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Objectives

This presentation aims to report and discuss some explicit, implicit, explicit/explicit, 
explicit/implicit, semi-explicit/explicit time integration procedures to numerically analyse 
large scale problems that are governed by space-time partial differential equations. 

The time integration procedures that are discussed here are adaptive, locally adjusting 
themselves according to the physical properties of the model, the adopted spatial 
discretization, the adopted time-step value, and the evolution of the computed responses. 

These solution procedures are also entirely automated, automatically dividing the spatial 
domain of the model into different subdomains, at which different solution strategies are 
applied, as well as automatically computing the time-step values of the analyses for optimal 
computational performance. 



Illustration of a time integration procedure adapting itself according to the properties of the 
discretized model and its computed responses

Computed solution Time integration parameters



Illustration of automated subdivisions of a model for the application of different time 
integration strategies 

Model with different physical properties Subdivision for explicit/explicit analysesSubdivision for explicit/implicit analyses



Discussion concerning time-stepping algorithms

When numerically solving space-time PDEs, the adopted time integration procedure should 
become consonant with the adopted spatial discretization methodology, so that their errors 
may be properly counterbalanced.

A proper “adaptation” of the applied time integration procedure to the employed spatial 
discretization may provide much better results than more elaborated and/or higher-order 
time-domain formulations.



Discussion concerning time-stepping algorithms

Convergence curves for a simple 1D wave propagation analysis considering a regular finite element mesh and three 
standard explicit time-marching techniques: (a) adopting linear finite elements; (b) adopting quadratic finite elements.

(a) (b) 



Basic framework to introduce some adaptive time integration procedures

Once a spatial discretization technique is applied, the governing PDEs of a problem may be 
numerically treated to become a semi-discrete system of equations. In order to discuss the 
use of the referred adaptive time integration procedures, the following hyperbolic system of 
equations is here initially considered, which may be obtained once wave propagation models 
are discretized considering the Finite Element Method (FEM).

where:

By applying the FEM for spatial discretization:PDEs for some wave 
propagation models:
(with index notation)

+ boundary and initial conditions

Acoustic models

+ boundary and initial conditions

Elastodynamic models



Basic framework to introduce some adaptive time integration procedures

By time integrating the referred semi-discrete matrix equation, at an element level (subscript e), 
considering a time-step Δt (tn+1= tn + Δt), the following expression can be established:

whose integrals may be evaluated as:



Basic framework to introduce some adaptive time integration procedures

By considering the previous integral definitions and the following relation:

the previously described, locally-defined, integral equation may be rewritten as:

These equations allow to compute         , once assembling is considered, and         , defining the 
recurrence relationships for a simple, single-step, truly self-starting, time-marching procedure.



Basic framework to introduce some adaptive time integration procedures

The basic properties of the method can be studied considering the features of its amplification 
matrix, regarding a SDOF model.

SDOF model:

Recurrence relationship for 
the time-integration method:

Amplification matrix and 
load operator vector:



Basic framework to introduce some adaptive time integration procedures

Different numerical properties are provided according to the 
given values for the referred time integration parameters

Spectral radius behaviour and regions of stability for the γ‒α plane

Non-dissipative approach: α=1-γ
Dissipative approach: α>1-γ

Explicit approach: γ=0
Implicit approach: γ>0

Central difference method (α=1; γ=0)

Trapezoidal rule (α=1/2; γ=1/2)



Basic framework to introduce some adaptive time integration procedures

Spectral radius behaviour and regions of stability for the γ‒α plane

For the adaptive procedures discussed here, the following 
region for the time integration parameters is focused:



Adaptive approach

In the adopted adaptive approach, the time integration parameters of the method are locally computed 
as function of the maximal sampling frequency of the element                        , where         stands for the 
element maximal natural frequency, which is evaluated as the square root of its highest eigenvalue, 
considering the generalized eigenvalue problem of local matrices Me and Ke:

Thus, the time integration procedure may adapt to the local properties of the model and to its adopted 
spatial and temporal discretizations.



