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Multiphysics Simulations

Multiphysics simulations couple different models either in the bulk or across interfaces.

Climate:

Atmospheric simulations combine fluid dynamics with local
“physics” models for chemistry, condensation, . . . .

Atmosphere is coupled at interfaces to myriad other processes
(ocean, land/sea ice, . . . ), each using distinct models.

Astrophysics/cosmology:

Dark matter modeled using particles that give rise to
large-scale gravitational structures (at right).

Baryonic matter modeled by combining fluid dynamics,
gravity, radiation transport, and reaction networks for
chemical ionization states.

Above: https://e3sm.org.

Below: http://svs.gsfc.nasa.gov.

https://www.smu.edu
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https://www.llnl.gov
https://scidac5-fastmath.lbl.gov/home
https://www.exascaleproject.org/
https://computation.llnl.gov/projects/sundials
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Multiphysics Challenges [Keyes et al., 2013]

These model combinations can challenge traditional numerical methods:

“Multirate” processes evolve on different time scales but prohibit analytical reformulation.

Stiff components disallow fully explicit methods.

Nonlinearity and insufficient differentiability challenge fully implicit methods.

Parallel scalability demands optimal algorithms – while robust/scalable algebraic solvers exist for
parts (e.g., FMM for particles, multigrid for diffusion), none are optimal for the whole.

We may consider a prototypical problem as having m coupled evolutionary processes:

ẏ(t) = f{1}(t, y) + · · ·+ f{m}(t, y), t ∈ [t0, tf ], y(t0) = y0.

Each component f{k}(t, y):

may act on all of y (in the bulk), or on only a subset of y (within a subdomain),

may evolve on a different characteristic time scale,

may be “stiff” or “nonstiff,” thereby desiring implicit or explicit treatment.

https://www.smu.edu
https://www.temple.edu
https://www.llnl.gov
https://scidac5-fastmath.lbl.gov/home
https://www.exascaleproject.org/
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https://doi.org/10.1177/1094342012468181
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Implicit-Explicit Additive Runge–Kutta Methods [Ascher et al., 1997; Kennedy & Carpenter, 2003; . . . ]

IMEX-ARK methods allow high-order adaptive ImEx time integration for additively-split single rate simulations:

ẏ(t) = fE(t, y) + fI(t, y), t ∈ [t0, tf ], y(t0) = y0,

fE(t, y) contains the nonstiff terms to be treated explicitly,

fI(t, y) contains the stiff terms to be treated implicitly.

Combine two s-stage RK methods; denoting hn = tn+1 − tn, tEn,j = tn + cEj hn, tIn,j = tn + cIjhn:

zi = yn + hn

i−1∑
j=1

aEi,jf
E(tEn,j , zj) + hn

i∑
j=1

aIi,jf
I(tIn,j , zj), i = 1, . . . , s,

yn+1 = yn + hn

s∑
j=1

[
bEj fE(tEn,j , zj) + bIjf

I(tIn,j , zj)
]

(solution)

ỹn+1 = yn + hn

s∑
j=1

[
b̃Ej fE(tEn,j , zj) + b̃Ijf

I(tIn,j , zj)
]

(embedding)

https://www.smu.edu
https://www.temple.edu
https://www.llnl.gov
https://scidac5-fastmath.lbl.gov/home
https://www.exascaleproject.org/
https://computation.llnl.gov/projects/sundials
https://doi.org/10.1016/S0168-9274(97)00056-1
https://doi.org/10.1016/S0168-9274(02)00138-1
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Solving each stage zi, i = 1, . . . , s [Ascher et al., 1997; Kennedy & Carpenter, 2003; . . . ]

Per-stage cost is commensurate with implicit Euler for ẏ(t) = fI(t, y) – solve a root-finding problem:

0 = Gi(z) =
[
z − hna

I
i,if

I(tIn,i, z)
]
−

[
yn + hn

i−1∑
j=1

(
aE
i,jf

E(tEn,j , zj) + aI
i,jf

I(tIn,j , zj)
)]

If fI(t, y) is linear in y then this is a large-scale linear system for each zi.

