k) At* +4m ;mg(qrq; + cpeg + msk p +m k) At? a1a,a3 — apa3; — asa; = 4q3qim emgc e (m ek, —mok o)* At'
a) = 2qsqs(mscy +mgcg )AL + 8m fms(mgcy +mgcs) At +l(wq_,-q.‘-ln_3,.mf( (cres +qrqs)m ey +mgep)esky + ¢ k)
ap = q%.qf;\f" +4m _,-m“.q_,-q_\v.._'\t2 — l(wmzr-mf +ZC_,-CS(m:,kf + msz- ) +mymg(c ks — ¢k g )2) Ar®

+64mim](crcs +qrqs)mpes +mgep)(esky + cpks) + cpeg(m phs — msk)*) At

"

Since a; > 0 (i =0,..., 4), (ayay — apaz) > 0 and (aya,a3 — aga3 — azai) > 0, stability is observed, according to the Routh-Hurwitz criterion.

For physically undamped models, stability is still observed following the Routh-Hurwitz criterion, once, in this case: ay > 0, a; > 0, ay > 0 and (a3 — 4apas) > 0



Adaptive semi-explicit/explicit time integration procedure

Coupled porodynamic models

The following matrix equations are obtained, once the FEM MU(7) + CU(r) + R(U(1)) — QP(r) —= F, (1) = 0
is applied to spatially discretize the porodynamic model: Q"U(r) + HP(t) + SP(1) — F,(1) = 0

where M = / N’p,N,dQ

Q

C= /N[;Nudsz F.(1) = /NZ'r(rj)dl‘ +A /Nfb(t)dsz
- J : for linear analysis:
Q Q

H = / VN, kVN,dQ F,(1) = / N7 g(t)dI + / N} a(1)dQ R(U(1)) =KU(1) K= / B'DB dQ
Q r Q Q

S = / N7IN,dQ
PQ

Q

Q= / B’ omN,dQ
Q



Adaptive semi-explicit/explicit time integration procedure "

Coupled porodynamic models

— i(U’HFI o 2Un + Un—l)

Central Difference Method U" = _L(urt! )

l i 2A1

The following matrix equations are obtained, once the FEM MU(7) + CU(7) + R(U(1)) — QP(r)—F,(1)=0
is applied to spatially discretize the porodynamic model: Q"U(r) + HP(1) + SP(1) — F (1) = 0

1 1

Forward Difference Method U

n é( Un+l . )

l')" _ L(‘Pn+| — P )
At

\4

Solution procedure: (M, + A:C,)U"" = AZ(F", — R” + Q,P") + M_(2U" — U’"") + ZAC, U

S P = Au(F, —H,P!) — Q[ (U —UZ) + 8P
e ¢ pe (' € € € € ¢



Adaptive semi-explicit/explicit time integration procedure

Coupled porodynamic models
Solution procedure: (M, + I;AICC UM = AP(F?, — R + Q,P") + M, (2U" — U ') + ';AIC(,U;’"

S P = Au(F), —H,P!) — Q[ (U —U) +8 P,

Method 1 - The coupled stabilization matrix is introduced into the solid phase:
S(, = S(, + (l{:AIH(, Nl(, = I\‘la -+ (li,lAIZK(, Kf — K: +V zl

if M Ar <2, @ =0 if@™Ar<2,a' =0 W= / B’ [(em)Q(om)’| BdQ

if jmax > gP — o . i g‘_)(
if 4" At>2,a, =1 if o) Ar1>2, a, =

3

Method 2 - The coupled stabilization matrix is introduced into the fluid phase:
M, =M, + a“ArK; S, =S, +ad’AH, H,=H, + W’

if O™ Ar<2,a" =0  if ™ Ar<2(and ™ £0),a =0 WP =Ar / VNTI mTN,,dQ

o . o1 «p Tmax - Tma \ Q,
if 0™ Ar>2, g _% if J"Ar>2 (or ™ = 0), @ = 1



Adaptive semi-explicit/explicit time integration procedure

Coupled porodynamic models

Stability analysis, considering an equivalent group of scalar equations:

Recursive Tias
relationship: " —
n+1

P

Method 1: A, = 2(2ms + (2a" — n)ksA®> + 2a“¢*Ar*)/ A

A
Ay
Az

A = —(2ms — csAt + 2a"ksAr*
Apiz = QqSAI:I
MethOd 2: Ay =2(2m+ (24" - )]IkAI: Il

Ap = —(2m — cAt

.»‘\1_1 - F’qAI‘: 1

+2a"kA’ )/ A

A
A
Az

Az
A3
A3z

+2a"q*Ar?) /7

.“:] — l
An =0
Axn=10

A:] =1
Ax =0
12: =10

mu +cu + nku — gp —f, =0

Az = —q(2ms — csAt + 2(a" — n)ksAP + 24d"q*Ar?) /A

Ap = q(2ms — csAt + 2d'ksAr* + 2a"g*Ar) /A

Asz = (2ms® + (cs + 2(d — 1)mh)sAt
+ (2a"ks + (@ — 1)ch + 2(a" — l'!q2 )sAr*

/4 4 \ 9 3\ 4
+2a"((a” — ks + 2(a” — 1)g" )hAr’) /A

Az = —gm(2m — cAt + 2(a" — n)kAr*) /A

Ap = gm(2m

cAt + 2d'kAF ) /A

Azzy = (2sm~ + (cs + 2(a” — 1 )mh)mAr

+ (2a"ks + (a” — 1)ch + 2(a" — 1)g~)mAr

Y
+ (2a"(

& — 1)mkh + dcq”)Ar + 2d"a kg’ Ai*)/ A

qu+hp+sp—f, =0

where:
A = 2ms + csAt + 2a ksAr* +
A= A(s+a’hAr)

ll"quI:

where:
A = 2m + cAt + 2a"“kAr?

A = A (ms + @mhAt + aPg*Ar*)



Adaptive semi-explicit/explicit time integration procedure

Coupled porodynamic models

The roots A of the characteristic polynomial p,(2) of the amplification matrix A determine the stability properties of the method. In order to
ensure stability, the modulus of all these roots must be less or equal to one (when the modulus is unity, the root must be a simple one). If A is
replaced by (z +1)/(z —1), the equivalent requirement for stability is that all roots z of the polynomial (z—1)3 p, ((z+1)/(z—1)) fulfil the condition
Re(z) < o (where roots with a vanishing real part have to be simple ones) and the well-known Routh-Hurwitz criterion can be applied.

Modified characteristic equation of the amplification matrix: ayz’ + a12° + a2z + a3 = 0

where, by adopting a* = Y4 and aP = 1:

Method 1:  ao = ((1 = n)ks + ¢*)mhAr* + 2(1 — y)kns*Ar* a1 = ((1 = n)ks + ¢°)mhAr’ + 2mcshAr® + (4cs ara — agaz = 2(cksh + (ch + ks + ¢* )q°)mshg® Ar°
i dshm* At + 8m? s* + 4mh)msAt + 4(ch + 2nqks + g7 )chm*s*At* + 8(she® + meh” + cnks™
a, = mnkshAr® + 2(ch + nks + g*)msAr* ay = mnkshAr’ & (cs + mh)g*)m*s*Ar’
Method 2: ay = 2(1 — n)ksg*Ar* + (1 — n)ksmhAr +2((1 = n)ks  a = ((1 — n)kmh + 4cq®)sAr + 2meshAr® + (4cs aa, — apay = 8cnks*q*Ar’ + menkhs®q* Ar®
& 37 \msAr® + dshm® At + 8m’s” t 4mh)msAt & 2(mckh* + (mkh + 4hc* + 8cyks + 4¢q”)g* )ms* AP
a = 2nksqg" Ar* + mnkshAr + 2(ch + nks + ¢ )msAr  ay = mnkshAr +4(ch + 2nks + q* Jchm®s* Ar*

+ 8(she” + mch® + (‘))ksz - (cs+ mh:q::m:szAl'1
Since ¢; >0 (i=0,...,3) and (a,a> — apaz) > 0.
the proposed methods are stable for linear analyses (5 = 1) according to the Routh-Hurwitz criterion. In addition, stability is expected for nonlinear

analyses if the tangent stiffness matrix of the model is recurrently updated (» = 1) or if the tangent matrix is not updated and reduced stiffness develops
due to the nonlinear behaviour ( 0< 4 < 1), which is a usual configuration considering several common applications regarding porous models.