Adaptive approach

It may also adapt to the computed responses. In this case, the time integration parameters may 
be locally evaluated introducing numerical dissipation when and where it is necessary, activating 
or not dissipative elements along the analysis. 

This idea can be automatically carried out based on an oscillatory criterion. In this sense, if the 
computed response of a degree of freedom of the model oscillates along time, the α parameters 
of the elements surrounding this degree of freedom are modified, locally introducing numerical 
dissipation into the analysis. 



Adaptive explicit/implicit time integration procedure

For the discussed explicit/implicit formulation, the following local parameters are defined: 

which, as illustrated below, automatically allows to define the explicit (white colour) and implicit 
(orange colour) subdomains of the model, for the analysis:

Explicit element

Implicit element



Adaptive explicit/implicit time integration procedure

For the discussed explicit/implicit formulation, the following local parameters are defined: 

The proposed implicit non-dissipative formulation is always more accurate 
than the trapezoidal rule, which is “the second-order accurate A-stable linear 
multistep method with the smallest error constant” (Dahlquist’s theorem).

This expression is established so that: 
(i) Stability is guaranteed (i.e.,                  ); 
(ii) Low dispersion errors are provided.



Adaptive explicit/implicit time integration procedure

For the discussed explicit/implicit formulation, the following local parameters are defined: 



Adaptive explicit/implicit time integration procedure

Optimal Δt

In automated explicit/implicit analyses, by increasing the adopted Δt value, less time steps are necessary 
for solution, which is beneficial for efficiency; however, simultaneously, by enlarging Δt, more implicit 
elements may be activated, increasing the solver computational effort. Thus, an optimization algorithm 
may be applied to compute an optimal Δt value, so that maximal efficiency is provided. 

Evolution of the expected number of operations 
in the analysis vs. the adopted time-step value



Adaptive explicit/explicit time integration procedure

In this case, explicit/explicit analyses may be carried out dividing the discrete model into 
groups of explicit elements that may have the same Δt assigned, respecting their stability limit. 

As previously remarked, for an explicit formulation,            is considered. 

Δt 1

Δt 2

Δt 3

Δt 4



Adaptive explicit/explicit time integration procedure

To provide this subdivision, the following algorithm may be followed: 

(i) calculate the limiting time-steps of all elements (e.g.,                      ),  and find the smallest        
of the model (i.e.,                            ), which is the basic time-step for the proposed controlled 
subdivision of the domain;

(ii) with           defined, calculate subsequent time-step values as multiple of the power of 2 of 
this minimal time-step value (i.e., calculate                           ); 

(iii) associate each element to a computed time-step value (i.e., to       , where                            
and i indicates the subdomain of that element);

(iv) associate a time-step value (i.e., associate a subdomain) to each degree of freedom of the 
model considering the lowest time-step value of its surrounding elements. 



Once this subdomain division is considered, a sub-cycling 
algorithm may be followed, in which values close to the 
boundaries of these time-step subdomains may need to 
be interpolated. In this case, the following equations may 
be considered, which are consistent with the adopted 
approximations of the referred time marching technique: 

 

Adaptive explicit/explicit time integration procedure



Initially, an acoustic infinite-domain model, submitted to an impulsive source, is analysed. For this
model, analytical answers are known (Green’s functions), allowing to analyse the accuracy of the
considered time integration techniques. The discussed explicit/implicit and explicit/explicit
formulations, as well as standard explicit methodologies, are here applied to analyse this model.
Four FEM meshes, which consider refinement towards the applied source position, are regarded for
the analyses, and Perfectly Matched Layers (PMLs) are employed to simulate the infinite domain.

