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(Multi)physics Simulations Often use Low Temporal Order

§ Sometimes this is fine
— Non-smoothness
— Low accuracy is acceptable

§ Sometimes high order brings skepticism
— Will the cost per step be too high?
— Will the stability improve enough to offset 

the cost?

§ Sometimes the numerical method is to 
blame
— Low order splitting methods limit the overall 

order
— Stiffness may cause order reduction
— Constraints are not accurately enforced
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§ A Runge-Kutta method solves the ordinary differential equation (ODE)

𝑦! = 𝑓 𝑦 , 𝑦 𝑡" = 𝑦"

with the numerical procedure

This Talk will Focus on Runge-Kutta Methods

𝑌# = 𝑦$ + Δ𝑡)
%&'

(

𝑎#,%𝑓 𝑌% , 𝑖 = 1,… , 𝑠,

𝑦$*' = 𝑦$ + Δ𝑡)
%&'

(

𝑏%𝑓 𝑌%

𝑐 𝐴
𝑏!
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Part 1: Stiff Order Conditions and Runge-Kutta Methods for 
Semilinear ODEs
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§ Prothero and Robinson1 proposed the simple problem

𝑦! = 𝜆 𝑦 − 𝜙 𝑡 + 𝜙! 𝑡

§ When 𝜆 ≫ Δ𝑡"#, a Runge-Kutta method may converge at an order lower than the 
classical order.

§ This phenomenon is called order reduction.

§ Classical order condition theory makes unrealistic assumptions for stiff problems
— The right-hand side has a moderate Lipschitz constant independent of Δ𝑡: 𝑓 𝑦 − 𝑓 𝑧 ≤
𝐿 𝑦 − 𝑧

— The time step is “sufficiently small”

Order Reduction Arises From Simple Problems

1. Prothero, A., and A. Robinson. "On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations." Mathematics of Computation 28.125 (1974): 145-162.
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The Prothero-Robinson Problem Reveals Order Reduction



7
LLNL-PRES-852733

My Problem Does Not Look Like This

What about PDEs?

𝑦! = 𝜆 𝑦 − 𝜙 𝑡 + 𝜙! 𝑡
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§ Much of the Prothero-Robinson convergence theory extends to linear PDEs

𝑢$ = 𝐿 𝑥, 𝜕 𝑢 + 𝑔 𝑡

§ We often see fractional convergence orders depending on 𝐿 𝑥, 𝜕 	and the norm used1

§ Many authors have identified the additional stiff order conditions

0 = 𝑏! 𝐼 − 𝑧𝐴 "# 𝐴𝑐$"# −
𝑐$

𝑘 , ∀𝑧 ∈ ℂ", 𝑘 = 1,… , 𝑞

§ The largest 𝑞 for which this holds is the weak stage order2 or pseudostage order3

— Explicit and diagonally implicit methods can have high weak stage order

Linear PDEs also Cause Order Reduction

1. Ostermann, Alexander, and Michel Roche. "Runge-Kutta methods for partial differential equations and fractional orders of convergence." Mathematics of Computation 59.200 (1992): 403-420.
2. Ketcheson, David I., et al. "DIRK schemes with high weak stage order." Spectral and High Order Methods for Partial Differential Equations (2020): 453.
3. Skvortsov, LM. "How to avoid accuracy and order reduction in Runge–Kutta methods as applied to stiff problems." Computational Mathematics and Mathematical Physics 57 (2017): 1124-1139.
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§ Let’s solve the following PDE1 on 𝑡, 𝑥 ∈ 0,1 :

§ This finite difference discretization contributes no spatial error.

§ The Lipschitz constant is 𝐿 = #
%&, so we need Δ𝑡 < 𝐶Δ𝑥 to be in the asymptotic regime.

— This looks like a CFL condition even for implicit methods

What Happens on a Simple Advection PDE? 