Else this requires an iterative solver (e.g., Newton, accelerated fixed-point, or problem-specific).

All operators in fE(t, y) are treated explicitly (do not affect algebraic solvers).

Defined by compatible explicit
{
cE , AE , bE , b̃E

}
and implicit

{
cI , AI , bI , b̃I

}
tables. These are derived

in unison to satisfy order conditions arising from NB-trees (along with stability, high stage order, . . . ).

https://www.smu.edu
https://www.temple.edu
https://www.llnl.gov
https://scidac5-fastmath.lbl.gov/home
https://www.exascaleproject.org/
https://computation.llnl.gov/projects/sundials
https://doi.org/10.1016/S0168-9274(97)00056-1
https://doi.org/10.1016/S0168-9274(02)00138-1
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Multirate Infinitesimal (MIS/MRI) methods [Schlegel et al., 2009; Sandu, 2019; . . . ]

MRI methods provide a flexible approach to “subcycling” and support up to O
(
h4
)
for multirate

problems:

ẏ(t) = fS(t, y) + fF (t, y), t ∈ [t0, tf ], y(t0) = y0.

fS(t, y) contains the “slow” dynamics, evolved with time step H.

fF (t, y) contains the “fast” dynamics, evolved with time steps h ≪ H.

The slow component is defined by an “outer” RK method, while the fast component is advanced
between slow stages by solving a modified IVP with a subcycled “inner” RK method.

Extremely efficient – high order attainable with only a single traversal of [tn, tn+1].

https://www.smu.edu
https://www.temple.edu
https://www.llnl.gov
https://scidac5-fastmath.lbl.gov/home
https://www.exascaleproject.org/
https://computation.llnl.gov/projects/sundials
https://www.sciencedirect.com/science/article/pii/S0377042708004147
https://epubs.siam.org/doi/10.1137/18M1205492
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MIS/MRI Algorithm [Schlegel et al., 2009; Sandu, 2019; . . . ]

Denoting yn ≈ y(tn) and H = tn+1 − tn, a single step yn → yn+1 proceeds as follows:

1. Let: z1 = yn.

2. For each slow stage zi, i = 2, . . . , s:

a) Define: ri(τ) =
i∑

j=1
γi,j

(
τ

(ci−ci−1)H

)
fS (tn + cjH, zj).

b) Evolve: v̇(τ) = fF (tn + τ, v) + ri(τ), for τ ∈ [ci−1H, ciH], v(ci−1H) = zi−1.

c) Let: zi = v(ciH).

3. Let: yn+1 = zs.

MIS: γi,j(θ) is independent of θ, with coefficients computed from the “outer” Runge–Kutta method.

MRI: γi,j(θ) is polynomial in θ, coefficients satisfy GARK-based order conditions [Sandu & Günther, 2015].

Step 2b may use any applicable algorithm of sufficient accuracy (including another MRI method).

When ci = ci−1, step 2b reduces to a standard ERK/DIRK Runge–Kutta stage update.

Implicitness at the slow scale depends on γi,i(θ) ̸= 0, only used when ci = ci−1 (“solve-decoupled”).

https://www.smu.edu
https://www.temple.edu
https://www.llnl.gov
https://scidac5-fastmath.lbl.gov/home
https://www.exascaleproject.org/
https://computation.llnl.gov/projects/sundials
https://www.sciencedirect.com/science/article/pii/S0377042708004147
https://epubs.siam.org/doi/10.1137/18M1205492
https://epubs.siam.org/doi/10.1137/130943224
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Implicit-Explicit Multirate Infinitesimal GARK Methods [Chinomona & R., SISC, 2021]

To better support the flexibility needs of multiphysics problems, we have extended Sandu’s MRI-GARK
methods to support implicit-explicit treatment of the slow time scale, for problems of the form:

ẏ(t) = fI(t, y) + fE(t, y) + fF (t, y), t ∈ [t0, tf ], y(t0) = y0.