Numerical applications considering explicit/implicit and explicit/explicit analyses

50k 100k 150k 200k



Numerical applications considering explicit/implicit and explicit/explicit analyses

50k

100k

150k

200k





Numerical applications considering explicit/implicit and explicit/explicit analyses

200k



Numerical applications considering explicit/implicit and explicit/explicit analyses

EG-α Imp/Exp Exp/ExpAnalytical



Three heterogeneous models are also analysed:

Numerical applications considering explicit/implicit and explicit/explicit analyses

Model 1 (Elastodynamic model, discretized by 2.57M elements)

Model 2 (Elastodynamic model, discretized by 0.72M elements)

Model 3 (acoustic model, discretized by 4.86M elements)



Numerical applications considering explicit/implicit and explicit/explicit analyses



Numerical applications considering explicit/implicit and explicit/explicit analyses



Numerical applications considering explicit/implicit and explicit/explicit analyses



Explicit/explicit 
analysis

Explicit/implicit 
analysis

Computed solution Time integration parameters



Explicit/explicit 
analysis

Explicit/implicit 
analysis

Computed solution Time integration parameters



Explicit/explicit 
analysis

Explicit/implicit 
analysis

Computed solution Time integration parameters



• The discussed explicit/explicit formulation usually provides better accuracy, since it stands 
as a more versatile approach and, consequently, it usually allows better adaptability for the 
parameters of the method;

• The described explicit/implicit approach is highly straightforward and considerably easier to 
implement, but it requires more memory resources (since it deals with a non-diagonal 
effective matrix);

• The efficiency of each discussed adaptive approach depends on the features of the discretized 
model; however, both referred explicit/implicit and explicit/explicit techniques are regularly 
more effective than standard time integration procedures.

Discussion considering explicit/implicit and explicit/explicit analyses



The previously presented ideas may be extended, improved and/or generalized providing enhanced 
explicit/implicit or explicit/explicit formulations. 
 

Enhanced explicit/implicit and explicit/explicit adaptive techniques

Enhanced explicit or implicit element

Enhanced explicit or extended-explicit element

Enhanced non-dissipative or dissipative element



For instance, by modifying the previously 
presented time-marching framework: 

Enhanced explicit/implicit and explicit/explicit adaptive techniques

Enhanced explicit/implicit framework: 

Enhanced explicit/explicit framework: 

The following recurrence relationships may be obtained:

1 extra equation

1 extra equation

+1 extra parameter

+1 extra parameter

Guarantees stability

Introduce numerical damping

Provide extended stability limits

Introduce numerical damping



For instance, by modifying the previously 
presented time-marching framework: 

Enhanced explicit/implicit and explicit/explicit adaptive techniques

Enhanced explicit/implicit framework: 

Enhanced explicit/explicit framework: 

The following recurrence relationships may be obtained:

Provide enhanced 
accuracy

Computed only if necessary

Computed only if necessary

(i.e., if numerical damping is locally necessary)

(i.e., if numerical damping and/or extended 
stability limits are locally necessary)



For instance, by modifying the previously 
presented time-marching framework: 

Enhanced explicit/implicit and explicit/explicit adaptive techniques

Enhanced explicit/implicit framework: 

Enhanced explicit/explicit framework: 

The following recurrence relationships may be obtained:

Computed only if necessary

(i.e., if numerical damping and/or extended 
stability limits are locally necessary)

For a non-dissipative formulation:
= 0, for explicit elements  ( )
≠ 0, for extended-explicit elements  ( )



Enhanced explicit/implicit time integration



Enhanced explicit/implicit time integration



Enhanced explicit/implicit time integration



Enhanced explicit/implicit time integration

Period elongation and amplitude decay 
errors for the non-dissipative approach

Period elongation and amplitude decay 
errors for the dissipative approach



Enhanced explicit/implicit time integration



Enhanced explicit/explicit time integration



Enhanced explicit/explicit time integration



Enhanced explicit/explicit time integration



Enhanced explicit/explicit time integration

Period elongation and amplitude decay 
errors for the non-dissipative approach

Period elongation and amplitude decay 
errors for the dissipative approach



Enhanced explicit/explicit time integration



A rod and a membrane are here analysed, for which analytical answers are known: 

Numerical applications considering enhanced approaches



Adopted discretizations and computed errors for the enhanced explicit/implicit approach: 

Numerical applications

Adopted mesh (4k elements) for the rod and computed values for Δt = 10-3s.