Semidiscretize 𝑦! =

−
1
Δ𝑥
1
Δ𝑥 −

1
Δ𝑥
⋱ ⋱

1
Δ𝑥 −

1
Δ𝑥

𝑦 +

𝑡 − 𝑥"
1 + 𝑡 # +

1
Δ𝑥 1 + 𝑡

𝑡 − 𝑥#
1 + 𝑡 #

⋮
𝑡 − 𝑥$
1 + 𝑡 #

1. Sanz-Serna, Jesús María, Jan G. Verwer, and W. H. Hundsdorfer. "Convergence and order reduction of Runge-Kutta schemes applied to evolutionary problems in partial differential 
equations." Numerische Mathematik 50.4 (1986): 405-418.

𝑢% = −𝑢& +
𝑡 − 𝑥
1 + 𝑡 ' ,

𝑢 𝑡, 0 =
1

1 + 𝑡
,

𝑢 0, 𝑥 = 1 + 𝑥
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We Solve the Advection PDE with Two Fourth Order DIRK 
Methods from SUNDIALS
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We See Asymptotic Convergence on a 16 Point Grid
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We See Order Reduction on a 2048 Point Grid
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My Problem Does Not Look Like This

What about nonlinear problems?

𝑢" = 𝐿 𝑥, 𝜕 𝑢 + 𝑔 𝑡
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§ Nonlinearity often worsens order reduction

§ The typical remedy is high stage order

𝐶 𝑞 : 	 𝐴𝑐1"# =
𝑐1

𝑘
, 𝑘 = 1,… , 𝑞,

𝐵 𝑝 : 𝑏2𝑐1"# =
1
𝑘
, 	 𝑘 = 1,… , 𝑝

§ This is very restrictive!
— Explicit methods have max stage order of 1
— Diagonally implicit methods have max stage order of 2

§ Within the Runge-Kutta family, fully implicit schemes are seemingly the only ones that 
can achieve high orders outside the classical regime.

Nonlinear Problems Require Stringent Order Conditions
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We Consider Semilinear Problems

§ In nonlinear problems, stiffness often arises from linear terms

§ Let’s consider semilinear problems

𝑦! = 𝐽𝑦 + 𝑔(𝑦)

§ Examples include
— Patten-forming diffusion reaction problems
— Schrödinger equations
— Air pollution transport models

Stiff
Re 𝑦, 𝐽𝑦 ≤ 0

Nonstiff
𝑔 𝑦 − 𝑔(𝑧) ≤ 𝐿 𝑦 − 𝑧
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§ Do we need the restrictive condition of high 
stage order for semilinear problems?
— The literature suggests yes

§ Are there sharper order conditions for 
semilinear problems?

§ Can we find methods devoid of order 
reduction with practical structures?
— We will focus on diagonally implicit methods

The Situation for Semilinear Problems is Unclear

Burrage, Kevin, W. H. Hundsdorfer, and Jan G. Verwer. "A study of B-
convergence of Runge-Kutta methods." Computing 36.1-2 (1986): 17-34.

Calvo, M., S. González-Pinto, and J. I. Montijano. "Runge-Kutta methods for the 
numerical solution of stiff semilinear systems." BIT Numerical Mathematics 40 
(2000): 611-639.

𝐶 𝑞 : 	 𝐴𝑐!"# =
𝑐!

𝑘 , 𝑘 = 1,… , 𝑞,

𝐵 𝑝 : 𝑏$𝑐!"# =
1
𝑘
, 	 𝑘 = 1,… , 𝑝
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§ We propose conditions that ensure a 
convergence order uniformly with 
respect to stiffness

§ Like classical order conditions, there is 
1-to-1 correspondence with rooted 
trees

§ The semilinear order conditions 
contain weak stage order condition
— They coincide up to order 3

§ The semilinear order conditions are 
sharper than stage order conditions 

Sharper Order Conditions Do Exists for Stiff Semilinear Problems
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§ A classical expansion of the local truncation error looks like

𝑦 𝑡! − 𝑦! = ⋯+ Δ𝑡"
1
2
− 𝑏#𝑐 𝐽 + 𝑔$ 𝑦% 𝑦% + Δ𝑡&

1
6
− 𝑏#𝐴𝑐 𝐽 + 𝑔$ 𝑦%

"
𝑦% +⋯

§ Our new semilinear expansion looks like

𝑦 𝑡! − 𝑦!

