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Introduction

We are interested in solving an evolutionary PDE, such as a hyperbolic

conservation law

ut + f(u)x = 0

or a convection-diffusion equation

ut + f(u)x = (a(u)ux)x

where a(u) ≥ 0, as well as the multi-dimensional cases.
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We will use methods of lines, namely we first discretize the spatial

derivatives to obtain an ODE system

d

dt
u = L(u), (1)

where L is the spatial discretization operator (which may be linear or

nonlinear). The spatial discretization could be a finite difference method, a

finite element method (including discontinuous Galerkin method), a

spectral method, etc.
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We assume that the spatial discretization is stable. That is, we assume

that the solution to the method of lines ODE (1) satisfies

‖u(t)‖ ≤ ‖u(0)‖ (2)

(strong stability) or

‖u(t)‖ ≤ C(t)‖u(0)‖ (3)

for some constant C(t) depending on t (stability), for some norm,

semi-norm, or convex functional ‖ · ‖ (e.g. L2 norm, L∞ norm, total

variation (TV) semi-norm, entropy, ...).

Our objective is to maintain the strong stability (2) or the stability (3)

property with a high order accurate time discretization. We will consider

both linear and nonlinear problems, with three different types of time

disretizations.
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SSP time discretization

The strong stability preserving (SSP) high order time discretization,

originally called the total variation diminishing (TVD) time discretization

(Shu, SISSC 1988; Shu and Osher, JCP 1988), was designed to

guarantee strong stability for nonlinear problems.

The SSP framework is as follows. We assume the Euler forward time

discretization for the method of lines ODE is strongly stable

‖u + ∆tL(u)‖ ≤ ‖u‖, (4)

for a certain norm, semi-norm or convex functional, under a suitable CFL

condition

∆t ≤ ∆t0. (5)
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Then the SSP high order Runge-Kutta time discretization satisfies the

strong stability property

‖un+1‖ ≤ ‖un‖

for the same norm, semi-norm or convex functional, under a modified CFL

condition

∆t ≤ c∆t0,

with the SSP coefficient c > 0. Similar definitions can be made for high

order multi-step methods or hybrid multi-step Runge-Kutta methods.

The idea is very simple: every stage in the SSP Runge-Kutta method is a

convex combination of forward Euler operators.
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For example, a second order SSP Runge-Kutta method is:

u(1) = un + ∆tL(un) (6)

un+1 =
1

2
un +

1

2
u(1) +

1

2
∆tL(u(1)).

Clearly, if the assumption (4) for Euler forward is satisfied under the CFL

condition (5), then, under the same CFL condition, we have

‖u(1)‖ ≤ ‖un‖
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and

‖un+1‖ ≤
1

2
‖un‖ +

1

2
‖u(1) + ∆tL(u(1))‖

≤
1

2
‖un‖ +

1

2
‖u(1)‖

≤
1

2
‖un‖ +

1

2
‖un‖ ≤ ‖un‖

That is, the second order Runge-Kutta method is SSP with the SSP

coefficient c = 1 (Shu and Osher, JCP 1988).
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Similarly, we can derive a third order SSP Runge-Kutta method as

u(1) = un + ∆tL(un)

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1)) (7)

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2)).

It is SSP with the SSP coefficient c = 1 (Shu and Osher, JCP 1988).
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There is no four-stage, fourth order SSP Runge-Kutta method

(Kraaijevanger, BIT 1991; Gottlieb and Shu, Math Comp 1998). The

following is a five stage, fourth order SSP Runge-Kutta method:
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u(1) = un + 0.391752226571890∆tL(un)

u(2) = 0.444370493651235un + 0.555629506348765u(1)

+0.368410593050371∆tL(u(1))

u(3) = 0.620101851488403un + 0.379898148511597u(2)

+0.251891774271694∆tL(u(2))

u(4) = 0.178079954393132un + 0.821920045606868u(3)

0.544974750228521∆tL(u(3))

un+1 = 0.517231671970585u(2)

+0.096059710526147u(3) + 0.063692468666290∆tL(u(3))

+0.386708617503269u(4) + 0.226007483236906∆tL(u(4))
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with SSP coefficient c = 1.508 (Kraaijevanger, BIT 1991; Spiteri and

Ruuth, SINUM 2002).