Adopted mesh (20k elements) for the membrane (in zoom) and computed values for Δt =5· 10-4s.



Computed results for the enhanced explicit/implicit approach: 

Numerical applications

Zoomed view of the axial displacements at the middle of the rod

Computed results along the membrane, considering a mesh with 80k elements and Δt = 2·10−4 s: 
reference response (top); new explicit–implicit (middle); composite Bathe (bottom); at t = 0.1 s (left); 

and t = 0.2 s (right).



Adopted discretizations and computed errors for the enhanced explicit/explicit approach: 

Numerical applications

Adopted meshes for the rod analysis and computed values:
discretization 1 (4k elements); discretization 2 (9k elements); discretization 3 (16k elements)



Adopted discretizations and computed errors for the enhanced explicit/explicit approach: 

Numerical applications

values for discretization 1 (20k elements); discretization 2 (40k elements); and discretization 3 (80k elements) Time-history results at the middle of the 
membrane (discretization 3)



Computed results for the enhanced explicit/explicit approach: 

Numerical applications

Zoomed view of the axial displacements at the middle of the rod 
(discretization 1)

Computed results along the membrane: reference response (top); new explicit/explicit (middle); 
NB (bottom); t = 0.1 s and discretization 2 (left); t = 0.2 s and discretization 3 (right).



Several other adaptive time integration procedures may be elaborated, providing different numerical 
properties and computational performances, which may be more suitable and/or better explored, 
according to the features of the model.

Alternative time integration procedures

One last adaptive time integration procedure is discussed here, which not only enables stable analyses 
and reduced solver efforts (as in the referred explicit/implicit techniques), but also allows to avoid 
iterative computations (as, for instance, in nonlinear analyses, decoupled solutions of multiphysic 
applications etc.). This procedure is here referred to as an adaptive semi-explicit/explicit approach.



Consider the following nonlinear system of equations: 
(where the nonlinear relations of the model are represented within vector P) 

Adaptive semi-explicit/explicit time integration procedure

By introducing a dissipative time integration parameter α, 
this system can be rewritten, at a given time instant n, as:

which, after considering the standard central difference
method to approximate its time derivatives (as described
on the right), may generate the following, locally-written,
recurrence relationship, once a modified mass matrix is
considered (as in selective mass scaling techniques):

This modified mass matrix is here properly defined as:
(where       stands for the tangent nonlinear stiffness matrix of the model)



In this case, similarly to the discussed explicit/implicit approach, the parameters of the semi-
explicit/explicit procedure may be adaptively computed as follows: 

Adaptive semi-explicit/explicit time integration procedure



Adaptive semi-explicit/explicit time integration procedure

For a nonlinear model, the following updating criterion for the local tangent matrices Kτ
e may be 

established, based on stability aspects, avoiding their continuous (and computationally demanding) 
updating for each time step:

where µn
e stands for the instantaneous degree of nonlinearity of the element (for µ = 1, linear behaviour 

is reproduced).



As highlighted, this formulation may become very effective to analyse multiphysic applications, allowing 
decoupling their governing equations. The numerical solutions of two coupled problems are discussed 
next, both of them considering solid/fluid interactions. In the first model, the referred coupling occurs 
through a common interface between the different subdomains of the model, whereas, in the second 
case, it takes place through the governing PDEs of the problem.   