These follow the same basic approach as the previous MRI algorithm, but with forcing function

ri(τ) =

i∑
j=1

γi,j
(

τ
(ci−ci−1)H

)
fI(tn + cjH, zj) +

i−1∑
j=1

ωi,j

(
τ

(ci−ci−1)H

)
fE(tn + cjH, zj),

where γi,j(θ) :=
kmax∑
k=0

γ
{k}
i,j θk and ωi,j(θ) :=

kmax∑
k=0

ω
{k}
i,j θk.

Coefficients matrices Γ{k},Ω{k} ∈ Rs×s are lower and strictly lower triangular, respectively.

Order conditions up to O
(
H4
)
leverage GARK framework.

https://www.smu.edu
https://www.temple.edu
https://www.llnl.gov
https://scidac5-fastmath.lbl.gov/home
https://www.exascaleproject.org/
https://computation.llnl.gov/projects/sundials
https://doi.org/10.1137/20M1354349
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IMEX-MRI-GARK Construction [Chinomona & R., SISC, 2021]

Begin with an IMEX-ARK pair {AI , bI , cI ;AE , bE , cE} where cI = cE ≡ c with 0 = c1 ≤ · · · ≤ cs̃ ≤ 1.

Convert to solve-decoupled form: insert redundant stages such that ∆ciA
I
ii = 0 for i = 1, . . . , s.

Extend AI , AE and c to ensure “stiffly-accurate” condition: cs = 1, AI
s,: = bI , AE

s,: = bE .

Generate Γ(k) and Ω(k) for k = 0, . . . , kmax, to satisfy ARK consistency (s2 conditions), internal
consistency (2(kmax + 1)s conditions), plus order conditions:

O
(
H1
)
and O

(
H2
)
: no additional order conditions,

O
(
H3
)
: 2 additional order conditions,

O
(
H4
)
: 16 additional order conditions.

With any additional degrees of freedom, we maximized “joint linear stability” (next slide).

Note: we found it challenging to construct embedded IMEX-MRI-GARK methods, largely due to our
reliance on IMEX-ARK base methods and the “sorted” abscissa requirement.

https://www.smu.edu
https://www.temple.edu
https://www.llnl.gov
https://scidac5-fastmath.lbl.gov/home
https://www.exascaleproject.org/
https://computation.llnl.gov/projects/sundials
https://doi.org/10.1137/20M1354349
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IMEX-MRI-GARK Joint Linear Stability [Chinomona & R., SISC, 2021]

Multirate method stability is currently difficult to analyze. Examining “joint stability” [Zharovsky et al.,

2015] for the Dahlquist-like test problem ẏ = λIy + λEy + λF y:

Jα,β =
{
zE ∈ C− :

∣∣∣R(zF , zE , zI
)∣∣∣ ≤ 1, ∀zF ∈ SFα , ∀zI ∈ SIβ

}
, Sσα =

{
zσ ∈ C− : |arg(zσ)− π| ≤ α

}
Jα,β regions for various implicit sector angles β:

IMEX-MRI-GARK3a (↑)

IMEX-MRI-GARK3b (↓)

fast α = 10o (←)

fast α = 45o (→)

We have an O
(
H4
)
IMEX-MRI-GARK4 table for

convergence verification, though it has poor joint
stability.
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IMEX-MRI-GARK Convergence/Efficiency [Chinomona & R., SISC, 2021]
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Implicit-Explicit Multirate Infinitesimal Stage-Restart Methods [Fish, R., & Roberts, 2023]

IMEX-MRI-SR methods consider the same problem as IMEX-MRI-GARK, but circumvent their
restriction that ci ≤ ci+1 by assuming a different structure for the step yn → yn+1:

1. Let: z1 = yn.

2. For each slow stage zi, i = 2, . . . , s:

a) Define: ri(τ) =
1
ci

i−1∑
j=1

ωi,j

(
τ

ciH

)(
fE
j + fI

j

)
, with ωi,j(θ) =

nΩ−1∑
k=0

ω
{k}
i,j θk.

b) Evolve: v̇(τ) = fF (tn + τ, v) + ri(τ), for τ ∈ [0, ciH], v(0) = yn.

c) Solve: zi = v(ciH) +H
i∑

j=1
γi,jf

I
j .