= ⋯+ Δ𝑡"
1
2
− 𝑏#𝑐 + 𝑧𝑏# 𝐼 − 𝑧𝐴 '! 𝑐"

2
− 𝐴𝑐 𝑦$$ 𝑡% + Δ𝑡&𝑏# 𝐼 − 𝑧𝐴 '" 𝑐"

2
− 𝐴𝑐 𝑔$ 𝑦% 𝑦$$ 𝑡%

+⋯

where 𝑧 = Δ𝑡𝐽 (scalar here for simplicity).

Our Error Expansion Uses Bounded Terms

Unbounded 
Terms

Bounded 
Terms
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Our Semilinear Analysis Extends a Lesser-Known Classical 
Analysis

§ Butcher trees and B-series are the typical tools for analyzing the local error of a 
Runge-Kutta scheme

§ Albrecht1 proposed alternative order conditions that do not (necessarily) use trees
— Order 4 conditions, for example:
• 0 = "

#%
− &!'"

(

• 0 = 𝑏)𝐶 '#

#
− 𝐴𝑐

• 0 = 𝑏) '"

(
− *'#

#

• 0 = 𝑏)𝐴 '#

#
− 𝐴𝑐

§ We closely follow Albrecht’s derivation, but the stiff, linear term introduces extra 
factors of 𝐼 − ℎ𝐴⊗ 𝐽 "#.

1. Albrecht, Peter. "The Runge–Kutta theory in a nutshell." SIAM Journal on Numerical Analysis 33.5 (1996): 1712-1735.
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Practical Methods with Semilinear Order 3 Exist

§ Desired properties
— Order 3
— Singly diagonally implicit
— L-stable

§ Typically, this requires at least 3 stages

§ With order 3 semilinear conditions, this requires at least 5 stages
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§ The first nonlinear order condition appears at order 4

§ The number or order conditions increases with the order and the number of stages

§ Explicit methods of semilinear order 4 exist

§ Singly diagonally implicit method of classical order 4 and semilinear order 3 exist
— This suffices for a global order of 4
— Methods with semilinear order 4 almost certainly exist

Higher Order Methods are Challenging to Derive

0 = 𝑏) 𝐼 − 𝑧"𝐴 +"𝐶 𝐼 − 𝑧#𝐴 +" 𝑐#

2
− 𝐴𝑐 0 = 𝑏)𝐴,𝐶𝐴-

𝑐#

2
− 𝐴𝑐 , 𝑖, 𝑗 = 0, … , 𝑠 − 1Neumann

Expansion
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§ We consider a 2D Allen-Cahn reaction-diffusion PDE

𝜕𝑢
𝜕𝑡

= 𝛼∇H𝑢 + 𝛽 𝑢 − 𝑢I + 𝑠 𝑡, 𝑥, 𝑦

§ We test methods of order 3 and 4 to validate the 
semilinear order conditions

Allen-Cahn is a Semilinear PDE Modeling Phase Separation

Method Source Stages Classical Order Semilinear Order

SDIRK3SL This work 6 3 3

SDIRK3M Kennedy, Christopher A., and Mark H. Carpenter. Diagonally implicit Runge-
Kutta methods for ordinary differential equations. A review. 2016. 4 3 1

DIRK-(7,4,4) Biswas, Abhijit, et al. "Design of DIRK schemes with high weak stage 
order." Communications in Applied Mathematics and Computational 
Science 18.1 (2023): 1-28.

7 4 3

SDIRK4M Kennedy, Christopher A., and Mark H. Carpenter. Diagonally implicit Runge-
Kutta methods for ordinary differential equations. A review. 2016. 5 4 1
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The New Method SDIRK3SL Avoid Order Reduction
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The Existing DIRK-(7,4,4) Method Avoids Order Reduction
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§ Classical order conditions rely on assumptions that fail to hold for stiff problems

§ The consequence is a reduction in order and accuracy for many integrators

§ High stage order is not necessary to avoid order reduction on stiff, semilinear ODEs

§ Weak stage order conditions for stiff, linear problems suffice up to order 4

§ Order reduction and techniques to eliminate it are not limited to implicit Runge-Kutta 
methods
— Implicit-explicit
— Multirate
— Explicit methods

Conclusions
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This work was done in collaboration with