Adaptive semi-explicit/explicit time integration procedure

PDEs for some coupled 
wave propagation models:
(with index notation)

+ boundary and initial conditions

Acoustic/elastodynamic models

interface:

+ boundary and initial conditions

Porodynamic models

where:



Coupled acoustic/elastodynamic models   

Adaptive semi-explicit/explicit time integration procedure

The following matrix equation is obtained, once the FEM is applied to 
spatially discretize the acoustic/elastodynamic subdomains of the model:   

Fluid subdomains: Solid subdomains: 



Coupled acoustic/elastodynamic models   

Adaptive semi-explicit/explicit time integration procedure

The following matrix equation is obtained, once the FEM is applied to 
spatially discretize the acoustic/elastodynamic subdomains of the model:   

Solution procedure (for each subdomain):

where



Coupled acoustic/elastodynamic models   

Adaptive semi-explicit/explicit time integration procedure

The following matrix equation is obtained, once the FEM is applied to 
spatially discretize the acoustic/elastodynamic subdomains of the model:   

Solution procedure:



Coupled acoustic/elastodynamic models   

Adaptive semi-explicit/explicit time integration procedure

Stability analysis, considering an equivalent group of scalar equations:   

where:

Recursive
relationship:

and:



Coupled acoustic/elastodynamic models   

Adaptive semi-explicit/explicit time integration procedure

The roots λ of the characteristic polynomial pA(λ) of the amplification matrix A determine the stability properties of the method. In order to 
ensure stability, the modulus of all these roots must be less or equal to one (when the modulus is unity, the root must be a simple one). If λ is 
replaced by (z +1)/(z −1), the equivalent requirement for stability is that all roots z of the polynomial (z−1)4 pA ((z+1)/(z−1)) fulfil the condition 
Re(z) ≤ 0 (where roots with a vanishing real part have to be simple ones) and the well-known Routh–Hurwitz criterion can be applied. 

Modified characteristic equation of the amplification matrix:

where, by adopting bs = bf = ¼ and, for simplicity, as = af = ¼:

For physically undamped models, stability is still observed following the Routh–Hurwitz criterion, once, in this case:

, stability is observed, according to the Routh–Hurwitz criterion.Since



Coupled porodynamic models   

Adaptive semi-explicit/explicit time integration procedure

The following matrix equations are obtained, once the FEM 
is applied to spatially discretize the porodynamic model:   

where

for linear analysis:



Coupled porodynamic models   

Adaptive semi-explicit/explicit time integration procedure

The following matrix equations are obtained, once the FEM 
is applied to spatially discretize the porodynamic model:   

Solution procedure:

Central Difference Method

Forward Difference Method



Coupled porodynamic models   

Adaptive semi-explicit/explicit time integration procedure

Solution procedure:

Method 1 – The coupled stabilization matrix is introduced into the solid phase:

Method 2 – The coupled stabilization matrix is introduced into the fluid phase:



Coupled porodynamic models   

Adaptive semi-explicit/explicit time integration procedure

Stability analysis, considering an equivalent group of scalar equations:   

Recursive
relationship:

Method 1:

Method 2:

where:

where:



Coupled porodynamic models 

Adaptive semi-explicit/explicit time integration procedure

The roots λ of the characteristic polynomial pA(λ) of the amplification matrix A determine the stability properties of the method. In order to 
ensure stability, the modulus of all these roots must be less or equal to one (when the modulus is unity, the root must be a simple one). If λ is 
replaced by (z +1)/(z −1), the equivalent requirement for stability is that all roots z of the polynomial (z−1)3 pA ((z+1)/(z−1)) fulfil the condition 
Re(z) ≤ 0 (where roots with a vanishing real part have to be simple ones) and the well-known Routh–Hurwitz criterion can be applied. 

Modified characteristic equation of the amplification matrix:
where, by adopting au = ¼ and ap = 1:

Since

Method 2:

the proposed methods are stable for linear analyses (         ) according to the Routh–Hurwitz criterion. In addition, stability is expected for nonlinear 
analyses if the tangent stiffness matrix of the model is recurrently updated (         ) or if the tangent matrix is not updated and reduced stiffness develops 
due to the nonlinear behaviour (              ), which is a usual configuration considering several common applications regarding porous models.

Method 1:



Lamb’s problem (axisymmetric solution): 

Numerical applications considering semi-explicit/explicit analyses

Computed 𝑎! values along the discretized model (semi-explicit elements are colored and 
explicit elements are white): Δt = 3.10-5 s  (left); Δt = 5.10-5 s  (right). 