We could similarly obtain SSP multi-step methods. For example, a second

order SSP 3-step method is given by

un+1 =
3

4
un +

1

4
un−2 +

3

2
∆tL(un),

which is SSP with the SSP coefficient c = 1
2

(Shu, SISSC 1988).

Likewise, a third order 4-step method is given by

un+1 =
16

27
un +

16

9
∆tL(un) +

11

27
un−3 +

4

9
∆tL(un−3),

which is SSP with the SSP coefficient c = 1
3

(Shu, SISSC 1988; Gottlieb,

Shu and Tadmor, SIREV 2001).
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A very good example of the application of SSP methods is the recent

framework (Zhang and Shu, JCP 2010) in obtaining positivity-preserving

high order discontinuous Galerkin methods or finite volume schemes for

solving Euler equations. A simple scaling limiter with the SSP Runge-Kutta

or multistep time discretization can lead to provably high order

positivity-preserving (for density and pressure) results. A simulation of

Mach 2000 astrophysical jet flow can be computed by this method

successfully (which causes blow-ups of many high order codes without

this treatment).
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Figure 1: Simulation of Mach 2000 jet without radiative cooling. Scales are

logarithmic. Density.
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There are issues related to possible negative coefficient in front of

∆tL(u) (which would require a different spatial discretization operation L̃

to approximate the spatial derivatives in the PDE), and many discussions

on obtaining optimal SSP methods with different order barriers in the

literature. We would refer to the following papers and books and more

recent papers in the literature.
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IMEX time discretization

If we are solving a convection-diffusion equation

ut + f(u)x = duxx (8)

where d > 0, using explicit time discretizations such as the SSP methods

discussed before would require a very small time step (if d is not too

small). However, a fully implicit method would be costly (since we must

solve a nonlinear equation at every time step, or, even if f(u) is linear, we

must solve a linear system which is not symmetric positive definite). An

implicit-explicit (IMEX) method would be ideal.
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Let us write our method of lines ODE as

ut = N(u) + L(u) (9)

where N(u) might be the nonlinear term corresponding to convection and

L(u) might be the linear term corresponding to diffusion.

If N is the discontinuous Galerkin (DG) discretization of the convection

term and L is the local DG (LDG) discretization of the diffusion term, then

we have the following stable IMEX schemes developed in (Wang, Shu and

Zhang, SINUM 2015 and AMC 2016; Wang, Wang, Shu and Zhang,

M 2AN 2016).
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The first order IMEX scheme we consider is

un+1 = un + ∆tN(un) + ∆tL(un+1).

We have the following stability result:

Proposition 1: There exists a positive constant τ0 independent of the

spatial mesh size h, such that if ∆t ≤ τ0, then the solution of the first

order IMEX LDG scheme satisfies the strong stability property

‖un‖ ≤ ‖u0‖, ∀n. (10)

Note: The constant τ0 is proportional to d/c2, where c, d are the

advection and diffusion coefficients, respectively.
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The second order IMEX scheme we consider is (Ascher, Ruuth and

Spiteri, Appl. Numer. Math. 1997):

u(1) = un + γ∆tN(un) + γ∆tL(u(1))

un+1 = un + δ∆tN(un) + (1 − δ)∆tN(u(1))

+(1 − γ)∆tL(u(1)) + γ∆tL(un+1)

where γ = 1 −
√

2
2

, δ = 1 − 1
2γ

.
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We can prove the following stability result for the second order IMEX LDG

scheme:

Proposition 2: There exists a positive constant τ0 independent of the

spatial mesh size h, such that if ∆t ≤ τ0, then the solution of the second

order IMEX LDG scheme satisfies the strong stability property

‖un‖ ≤ ‖u0‖, ∀n.
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The third order IMEX scheme we consider is (Calvo, de Frutos and Novo,

Appl. Numer. Math. 2001):

u(1) = un + γ∆tN(un) + γ∆tL(u(1))

u(2) = un +

(

1 + γ

2
− α1

)

∆tN(un) + α1∆tN(u(1))

+
1 − γ

2
∆tL(u(1)) + γ∆tL(u(2))

u(3) = un + (1 − α2)N(u(1)) + α2N(u(2))

+β1∆tL(u(1)) + β2∆tL(u(2)) + γ∆tL(u(3))

un+1 = un + β1∆tN(u(1)) + β2∆tN(u(2)) + γ∆tN(u(3))

+β1∆tL(u(1)) + β2∆tL(u(2)) + γ∆tL(u(3))
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where γ is the middle root of 6x3 − 18x2 + 9x − 1 = 0,

γ ≈ 0.435866521508459, β1 = −3
2
γ2 +4γ − 1

4
, β2 = 3

2
γ2 − 5γ + 5

4
.