Numerical applications considering semi-explicit/explicit analyses

0.25 3 0.25
Lamb’s problem (axisymmetric solution):
U 0.20 0.20
0.15 _ 0.15
0.10 ™ 0.10
1 1
i 0.05 10.05
0 —0.00 0 MR NS A oL 0.00
0 1 2 3 0 1 2 3
25 _ i _ i Computed a, values along the discretized model (semi-explicit elements are colored and
—&— Soares explicit elements are white): At = 3.10° s (left); At = 5.105 s (right).
—@— Newmark
20 } ~——— Bathe

Adopted time-steps and corresponding domain decomposition.

5 - :r;l"'_\ ] Time-step (1075s) Explicit elements Semi-explicit elements

Error - vertical displacement [%6]

1 128557 (100%) 0 (0%)
0g 1 2 127904 (99.49%) 653 (0.51%)
\‘\‘\_____,/‘ 3 121503 (94.51%) 7054 (5.49%)
d ' 4 103388 (80.42%) 25169 (19.58%)
o l 5 57968 (45.09%) 70589 (54.91%)
1 2 3 4 5 6

At [s] %107



Vertical displacement [m)]

Numerical applications considering semi-explicit/explicit analyses

Lamb’S prOblem (aXISYIIlmetI‘iC SOlutiOI’l): CPU times and relative error results for the selected techniques and time-step values
R At (10%s) Method Gyere (%) Shor (%) CPU time (s)
= Soares 9.44 (1.00) 16.50 (1.00) 1905 (1.00)
1 Newmark 16.83 (1.78) 26.08 (1.58) 5457 (2.86)
Bathe 16.65 (1.76) 25.98 (1.57) 11427 (6.00)
% Soares 7.87 (1.00) 18.57 (1.00) 957 (1.00)
= 2 Newmark 16.20 (2.07) 26.40 (1.43) 2535 (2.65)
Bathe 15.67 (1.99) 25.02 (1.40) 5370 (5.61)
Soares 7.00 (1.00) 17.92 (1.00) 769 (1.00)
3 Newmark 16.85 (2.41) 26.00 (1.45 1768 (2.30)
. At = 3.105s s At = 5.105s Bathe 15.60 (2.23) 24.50 (1.37) 3869 (5.03)
) Soares 5.81(1.00) 18.90 (1.00) 645 (1.00)
0=} 4 Newmark 16.73 (2.88) 26.91 (1.42) 1120 (1.74)
% Bathe 14.63 (2.52) 24.06 (1.27) 2468 (3.83)
g Soares 6.02 (1.00) 20.36 (1.00) 78¢q (1.00)
—% 5 Newmark 16.54 (2.75) 27.48 (1.35) 887 (1.12)
_5 Bathe 13.43 (2.23) 23.61(1.16) 1899 (2.41)
}5




Numerical applications considering semi-explicit/explicit analyses

Coupled soil/structure model:

AXIS

10 m Sm

6m

Wave propagation

1
\:\lm"qmun layer

imkER
i

HOOTIIT]

O Jfj0C]
(X

1
1

=

L ]

Soil-structure interaction

5 10 15 20 25 30 35 40

Numerical soil-structure coupled model for a pile penetration depth of 10 [m]

Number of modified elements for each penetration depth

h, =2 [m] h, =5 [m] hy; = 10 [m]
Modified 2181 (15.2%) 3113 (20.5%) 4337 (27.1%)
Unmodified 12204 (84.8%) 12104 (79.5%) 11680 (72.9%)

0,20

0,15

010

{ 0.05

0.00



Numerical applications considering semi-explicit/explicit analyses

Coupled soil/structure model:

Hyperelastic nonlinear
constitutive model

Axis

il

10 m Sm

Yo

20m

6m

Sm

-
+

1
\:\lqumuu layer

CPU times (in seconds) for the studied scenarios.