Part 2: Time-Stepping for the BISICLES Ice Sheet Model

Daniel Martin
Lawrence Berkeley National Laboratory

Hans Johansen
Lawrence Berkeley National Laboratory

Carol Woodward
Lawrence Livermore National Laboratory

David Gardner
Lawrence Livermore National Laboratory
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§ Accurate modeling of ice-sheets is 
critical to understanding and predicting
— Future see level rise
— Potential regional collapses in the West 

Antarctic ice sheet

§ BISICLES is a simulation tool developed 
at LBNL, LANL, and the University of 
Bristol1

§ Long-term time evolution of these 
models requires accurate, conservative, 
and stable numerical methods

BISICLES Models Ice Sheet Dynamics 

1. Cornford, Stephen L., et al. "Adaptive mesh, finite volume modeling of marine ice sheets." JCP 232.1 (2013): 529-549.
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§ In the simplest case, the two primary variables are
— Ice thickness 𝐻(𝑡, 𝑥, 𝑦)
— Ice velocity 𝑣(𝑡, 𝑥, 𝑦)

§ An asymptotically-derived approximation to 
Stokes Flow is used1

𝜕𝐻
𝜕𝑡 =

𝜕
𝜕𝑥 𝑣!𝐻 +

𝜕
𝜕𝑦 𝑣"𝐻

𝛽#𝑣 − ∇ ⋅ 𝐻𝜇 𝑣 	∇𝑣 = −𝜌$𝑔𝐻	∇ ⋅ 𝑠

§ The Chombo library is used for the spatial 
discretization with adaptive mesh refinement 
(AMR)
— Second order finite volume method

The Ice Model Combines Hyperbolic and Elliptic Partial 
Differential Equations

From Cornford, Stephen L., et al. "Adaptive mesh, finite volume modeling of marine ice 
sheets." JCP 232.1 (2013): 529-549.

𝐻(𝑥, 𝑦)

1. Schoof, Christian, and Richard CA Hindmarsh. "Thin-film flows with wall slip: an asymptotic analysis of higher order glacier flow models." QJMAM 63.1 (2010): 73-114.
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BISICLES was Limited by the Time Discretization

§ BISICLES uses an unsplit Godunov piecewise 
parabolic method
— First order accurate in time
— Explicit
— Not method of lines
— Limited maximum stable time step
— No error estimation
— Time step chosen by CFL condition

§ Project Goals
— Introduce high order time-stepping methods 

for improved accuracy and stability
— Introduce adaptive methods
— Determine which class of integrators is best-

suited to the problem

𝑡. 𝑡./"𝑡. +
Δ𝑡
2

🔴 🔴 🔴

🔴 🔴 🔴

🔴 🔴 🔴

🔴 🔴 🔴

🔴 🔴 🔴

🔴 🔴 🔴

🔴 🔴

🔴 🔴

🔴 🔴

🔴 🔴 🔴

🔴 🔴 🔴Compute face- and time-centered 
thickness via Taylor series

Advect using thickness from time 
𝑡% +

&'
(  but velocity from 𝑡%

Update ice 
velocity from 
new thickness
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§ The time evolution problem is an index-1 differential-algebraic equation (DAE)

𝑑𝐻
𝑑𝑡

= 𝑓(𝐻, 𝑣)
0 = 𝑔 𝐻, 𝑣

§ Over 90% of the runtime is spent solving the nonlinear system 0 = 𝑔(𝐻, 𝑣)!

§ Or we can view this as an ordinary differential equation (ODE) where 𝑣 = 𝒢 𝐻  is a 
derived quantity computed via a nonlinear solve. This is the “state space form”

𝑑𝐻
𝑑𝑡

= 𝑓 𝐻, 𝒢 𝐻

We can Solve an Ordinary or Differential-Algebraic Equation



31
LLNL-PRES-852733

SUNDIALS Provides Efficient ODE, DAE, and Nonlinear Solvers

• ARKODE provides (additive) Runge-
Kutta methods

• Adaptive or fixed step size
• We use explicit Runge-Kutta 

methods to solve the state space 
form 01

02
= 𝑓 𝐻, 𝒢 𝐻

• N_Vectors decouple integrators 
from application data structures

• Includes norms, dot product, axpy, 
and other generic operations

• We developed a Chombo 
N_Vector to operate on AMR grids
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Our New Chombo N_Vector Enables Package Interoperability