The parameter α1 is chosen as −0.35 and α2 =
1
3
−2γ2−2β2α1γ

γ(1−γ)
.

We can prove the following stability result for the third order IMEX LDG

scheme:

Proposition 3: There exists a positive constant τ0 independent of the

spatial mesh size h, such that if ∆t ≤ τ0, then the solution of the third

order IMEX LDG scheme satisfies the strong stability property

‖un‖ ≤ ‖u0‖, ∀n.
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The same stability results can be obtained for IMEX multi-step LDG

methods, with IMEX multi-step schemes in, e.g. (Gottlieb and Wang, JSC

2012).

Second order IMEX LDG scheme:

un+1 = un + ∆t

(

3

2
N(un) −

1

2
N(un−1)

)

+τ

(

3

4
L(un+1) +

1

4
L(un−1)

)
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Third order IMEX LDG scheme:

un+1 = un + ∆t

(

23

12
N(un) −

4

3
N(un−1) +

5

12
N(un−2)

)

+∆t

(

2

3
L(un+1) +

5

12
L(un−1) −

1

12
N(un−3)

)
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Other extensions:

• The method has been generalized to other types of DG schemes, e.g.

to the embedded discontinuous Galerkin method (Fu and Shu, IJNAM

2017).

• The method has been generalized to LDG schemes for solving the

drift-diffusion model of semiconductor devices (Liu and Shu, Sci.

China Math 2016).

• The method has been generalized to fourth order PDEs (Wang, Zhang

and Shu, M 2AN 2017).

• The method has been generalized to incompressible Navier-Stokes

equations (Wang, Liu, Zhang and Shu, Math Comp 2019).
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• The method has been generalized to solving convection-diffusion

equations and convection-dispersion equations using upwind-biased

finite difference discretization for the convection terms and central

finite difference discretization for the diffusion or dispersion terms

(Tan, Cheng and Shu, IJNAM 2021). For the convection-dispersion

equations such as the KdV equations, the method is stable under the

standard convection CFL condition

∆t ≤ c∆x

with some constant c > 0.
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If both the convection and the diffusion terms are nonlinear, then a

straight-forward application of the IMEX schemes above may not be the

most efficient, as we must solve a nonlinear system per implicit stage.

Instead, we could consider writing the PDE as

ut + f(u)x − (a(u)ux)x + a0uxx = a0uxx

and treat all the left-hand side terms explicitly and only the right-hand term

implicitly. Here a0 is a constant, which must be chosen suitably to

guarantee stability. This is called the explicit-implicit-null (EIN) method.
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In (Wang, Zhang, Wang and Shu, Sci. China Math 2020), we have

designed first, second and third order EIN schemes of this type, and

performed analysis on the linear problems to guide the choice of a0 for

stability. In the analysis, we assume a(u) = a is a constant (and in

numerical experiments, if a(u) is not a constant, we will take a as the the

maximum value of a(u)).

• For the first and second order IMEX schemes, we can prove

unconditional stability if we choose a0 ≥
1
2
a.

• For the third order IMEX scheme, numerical experiments indicate that

it is unconditionally stable if we choose a0 ≥ 0.54 a. However, we are

unable to prove it rigorously.
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These EIN schemes have been extended in (Tan, Cheng and Shu, JCP

2022; East Asian Journal on Applied Mathematics, to appear) to the

following cases:

• For the convection-diffusion equations with nonlinear second order

diffusion terms, using finite difference and spectral spatial

discretizations;

• For the convection-dispersion equations with nonlinear third order

dispersion terms, using finite difference, local discontinuous Galerkin,

and spectral spatial discretizations. The condition for stability is the

usual CFL condition for convection only;