hy =2 [m] hy =5 [m] hy =10 [m]
) New 50.8 (1.00) 67.8 (1.00) 76.6 (1.00)
Linear
Newmark 76.4 (1.28) 82.0 (1.21) 89.3 (1.17)
) New 79.6 (1.00) 84.5 (1.00) 93.9 (1.00)
Nonlinear
Newmark 450.3 (5.66) 480.5 (5.68) 445.9 (4.75

Snapshots for the norms of the displacements considering linear (left) and nonlinear (right) analyses

=60 | T'= 60 [ms]

/] %
| 1

T~ 180 [ms] ) T'= 180 [ms)

T= 120 [ms)




Numerical applications considering semi-explicit/explicit analyses

Coupled acoustic / elastodynamic model: Amount of unmodified and modified elements for the coupled water—riser model.

a, =0 a, #0 b, =0 b, #0
Bhlid Subdomain 1 4 989 0 4 571 418
subdomains Subdomain 2 48 900 2 46 938 1964
Subdomain 3 66 294 0 64726 1568
Subdomain 4 53 3712 2 851 914
Subdomain 5 1292 12 024 10 280 3036

Sketch of the coupled
water-riser model

Partial views of the adopted spatial discretizations: fluid subdomains (left); solid subdomains (right)



Numerical applications considering semi-explicit/explicit analyses

Coupled acoustic/elastodynamic model:

The CPU time of the new technique was
approximately 14% of that of the standard
CDM; i.e., solution was evaluated by the
new approach more than 7 times faster
than by the CDM.

Pressure

Amount of unmodified and modified elements for the coupled water—riser model.

a, =0 a, #0 b, =0 b, #0
Subdomain 1 4 989 0 4 571 418
Subdomain 2 48 900 2 46 938 1964
Subdomain 3 66 294 0 64726 1568
Subdomain 4 53 3712 2 851 014
Subdomain 5 1292 12 024 10 280 3036
3.0x10° L L 1 . 1 1,75x107° 1 ! L ! . L 2 1 .
i q R CDM (at=25x10%s) /_
2.0x10” ," W / | L | —— New (At=2.5x107s)
.' \ " N 1.25x10™ 1 -
\ |
1.0x10° |' / !| , | g 1,00x10™ -
I’ / g 1 )
\ / \ | & 750107 ( ")~ Horizontal B
\ / | / o g —
0.0 \ / \ ] 20
\ / / O 5.00x10™ 4 -
\ | \ / . Vertical
- CDM (At =2,5x10"s ) \ // \ ,/V 2.50x10° o
-1,0x10° 4 _ . W - | A
—— New (At=2,5x10"s) "\ L/ \ )
\V/ 0.00 - L
-2.0x10% T T T . T r T -2,50x107%° T T T T . ) .
0.0 5.0x10® 1.0x10™ 1.5x10™ 2.0x10" 2.5x10 0.0 5,0x107 1,0x10™ 1,5x10™ 2.0x10" 2.5x10™
Time Time

Computed hydrodynamic pressures at point A (left) and displacements at point B (right).



Numerical applications considering semi-explicit/explicit analyses

Coupled acoustic/elastodynamic model:

PECCCCC
ececeee

(e) ( (h)
Computed hydrodynamic pressures (subdomain 2) c0n51der1ng the standard CDM with At = 2.5x1078s: Computed hydrodynamlc pressures (subdomam 2) con51der1ng the new approach with At = 2.5x1077s:
(@) t = 0.75x1074s; (b) t = 1.00x1074s; (€) t = 1.25%1074 s; (d) t = 1.50X1074 s; (€) t = 1.75X1074s; (@) t = 0.75x1074s; (b) t = 1.00x1074s; (¢) t = 1.25%1074 s; (d) t = 1.50x1074 s; () t = 1.75X1074 s;

() t = 2.00x107%s; (g) t = 2.25x1074s; (h) t = 2.50x1074 s, () t = 2.00x107%s; (g) t = 2.25x1074s; (h) t = 2.50x1074s.