3. Let: yn+1 = zs.

We denote fE
j := fE(tn + cjH, zj) and fI

j := fE(tn + cjH, zj).

The embedding has an identical structure as the last stage, zs.

There is no “hidden” dependence on ∆ci = 0 for the algorithm structure, and no “padding” is required
when deriving IMEX-MRI-SR methods from IMEX-ARK.

https://www.smu.edu
https://www.temple.edu
https://www.llnl.gov
https://scidac5-fastmath.lbl.gov/home
https://www.exascaleproject.org/
https://computation.llnl.gov/projects/sundials
https://doi.org/10.48550/arXiv.2301.00865
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IMEX-MRI-SR Construction [Fish, R., & Roberts, 2023]

Again begin with an IMEX-ARK pair {AI , bI , cI ;AE , bE , cE} where cI = cE ≡ c (but with any ci ̸= 0,
i = 2, . . . , s).

Extend AI , AE and c to ensure “stiffly-accurate” condition: cs = 1, AI
s,: = bI , AE

s,: = bE .

Generate Γ and Ω(k) for k = 0, . . . , nΩ, to satisfy IMEX-ARK consistency (s2 conditions), internal
consistency (s(2 + nΩ) conditions), plus order conditions:

O
(
H1
)
and O

(
H2
)
: no additional order conditions,

O
(
H3
)
: 1 additional order condition,

O
(
H4
)
: 6 additional order conditions.

With remaining degrees of freedom, maximize joint linear stability for method and minimize
next-order error term for embedding.

https://www.smu.edu
https://www.temple.edu
https://www.llnl.gov
https://scidac5-fastmath.lbl.gov/home
https://www.exascaleproject.org/
https://computation.llnl.gov/projects/sundials
https://doi.org/10.48550/arXiv.2301.00865
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IMEX-MRI-SR Joint Linear Stability [Fish, R., & Roberts, 2023]

We again analyze joint linear stability for the Dahlquist-like test problem ẏ = λIy + λEy + λF y:

Jα,β =
{
zE ∈ C− :

∣∣∣R(zF , zE , zI
)∣∣∣ ≤ 1, ∀zF ∈ SFα , ∀zI ∈ SIβ

}
, Sσα =

{
zσ ∈ C− : |arg(zσ)− π| ≤ α

}
Jα,β regions for various implicit sector
angles β:

IMEX-MRI-SR2(1) (↑)

IMEX-MRI-SR3(2) (↓)

fast α = 10o (←)

fast α = 45o (→)

We have an O
(
H4
)
IMEX-MRI-SR4(3)

table for convergence verification, though it
again has relatively poor joint stability.

https://www.smu.edu
https://www.temple.edu
https://www.llnl.gov
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IMEX-MRI-SR Convergence/Efficiency – “Stiff” Brusselator PDE [Fish, R., & Roberts, 2023]

Runtime efficiency of IMEX-MRI-SR,
IMEX-MRI-GARK, and IMEX-MRI versions of
Lie–Trotter and Strang–Marchuk splittings:

Modified problem with time-dependent advection,
diffusion and reaction coefficients, we explore adaptive
IMEX-MRI-SR efficiency using tolerances 10−k with
k = 1, . . . , 9 (more on MRI adaptivity in a moment):
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Multirate Infinitesimal Time Step Adaptivity [Fish & R., SISC, 2023]

As with single-rate IVPs, robustness, accuracy, and efficiency hinge on appropriate selection of time
step sizes. In the MRI setting, this is complicated:

We now have separate control parameters at each time scale (H and h):

The overall solution error is not simply the sum of errors at fast and slow time scales, since errors
may propagate between them.

With two control parameters, we need separate estimates of temporal errors that arise at each
scale.