• For the fourth order convection-biharmonic equations with nonlinear

fourth order diffusion terms, using finite difference, local discontinuous

Galerkin, and spectral spatial discretizations.
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The EIN schemes with variable coefficients:

ut + f(u)x − (a(u)ux)x + (a0(x)ux)x = (a0(x)ux)x

with the variable coefficient a0(x) suitably chosen to reduce the error of

the added null terms, have been studied in (Tan, Cheng and Shu, CAMC

submitted). For solutions with large spatial variation, the variable

coefficient EIN methods achieve smaller errors than those with constant

coefficients.
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Strongly stable Runge-Kutta methods for linear systems

While SSP time discretization framework is powerful in guaranteeing

nonlinear stability, it can only be applied under the assumption that the

Euler forward operator is strongly stable under a suitable time step

restriction. It thus cannot be applied to the situation that the Euler forward

time discretization is unstable, or only stable under very restrictive CFL

time step restrictions. In such cases, we must consider high order

Runge-Kutta or multi-step methods directly.
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We will focus on autonomous linear ordinary differential equation (ODE)

systems
d

dt
u = Lu, (11)

e.g. those obtained from method of lines discontinuous Galerkin (DG)

schemes for linear hyperbolic problems. Here u ∈ R
N and L is an

N × N real constant matrix, where N is the degrees of freedom for the

spatial discretization.
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If the semidiscrete scheme honors the (weighted) L2 stability of the

original PDE, then for certain symmetric and positive definite matrix H ,

L⊤H + HL ≤ 0 (12)

is a semi-negative definite matrix. Here H can be related with both the

symmetrizer of the PDE and the mass matrix or quadrature weights of a

Galerkin or collocation type spatial discretization.

Examples of spatial discretizations satisfying (12) include the DG method

for linear and nonlinear hyperbolic systems (although in this part we are

mainly interested in linear hyperbolic systems).
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If (12) holds, then we say L is semi-negative and (11) satisfies the

energy decay law

d

dt
‖u‖2

H = 〈
d

dt
u, u〉H + 〈u,

d

dt
u〉H

= 〈Lu,Hu〉 + 〈u,HLu〉 = 〈u, (L⊤H + HL)u〉 ≤ 0.

(13)

Here 〈·, ·〉H = 〈·, H·〉 with 〈·, ·〉 being the usual l2 inner product in R
N

and ‖u‖H =
√

〈u, u〉H .
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We are concerned with whether this property is preserved at the discrete

level, namely, whether

‖un+1‖H ≤ ‖un‖H (14)

holds after applying an explicit Runge-Kutta (RK) time integrator under a

suitably restricted time step.

We would say the explicit RK method is strongly stable , if (14) is satisfied

when discretizing (11) under the condition (12).
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If the problem is coercive, namely

L⊤H + HL ≤ −ηL⊤HL

for a positive constant η > 0, then the Euler forward time discretization is

strongly stable under a suitable CFL condition. Therefore, all strong

stability preserving (SSP) high order Runge-Kutta or multistep time

discretizations are strongly stable under similar CFL condition (Levy and

Tadmor, SIAM Review 1998; Gottlieb, Shu and Tadmor, SIAM Review

2001). This applies to, e.g. Galerkin type spatial discretizations to

parabolic PDEs.
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However, semi-discrete schemes for hyperbolic equations are usually not

coercive, at least not strongly coercive (that is, η ≥ 0 and it could depend

on the mesh size h), so the framework based on coercive properties does

not work. Euler forward time discretization is not strongly stable, hence the

SSP framework cannot be applied either.

In (Tadmor, Proceedings in Applied Math, SIAM 2002), Tadmor proved that

the three-stage, third order Runge-Kutta method is strongly stable for

semi-negative ODEs.
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Whether the classical fourth order Runge-Kutta method is strongly stable

or not remained open until 2017, when (Sun and Shu, Annals of

Mathematical Sciences and Applications 2017) provided a

counter-example to show that the classical fourth order Runge-Kutta

method is not always strongly stable for semi-negative ODEs. Also in (Sun

and Shu, Annals of Mathematical Sciences and Applications 2017), it was

shown that applying the classical fourth order Runge-Kutta scheme for two

consecutive time steps (which can be viewed as an eight-stage, fourth

order Runge-Kutta method) is strongly stable for semi-negative ODEs.
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A general framework for stability analysis

Consider an explicit RK time discretization for the linear autonomous

system (1). The scheme is of the form

un+1 = Rsu, (15)

where

Rs =
s

∑

k=0

αk(τL)k, α0 = 1, αs 6= 0. (16)