Application code

Right-hand side function 𝑓 𝐻, 𝒢 𝐻

Time Discretization

Space Discretization

Ice Sheet Model

Chombo N_Vector
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§ BISICLES’ first order integrator does 1 expensive algebraic solve for ice velocity each time step

§ A second order, explicit Runge-Kutta applied to the state space form requires at least 2 
algebraic solves per time step

§ We proposed to use a second order “half-explicit Heun’s method” with 1 algebraic solve per 
step

𝐾+ = 𝑓 𝐻,, 𝑣,
𝐾# = 𝑓 𝐻, + Δ𝑡	𝐾+, 𝑣,-+
0 = 𝑔 𝐻, + Δ𝑡	𝐾+, 𝑣,-+

𝐻,-+ = 𝐻, +
Δ𝑡
2

𝐾+ + 𝐾#

§ It is not a traditional Runge-Kutta method but a generalized additive Runge-Kutta.

Second Order is Feasible at the Cost of Order One
𝑑𝐻
𝑑𝑡 = 𝑓(𝐻, 𝑣)
0 = 𝑔 𝐻, 𝑣
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Twisty Steam is a Benchmark Test Problem

§ Ice streams are fast-flowing regions within a 
sheet

§ Ice streams account for about 90% of ice mass 
lost from the Antarctic ice sheet1

§ We compare the temporal accuracy of
— The original unsplit Godunov piecewise parabolic 

method in BISICLES
— Explicit Runge-Kutta methods from ARKODE of order 1-

4
— The half-explicit Heun’s method from the previous slide

1. https://www.antarcticglaciers.org/glacier-processes/glacier-types/ice-streams/
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The Integrators Converge
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The New Integrators Are Significantly More Efficient
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§ Despite the hyperbolic PDE for ice thickness, 
the problem is sometimes diffusive

§ Spatial error often dominates temporal error, 
even when using the native, first order method

§ In this regime, we achieve the best efficiency by 
taking Δ𝑡 near the CFL limit

§ The following metric is key

max	stable	Δ𝑡
cost	per	step

BISICLES is Often Stability-Limited
𝜕𝐻
𝜕𝑡

=
𝜕
𝜕𝑥

𝑣!𝐻 +
𝜕
𝜕𝑦

𝑣"𝐻

𝛽#𝑣 − ∇ ⋅ 𝐻𝜇 𝑣 	∇𝑣 = −𝜌$𝑔𝐻	∇ ⋅ 𝑠
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§ Despite the hyperbolic PDE for ice thickness, 
the problem is sometimes diffusive

§ Spatial error often dominates temporal error, 
even when using the native, first order method

§ In this regime, we achieve the best efficiency by 
taking Δ𝑡 near the CFL limit

§ The following metric is key

max	stable	Δ𝑡
cost	per	step

BISICLES is Often Stability-Limited
𝜕𝐻
𝜕𝑡

=
𝜕
𝜕𝑥

𝑣!𝐻 +
𝜕
𝜕𝑦

𝑣"𝐻

𝛽#𝑣 − ∇ ⋅ 𝐻𝜇 𝑣 	∇𝑣 = −𝜌$𝑔𝐻	∇ ⋅ 𝑠
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High Order is Not Always Advantageous for Linear Stability
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§ We derived a first order method in 3 
stages with a large stability region

§ For the twisty stream problem, we can 
take a time step roughly 5x bigger

§ The minimum time to a stable solution is 
reduced by about 35% for the twisty 
stream problem

We Can Optimize The Stability with Additional Stages
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§ New Runge-Kutta integrators from SUNDIALS facilitate faster and more accurate 
modeling of ice sheets

§ Embedded error estimation offers a simpler and effective alternative to CFL based 
time step selection

§ Chombo N_Vector is now available in Chombo 3.2 patch 8

§ Future and ongoing work
— Testing multirate methods
— Exploring other stabilized methods
— Parallel-in-time leveraging SUNDIALS’ wrappers for XBraid
— Exploring more-complex (realistic) ice sheet configurations (grounding-line retreat, realistic 

Greenland and Antarctic geometries, etc).

Conclusions
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