Although significant work has been performed on single-rate controllers, multirate control has
received little investigation (particularly higher-order controller methods).

https://www.smu.edu
https://www.temple.edu
https://www.llnl.gov
https://scidac5-fastmath.lbl.gov/home
https://www.exascaleproject.org/
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Multirate control [Fish & R., SISC, 2023]

Denoting the overall error in an MRI time step solution as εn+1, we estimate

εn+1 = ∥y(tn+1)− yn+1∥ ≤ ∥y(tn+1)− y∗
n+1∥+ ∥y∗

n+1 − yn+1∥ = εsn+1 + εfn+1

=

(
ϕs
nH

P
n +O

(
HP+1

n

))
+

(
ϕf
n

(
Hn

Mn

)p

Hn +O

((
Hn

Mn

)p+1

Hn

))
,

where

y∗
n+1 is the imagined solution wherein each fast IVP is solved exactly,

P and p are the global orders of accuracy for the MRI method embedding and fast solver
embedding, resp.,

ϕs and ϕf are the principal error functions for each scale (these depend on method and IVP, but
not on Hn or Mn).

https://www.smu.edu
https://www.temple.edu
https://www.llnl.gov
https://scidac5-fastmath.lbl.gov/home
https://www.exascaleproject.org/
https://computation.llnl.gov/projects/sundials
https://doi.org/10.1137/22M1479798
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Multirate controllers [Fish & R., SISC, 2023]

Ignoring higher-order terms, setting the desired fast and slow errors to separate fast and slow tolerances

(εfn+1 = TOLf and εsn+1 = TOLs), solving for log(Hn) and log(Mn), and following Gustafsson [ACM TOMS,

1994] to approximate the principal error functions log(ϕf
n) and log(ϕs

n) using piecewise polynomials, we obtain
the constant-constant controller

Hn+1 = Hn

(
TOLs

εsn+1

)α

, Mn+1 = Mn

(
TOLs

εsn+1

)β1
(
TOLf

εfn+1

)β2

,

and the linear-linear controller

Hn+1 = Hn

(
Hn

Hn−1

)(
TOLs

εsn+1

)α1 (
TOLs

εsn

)α2

,

Mn+1 = Mn

(
Mn

Mn−1

)(
TOLs

εsn+1

)β11 (
TOLs

εsn

)β12
(
TOLf

εfn+1

)β21 (
TOLf

εfn

)β22

.

https://www.smu.edu
https://www.temple.edu
https://www.llnl.gov
https://scidac5-fastmath.lbl.gov/home
https://www.exascaleproject.org/
https://computation.llnl.gov/projects/sundials
https://doi.org/10.1137/22M1479798
https://doi.org/10.1145/198429.198437
https://doi.org/10.1145/198429.198437
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Multirate controllers (continued) [Fish & R., SISC, 2023]

We additionally consider two additional controllers:

PIMR is a multirate extension of the PI single-rate controller:

Hn+1 = Hn

(
TOLs

εsn+1

)α1 (
TOLs

εsn

)α2

,

Mn+1 = Mn

(
TOLs

εsn+1

)β11 (
TOLs

εsn

)β12
(
TOLf

εfn+1

)β21 (
TOLf

εfn

)β22

.

PIDMR is a multirate extension of the PID single-rate controller:

Hn+1 = Hn

(
TOLs

εsn+1

)α1 (
TOLs

εsn

)α2
(

TOLs

εsn−1

)α3

,

Mn+1 = Mn

(
TOLs

εsn+1

)β11 (
TOLs

εsn

)β12
(

TOLs

εsn−1

)β13
(
TOLf

εfn+1

)β21 (
TOLf

εfn

)β22
(
TOLf

εfn−1

)β23

.

https://www.smu.edu
https://www.temple.edu
https://www.llnl.gov
https://scidac5-fastmath.lbl.gov/home
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MRI error estimation [Fish & R., SISC, 2023]

All controllers require accurate/cheap estimates for εsn and εfn. Assuming the MRI method provides an

embedding, ỹn, then εsn ≈ ∥yn − ỹn∥. However, estimation of εfn = ∥y∗n − yn∥ is less obvious.

We tested a variety of strategies:

Full-Step (FS) – compute each fast solve twice using fast integrators of different orders, with forcing

functions ri(τ) that use separate fS(t, y) evaluations, to obtain εfn = ∥yn − ŷn∥.

Stage-Aggregate (SA) – compute each fast solve twice using fast integrators of different orders, but with
forcing functions ri(τ) that use shared fS(t, y) evaluations, and aggregate stage differences to obtain

εfn = aggregate (∥zi − ẑi∥, i = 2, . . . , s).