Here τ is the time step and s is the number of stages. For an s-stage

method, it is of linear order p if and only if the first p + 1 terms in the

summation (16) coincide with the truncated Taylor series of eτL. In

particular, p ≤ s.
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We would like to examine the strong stability of (15) under the usual CFL

condition: if there exists a constant λ, such that

‖Rsu‖
2
H ≤ ‖u‖2

H , (17)

for all τ‖L‖H ≤ λ and all inputs u. This is equivalent to

‖Rs‖H ≤ 1, (18)

under the prescribed condition and ‖Rs‖H is the matrix norm of Rs.
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A natural attempt is to adopt the following expansion to compare ‖Rsu‖
2
H

with ‖u‖2
H .

‖Rsu‖
2
H =

s
∑

i,j=0

αiαjτ
i+j〈Liu, Lju〉H

= ‖u‖2
H +

∑

1≤max{i,j}≤s

αiαjτ
i+j〈Liu, Lju〉H . (19)

However, each term 〈Liu, Lju〉H may not necessarily have a sign.
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The idea for overcoming the difficulty is to convert 〈Liu, Lju〉H into linear

combinations of terms of the form ‖Liu‖2
H , JLjuK2

H and [Liu, Lju]H .

Here

[v, w]H = −〈v, (L⊤H + HL)w〉, v, w ∈ R
N (20)

is a semi inner product and

JvKH =
√

[v, v]H (21)

defines the induced semi-norm. Indeed, this can be achieved through the

following induction procedure.
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Proposition. Suppose j ≥ i, then

〈Liu, Lju〉H

=















‖Liu‖2
H , j = i,

−1
2
JLiuK2

H , j = i + 1,

−〈Li+1u, Lj−1u〉H − [Liu, Lj−1u]H , otherwise.
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In the context of approximating the spatial derivative ∂x for periodic

functions with L, the proposition is the discrete version of integration by

parts. Since L may not preserve the exact anti-symmetry of ∂x, namely

L⊤H + HL 6= 0, an extra term [Liu, Lj−1u]H is produced.

Furthermore, −1
2
JLiuK2

H is usually the numerical dissipation from the

spatial discretization. In particular, J·KH is the jump semi-norm in the DG

method.
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We then have

Lemma. (Energy equality) Given H and Rs =
∑s

k=0 αk(τL)k with

α0 = 1. There exists a unique set of coefficients {βk}
s
k=0 ∪ {γi,j}

s−1
i,j=0,

such that for all u and L satisfying L⊤H + HL ≤ 0,

‖Rsu‖
2
H =

s
∑

k=0

βkτ
2k‖Lku‖2

H+
s−1
∑

i,j=0

γi,jτ
i+j+1[Liu, Lju]H , γi,j = γj,i.

(22)
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To facilitate our discussion, we introduce the following definitions.

Definition. The leading index of Rs, denoted as k∗, is the positive integer

such that βk∗ 6= 0 and βk = 0 for all 1 ≤ k < k∗. The coefficient βk∗ is

called the leading coefficient. The k∗-th order principal submatrix

Γ∗ = (γi,j)0≤i,j≤k∗−1 is called the leading submatrix.

Note that k∗ is well-defined since βs = α2
s 6= 0, which implies k∗ ≤ s.
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Theorem. (Necessary condition) The method is not strongly stable if

βk∗ > 0. More specifically, if βk∗ > 0, then there exists a constant λ,

such that ‖Rs‖H > 1 if 0 < τ‖L‖H ≤ λ and L⊤H + HL = 0.

Theorem. (Sufficient condition) If βk∗ < 0 and Γ∗ is negative definite,

then there exists a constant λ such that ‖Rs‖H ≤ 1 if τ‖L‖H ≤ λ.

Division of Applied Mathematics, Brown University



STABILITY OF TIME DISCRETIZATIONS FOR SEMI-DISCRETE HIGH ORDER SCHEMES FOR TIME-DEPENDENT PDES

Stability of Runge-Kutta methods

Linear RK methods: For general nonlinear systems, to admit accuracy

order higher than four, RK methods must have more stages than its order.