Lamb’s problem (axisymmetric solution): 

Numerical applications considering semi-explicit/explicit analyses

Δt = 3.10-5 s Δt = 5.10-5 s



Coupled soil/structure model: 

Numerical applications considering semi-explicit/explicit analyses

Numerical soil-structure coupled model for a pile penetration depth of 10 [m]



Coupled soil/structure model: 

Numerical applications considering semi-explicit/explicit analyses

Snapshots for the norms of the displacements considering linear (left) and nonlinear (right) analyses

Hyperelastic nonlinear 
constitutive model 



Coupled acoustic/elastodynamic model: 

Numerical applications considering semi-explicit/explicit analyses

Sketch of the coupled 
water–riser model

Partial views of the adopted spatial discretizations: fluid subdomains (left); solid subdomains (right)

Solid
subdomains
Fluid 
subdomains 



Coupled acoustic/elastodynamic model: 

Numerical applications considering semi-explicit/explicit analyses

Computed hydrodynamic pressures at point A (left) and displacements at point B (right).

The CPU time of the new technique was 
approximately 14% of that of the standard 
CDM; i.e., solution was evaluated by the 
new approach more than 7 times faster 
than by the CDM.



Coupled acoustic/elastodynamic model: 

Numerical applications considering semi-explicit/explicit analyses

Computed hydrodynamic pressures (subdomain 2) considering the standard CDM with Δt = 2.5x10−8 s: 
(a) t = 0.75x10−4 s; (b) t = 1.00x10−4 s; (c) t = 1.25x10−4 s; (d) t = 1.50x10−4 s; (e) t = 1.75x10−4 s; 

(f) t = 2.00x10−4 s; (g) t = 2.25x10−4 s; (h) t = 2.50x10−4 s.

Computed hydrodynamic pressures (subdomain 2) considering the new approach with Δt = 2.5x10−7 s: 
(a) t = 0.75x10−4 s; (b) t = 1.00x10−4 s; (c) t = 1.25x10−4 s; (d) t = 1.50x10−4 s; (e) t = 1.75x10−4 s; 

(f) t = 2.00x10−4 s; (g) t = 2.25x10−4 s; (h) t = 2.50x10−4 s.



Coupled porodynamic model: 

Numerical applications considering semi-explicit/explicit analyses

Sketch of the soil strip.
Two elastoplastic models are considered (Model 1 and Model 2).

Modified elements along the mesh
(considering the solid phase of method 2)



Coupled porodynamic model: 

Numerical applications considering semi-explicit/explicit analyses

Time history results for the vertical displacements at point A of the soil strip for model 1 (left) and model 2 (right).



Coupled porodynamic model: 

Numerical applications considering semi-explicit/explicit analyses

Computed pore-pressures and equivalent plastic strains along the discretised domain at time instant t = 0.5 s, for model 1 (top) and model 2 (bottom): 
new method 1 (left); new method 2 (middle); and standard procedure (right).



Conclusions

Several adaptive time integration procedures have been briefly presented and discussed, 
reporting the main aspects of their formulations and illustrating their basic performances.



Conclusions

The main features of the discussed adaptive time integration procedures may be summarized as follows: 

§ They stand as simple, easy to implement and to apply, single-step procedures; 

§ Most of the discussed techniques describe truly self-starting formulations; 

§ They are locally defined and they may self-adjust according to the properties of the discretized 
model, as well as to the behavior of the computed responses; 

§ They consider a link between the adopted temporal and spatial discretization procedures, allowing 
their errors to be better counterbalanced and enhanced accuracy provided; 

§ They self-adapt to enable stable analyses; 

§ They provide advanced controllable algorithmic dissipation in higher modes by considering adaptive 
calculations associated to a proper “tracking” of the higher-frequency range of the model; 



Conclusions

The main features of the discussed adaptive time integration procedures may be summarized as follows: 

§ They consider single-solver frameworks based on reduced, or nonexistent (in case of explicit 
approaches), systems of equations; 

§ They may become equivalent to or always more accurate than classical time integration procedures 
(such as the CD, the TR etc.), considering specific configurations; 

§ They enable mixed analyses by just employing a single group of recurrence relationships, avoiding 
elaborated coupling procedures and/or interface treatments; 

§ They may become very effective to analyse complex models, such as those regarding nonlinear 
multiphysic applications;

§ They are extremely versatile and entirely automated, requiring no decision nor effort from the user. 