Numerical applications considering semi-explicit/explicit analyses

Coupled porodynamic model: Method Model Percentage of CPU time (new/standard) (%)

—

1 1 9.66

| 2 0.98 \
o0
2 1 5.01 )

A 3 ) 0.52 AT

f(1)

Tk
e

AN TN SEEs

L/
I\
\ |\
7z
/ /
/
",
i
/
\/(/\
AN
(44/
A J LWLV \
N Z1IN 28N LS AT / IS LTSN LA AT ..TS IS IS ST
\_/ SN L/ \, L/ / J A\ S nat
v & QY T oA R R T A AT T R N ST A At A T AR R
. |/ 4 AN A N "L L7\ L/ L] \, A
A\, ’ / W r 7 .
NS Ve \ s N /S / T\ v P
ANy N I~ N NI\ | A S AT A A AN~ A7
NN N 2 SN N\ : N £ v vl " "
Al < | AT AR 1A 7 ; ~
p / 11/ NN / p
/T
N
) -
<

4
2 X
Sketch of the soil strip. e LXK
Two elastoplastic models are considered (Model 1 and Model 2). /KRR S )\] N
MNIXE (f/ b 4 K XN
X FK—X v K >
__// AP E\ 7N\ N\l N \\l/ < N\ b

Modified elements along the mesh
(considering the solid phase of method 2)



Numerical applications considering semi-explicit/explicit analyses

Coupled porodynamic model:

Displacement

0.0

-5.0x10”

-1.0x10™ -

-1.5x10™

-2.0x10™

-2.5x10™

Standard

New 1
New 2

00 01 0.2 03 04 05

Number of iterations in the
standard implicit analysis

0.0

0.1

0.2

Time

0.3

0.4

0.5

Displacement

0.0 ] ] . 1 ) ]
50 -
Standard ]
— New 1 a0
-1.0x10™ - — New2 20] :
10] [
00 01 02 03 04 05
-1 Number of iterations in the
-2.0x10™ stuar‘.dard implicilt ar.altysis
-3.0x10™
-4.0x10™ -
| | . | . I
0.0 0.1 0.2 0.3 04 0.5
Time

Time history results for the vertical displacements at point A of the soil strip for model 1 (left) and model 2 (right).



Numerical applications considering semi-explicit/explicit analyses

Coupled porodynamic model:

Computed pore-pressures and equivalent plastic strains along the discretised domain at time instant t = 0.5 s, for model 1 (top) and model 2 (bottom):
new method 1 (left); new method 2 (middle); and standard procedure (right).



Conclusions

Several adaptive time integration procedures have been briefly presented and discussed,
reporting the main aspects of their formulations and illustrating their basic performances.



Conclusions

The main features of the discussed adaptive time integration procedures may be summarized as follows:

= They stand as simple, easy to implement and to apply, single-step procedures;
= Most of the discussed techniques describe truly self-starting formulations;

" They are locally defined and they may self-adjust according to the properties of the discretized
model, as well as to the behavior of the computed responses;

= They consider a link between the adopted temporal and spatial discretization procedures, allowing
their errors to be better counterbalanced and enhanced accuracy provided;

= They self-adapt to enable stable analyses;

= They provide advanced controllable algorithmic dissipation in higher modes by considering adaptive
calculations associated to a proper “tracking” of the higher-frequency range of the model;



Conclusions

The main features of the discussed adaptive time integration procedures may be summarized as follows:
" They consider single-solver frameworks based on reduced, or nonexistent (in case of explicit
approaches), systems of equations;

"= They may become equivalent to or always more accurate than classical time integration procedures
(such as the CD, the TR etc.), considering specific configurations;

* They enable mixed analyses by just employing a single group of recurrence relationships, avoiding
elaborated coupling procedures and/or interface treatments;

= They may become very effective to analyse complex models, such as those regarding nonlinear
multiphysic applications;

" They are extremely versatile and entirely automated, requiring no decision nor effort from the user.



Conclusions

As one can observe, these adaptive techniques may stand as very effective procedures to numerically
analyse space-time PDEs, providing the main positive features that are required from a competitive

time integration method.
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