However, for autonomous linear systems, the desired order of accuracy

can be achieved with the same number of stages. All such methods would

be equivalent to the Taylor series method

Rp = Pp =

p
∑

k=0

(τL)k

k!
. (23)

We use the general framework to obtain the strong stability (SS)

properties of linear RK methods from first to twelfth order.
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p k∗ βk∗ Γ∗ λ(Γ∗) SS

1 1 1 −

“

1
”

−1.00000 no

2 2 1

4
−

 

1 1

2

1

2

1

2

!

−1.30902

−1.90983 × 10−1
no

3 2 −
1

12
−

 

1 1

2

1

2

1

3

!

−1.26759

−6.57415 × 10−2
yes

4 3 −
1

72
−

0

B

B

@

1 1

2

1

6

1

2

1

3

1

8

1

6

1

8

1

24

1

C

C

A

−1.30128

−7.93266 × 10−2

+5.60618 × 10−3

no*

5 3 1

360
−

0

B

B

@

1 1

2

1

6

1

2

1

3

1

8

1

6

1

8

1

20

1

C

C

A

−1.30150

−8.07336 × 10−2

−1.10151 × 10−3

no

6 4 1

2880
−

0

B

B

B

B

@

1 1

2

1

6

1

24

1

2

1

3

1

8

1

30

1

6

1

8

1

20

1

72

1

24

1

30

1

72

1

240

1

C

C

C

C

A

−1.30375

−8.21871 × 10−2

−1.40529 × 10−3

−1.60133 × 10−4

no

7 4 −
1

20160
−

0

B

B

B

B

@

1 1

2

1

6

1

24

1

2

1

3

1

8

1

30

1

6

1

8

1

20

1

72

1

24

1

30

1

72

1

252

1

C

C

C

C

A

−1.30375

−8.21836 × 10−2

−1.36301 × 10−3

−7.86229 × 10−6

yes

Table 1: Linear RK methods: from first order to seventh order.
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p k∗ βk∗ λ(Γ∗) SS

8 5 −
1

201600

−1.30384

−8.22588 × 10−2

−1.38580 × 10−3

−9.32706 × 10−6

+2.24989 × 10−6

?

9 5 1

1814400

−1.30384

−8.22588 × 10−2

−1.38585 × 10−3

−9.75366 × 10−6

−3.11800 × 10−8

no

10 6 1

221772800

−1.30384

−8.22613 × 10−2

−1.38688 × 10−3

−9.91006 × 10−6

−4.70638 × 10−8

−1.63872 × 10−8

no

Table 2: Linear RK methods: from eighth order to tenth order.
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p k∗ βk∗ λ(Γ∗) SS

11 6 −
1

239500800

−1.30384

−8.22613 × 10−2

−1.38688 × 10−3

−9.90966 × 10−6

−3.87351 × 10−8

−7.87018 × 10−11

yes

12 7 −
1

3353011200

−1.30384

−8.22614 × 10−2

−1.38691 × 10−3

−9.91617 × 10−6

−3.93334 × 10−8

+1.45458 × 10−10

−8.54170 × 10−11

?

Table 3: Linear RK methods: from eleventh order to twelfth order.
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The classical fourth order method: The classical fourth order method

with four stages, which is widely used in practice due to its stage and order

optimality, is unfortunately not covered under the framework. In (Sun and

Shu, Annals of Mathematical Sciences and Applications 2017), we found a

counter example to show that the method is not strongly stable, but

successively applying the method for two steps yields a strongly stable

method with eight stages.
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Proposition. (Sun and Shu, 2017) The fourth order RK method with four

stages is not strongly stable. More specifically, for H = I and

L = −









1 2 2

0 1 2

0 0 1









, we have ‖P4‖ > 1, if τ‖L‖H > 0 is sufficiently

small.

Theorem. (Sun and Shu, 2017) The fourth order RK method with four

stages is strongly stable in two steps. In other words, there exists a

constant λ, such that ‖(P4)
2‖H ≤ 1 if τ‖L‖H ≤ λ.
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Here we examine multi-step strong stability of the fourth order method

using our framework. Note the derivation using this framework is slightly

different from that in (Sun and Shu, Annals of Mathematical Sciences and

Applications 2017). Note that the method is both two-step and three-step

strongly stable (with the same time step size), which means the norm of

the solution after the first step is always bounded by the initial data, if

sufficiently small uniform time steps are used.
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(P4)
m k∗ βk∗ Γ∗ λ(Γ∗) SS

(P4)
2 3 − 1

36 −











2 2 4
3

2 8
3 2

4
3 2 19

12











−5.73797

−4.99093 × 10−1

−1.29329 × 10−2

yes

(P4)
3 3 − 1

24 −











3 9
2

9
2

9
2 9 81

8

9
2

81
8

97
8











−2.28380 × 101

−1.21069

−7.62892 × 10−2

yes

Table 4: The classic fourth order method: multi-step strong stability.