Conclusions

As one can observe, these adaptive techniques may stand as very effective procedures to numerically 
analyse space-time PDEs, providing the main positive features that are required from a competitive 
time integration method.



Soares, D.; An enhanced explicit-implicit time-marching formulation based on fully-adaptive time-integration parameters. COMPUTER METHODS IN 
APPLIED MECHANICS AND ENGINEERING, v. 403, p. 115711, 2023.

Soares, D.; An improved adaptive formulation for explicit analyses of wave propagation models considering locally-defined self-adjustable time-integration 
parameters. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, v. 399, p. 115324, 2022.

Soares, D.; Godinho, L.; Nonlinear porodynamic analysis by adaptive semi-explicit/explicit time marching formulations. ACTA GEOTECHNICA, v.16, p. 1879–
1894, 2021

Sofiste, T. V. ; Godinho, L. ; Alves-Costa, P. ; Soares, D.; Colaco, A.; Numerical modelling for prediction of ground-borne vibrations induced by pile driving. 
ENGINEERING STRUCTURES, v. 242, p. 112533, 2021.

Pinto, L. R. ; Soares, D.; Mansur W.J.; Elastodynamic wave propagation modelling in geological structures considering fully-adaptive explicit time-marching 
procedures. SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, v. 150, p. 106962, 2021.

Soares, D.; A stabilized explicit approach to efficiently analyse wave propagation through coupled fluid-structure models. COMPUTER METHODS IN APPLIED 
MECHANICS AND ENGINEERING, v. 356, p. 528-547, 2019.

Soares, D.; An adaptive semi-explicit/explicit time marching technique for nonlinear dynamics. COMPUTER METHODS IN APPLIED MECHANICS AND 
ENGINEERING, v. 354, p. 637-662, 2019.

Soares, D.; A model/solution-adaptive explicit-implicit time marching technique for wave propagation analysis. INTERNATIONAL JOURNAL FOR NUMERICAL 
METHODS IN ENGINEERING, v. 119, p. 590-617, 2019.

Soares, D. A simple and effective single-step time marching technique based on adaptive time integrators. INTERNATIONAL JOURNAL FOR NUMERICAL 
METHODS IN ENGINEERING, v. 109, p. 1344-1368, 2017.

Soares, D.; A simple and effective new family of time marching procedures for dynamics. COMPUTER METHODS IN APPLIED MECHANICS AND 
ENGINEERING, v. 283, p. 1138-1166, 2015.

References



Comparative techniques:

Noh, G.; Bathe, K.J.; An explicit time integration scheme for the analysis of wave propagations. COMPUTERS & STRUCTURES, v. 129, p. 178-193, 2013.

Bathe, K.J.; Baig, M.M.I.; On a composite implicit time integration procedure for nonlinear dynamics. COMPUTERS & STRUCTURES, v. 83, p.2513-2524, 2005.

Hulbert, G.M.; Chung, J.; Explicit time integration algorithms for structural dynamics with optimal numerical dissipation. COMPUTER METHODS IN APPLIED 
MECHANICS AND ENGINEERING, v. 137, p. 175-188, 1996.

Chung J., Hulbert J.M.; A time integration method for structural dynamics with improved numerical dissipation: the generalized α method. JOURNAL OF 
APPLIED MECHANICS, v. 30, p. 371–375, 1993.

Newmark N.M.; A method of computation for structural dynamics. JOURNAL ENGINEERING MECHANICS DIVISION, ASCE, v. 85, p. 67–94, 1959.

References



Thank you for your attention.