Theorem. The four-stage fourth order RK method has the following

property. With uniform time steps such that τ‖L‖H ≤ λ for sufficiently

small λ, ‖un‖H ≤ ‖u0‖H for all n > 1.
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SSP Runge-Kutta methods: The five stage, fourth order SSP RK method

in (Kraaijevanger, BIT 1991; Spiteri and Ruuth, SINUM 2002) takes the

form

SSPRK(5,4) = P4 + 4.477718303076007 × 10−3(τL)5. (24)

Besides SSPRK(5,4), we will also consider two commonly used low

storage SSPRK methods, a third order method with four stages

SSPRK(4,3) and a fourth order method with ten stages SSPRK(10,4)

(Kraaijevanger, BIT 1991; Spiteri and Ruuth, SINUM 2002).
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The two methods are

SSPRK(4,3) = P3 +
1

48
(τL)4, (25)

and

SSPRK(10,4) =P4 +
17

2160
(τL)5 +

7

6480
(τL)6 +

1

9720
(τL)7

+
1

155520
(τL)8 +

1

4199040
(τL)9 +

1

251942400
(τL)10,

(26)

We remark that the strong stability of SSPRK(10,4) has been proved in

Ranocha and Öffner, JSC 18. We are simply reexamine it using our

framework.
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SSPRK k∗ βk∗ Γ∗ λ(Γ∗) SS

(4,3) 2 −
1

24
−

 

1 1

2

1

2

1

3

!

−1.26759

−6.57415 × 10−2
yes

(10,4) 3 −
1

3240
−

0

B

B

@

1 1

2

1

6

1

2

1

3

1

8

1

6

1

8

107

2160

1

C

C

A

−1.30149

−8.06493 × 10−2

−7.35115 × 10−4

yes

(5,4) 3 −4.93345 × 10−3
−

0

B

B

@

1 1

2

1

6

1

2

1

3

1

8

1

6

1

8

1

24

1

C

C

A

−1.30140

−8.00541 × 10−2

+1.97309 × 10−3

no*

(5,4)2 3 −9.86690 × 10−3
−

0

B

B

@

2 2 4

3

2 8

3
2

4

3
2 1.5923

1

C

C

A

−5.74021

−5.01739 × 10−1

−1.70056 × 10−2

yes

(5,4)3 3 −1.48004 × 10−2
−

0

B

B

@

3 9

2

9

2

9

2
9 81

8

9

2

81

8
12.138

1

C

C

A

−2.28450 × 101

−1.21415

−7.93174 × 10−2

yes

Table 5: SSPRK methods: strong stability and multi-step strong stability.
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Theorem. The property stated for the classical four stage, fourth order

Runge-Kutta method also holds for SSPRK(5,4).

The behavior of SSPRK(5,4) is very similar to that of the classic fourth

order method, since it is almost the four-stage method except for a small

fifth order perturbation. Although the method can not be judged within this

framework, one can indeed use the same counter example for the

classical fourth order RK to disprove its strong stability.
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Embedded RK methods in NDSolve: We consider embedded RK pairs

that are used in NDSolve, a function for numerically solving differentiable

equations in the commercial software Mathematica. Embedded RK

methods are pairs of RK methods sharing the same stages. The notation

p(p̂) is commonly used, if two methods in the pair are of order p and order

p̂ respectively. The difference un+1 − ûn+1 can be used for local error

estimates for time step adaption.

We examine strong stability of all such pairs used in Mathematica from

order 2(1) to order 9(8). These methods are chosen with several desired

properties being considered, including the FSAL (First Same As Last)

strategy and stiffness detection capability.
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Methods s p/p̂ k∗ βk∗ λ(Γ∗) SS

2(1) 3 2 2 1

4

−1.30902

−1.90983 × 10−1
no

1 1 1 −1.00000 no

3(2) 4 3 2 −
1

12

−1.26759

−6.57415 × 10−2
yes

2 2 1

12

−1.28130

−1.11257 × 10−1
no

4(3) 5 4 3 −
1

72

−1.30128

−7.93266 × 10−2

+5.60618 × 10−3

no*

3 2 −
119041

4485456

−1.26759

−6.57415 × 10−2
yes

5(4) 8 5 3 −
43

6209280

−1.3015

−8.07336 × 10−2

−1.10151 × 10−3

yes

4 3 51767

367590960

−1.30150

−8.07430 × 10−2

−1.14174 × 10−3

no

*The fourth order method in the 4(3) pair is exactly the classic four-stage fourth order
method for autonomous linear systems.

Table 6: Embedded RK pairs: from 2(1) to 5(4) pairs.
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Methods s p/p̂ k∗ βk∗ λ(Γ∗) SS

6(5) 9 6 4 79007

2560896000

−1.30375

−8.21839 × 10−2

−1.36689 × 10−3

−2.38718 × 10−5

no

5 3 1233467

9027158400

−1.30150

−8.07336 × 10−2

−1.10151 × 10−3

no

7(6) 10 7 4 29615605063

38967665360400000

−1.30375

−8.21836 × 10−2

−1.36301 × 10−3

−7.86229 × 10−6

no

6 4 −
20202919901

1855603112400000

−1.30375

−8.21833 × 10−2

−1.35985 × 10−3

+5.49402 × 10−6

?

Table 7: Embedded RK pairs: from 6(5) to 7(6) pairs.
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Methods s p k∗ βk∗ λ(Γ∗) SS

8(7) 13 8 5 −3.21308 × 10−7

−1.30384

−8.22588 × 10−2

−1.38584 × 10−3

−9.71236 × 10−6

+1.43671 × 10−7

?

7 4 −2.39706 × 10−6

−1.30375

−8.21836 × 10−2

−1.36301 × 10−3

−7.86229 × 10−6

yes

9(8) 16 9 5 −8.95352 × 10−9

−1.30384

−8.22588 × 10−2

−1.38585 × 10−3

−9.75366 × 10−6

−3.11800 × 10−8

yes

8 5 −5.46447 × 10−7

−1.30384

−8.22588 × 10−2

−1.38585 × 10−3

−9.78641 × 10−6

−1.64476 × 10−7

yes

Table 8: Embedded RK pairs: 8(7) pair and 9(8) pair.
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Characterization of strongly stable methods:

Theorem. Consider a linear RK method of order p with p stages.

(i) The method is not strongly stable if p ≡ 1 (mod 4) or p ≡ 2 (mod 4).

(ii) The method is strongly stable if p ≡ 3 (mod 4).

Theorem. An RK method of odd linear order p is strongly stable if and

only if

(−1)
p+1
2

(

αp+1 −
1

(p + 1)!

)

< 0. (27)
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Theorem. An RK method of even linear order p is strongly stable if

(−1)
p

2
+1

(

αp+2 − αp+1 +
1

p!(p + 2)

)

< 0, (28)

and

(−1)
p

2
+1

(p

2
!
)2

(

αp+1 −
1

(p + 1)!

)

< ε. (29)

Here ε is the smallest eigenvalue of the Hilbert matrix of order p

2
+ 1.

Division of Applied Mathematics, Brown University



STABILITY OF TIME DISCRETIZATIONS FOR SEMI-DISCRETE HIGH ORDER SCHEMES FOR TIME-DEPENDENT PDES

References:

[1] Z. Sun and C.-W. Shu, Strong stability of explicit Runge-Kutta time

discretizations, SIAM Journal on Numerical Analysis, v57 (2019),

pp.1158-1182.

[2] Y. Xu, Q. Zhang, C.-W. Shu and H. Wang, The L2-norm stability

analysis of Runge-Kutta discontinuous Galerkin methods for linear

hyperbolic equations, SIAM Journal on Numerical Analysis, v57 (2019),

pp.1574-1601.

Division of Applied Mathematics, Brown University



STABILITY OF TIME DISCRETIZATIONS FOR SEMI-DISCRETE HIGH ORDER SCHEMES FOR TIME-DEPENDENT PDES

The End

THANK YOU!
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