Local-Accumulation-Stage-Aggregate (LASA) – compute each fast solve once using an embedded method,
and accumulate sub-step error estimates di,j into an overall estimate

εfn = aggregate
(∑M

j=1 di,j , i = 2, . . . , s
)
.

In the end, the “LASA” strategies proved sufficiently accurate (with the least expense).

https://www.smu.edu
https://www.temple.edu
https://www.llnl.gov
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MRI controller performance [Fish & R., SISC, 2023]

Tested 4 MRI controllers along with 4 single-rate H controllers (each used a fixed M = 10), across a
test suite of 7 test problems, 4 IVP methods, and 3 tolerances.

Left: controller overall ability to achieve desired tolerance (0 ⇒ perfect, < 0 ⇒ overly accurate)

Center: controller overall fS cost as multiple of “best possible” (i.e., 1 ⇒ perfect)

Right: controller overall fF cost as multiple of “best possible”

https://www.smu.edu
https://www.temple.edu
https://www.llnl.gov
https://scidac5-fastmath.lbl.gov/home
https://www.exascaleproject.org/
https://computation.llnl.gov/projects/sundials
https://doi.org/10.1137/22M1479798
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Software: ARKODE and SUNDIALS [R. et al., ACM TOMS, 2023]

ARKODE’s initial release within SUNDIALS in 2014 provided adaptive IMEX-ARK methods. Since
then we have enhanced ARKODE to include a variety of “steppers”:

ARKStep: supports all of ARKODE’s original functionality (adaptive ARK, ERK, DIRK methods);
includes an interface to XBraid for PinT (work by D. Gardner).

ERKStep: tuned for highly efficient explicit Runge–Kutta methods.

MRIStep: multirate infinitesimal time stepping module.

Includes explicit MIS methods O
(
H3
)
, explicit or implicit MRI-GARK methods of O

(
H2
)
to

O
(
H4
)
, IMEX-MRI-GARK methods of O

(
H3
)
and O

(
H4
)
.

Supports user-provided MRI-GARK tables Γ{k} or IMEX-MRI-GARK tables {Γ{k},Ω{k}}.
Currently requires a user-defined H that can be varied between steps. Fast time scale evolved
using ARKStep or any viable user-supplied IVP solver.

Will soon include embedded IMEX-MRI-SR methods of O
(
H2
)
to O

(
H4
)
, and multirate

time adaptivity controllers.

https://www.smu.edu
https://www.temple.edu
https://www.llnl.gov
https://scidac5-fastmath.lbl.gov/home
https://www.exascaleproject.org/
https://computation.llnl.gov/projects/sundials
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Multirate reacting flow demonstration problem [R. et al., ACM TOMS, 2023]

3D nonlinear compressible Euler equations combined with stiff chemical reactions for a low-density primordial
gas (molecular & ionization states of H and He, free electrons, and internal gas energy), present in models of
the early universe.

∂tw = −∇ · F(w) +R(w), w(t0) = w0,

w: density, momenta, total energy, and chemical densities (10)
F: advective fluxes (nonstiff/slow); and R: reaction network (stiff/fast)

w is stored as an MPIManyVector:

Software layer treating collection of vector
objects as a single cohesive vector.

Does not touch any vector data directly.

Simplifies partitioning of data among
computational resources (e.g., CPU vs GPU).

May also combine distinct MPI
intracommunicators together in a
multiphysics simulation. Fluid species (density, momenta, total energy) are stored in main

memory, while chemical densities are stored in GPU memory.

https://www.smu.edu
https://www.temple.edu
https://www.llnl.gov
https://scidac5-fastmath.lbl.gov/home
https://www.exascaleproject.org/
https://computation.llnl.gov/projects/sundials
https://doi.org/10.1145/3594632
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Multirate reacting flow solver strategy [R. et al., ACM TOMS, 2023]

Method of lines: (X, t) ∈ Ω× (t0, tf ], with Ω = [xl, xr]× [yl, yr]× [zl, zr].

Regular nx × ny × nz grid for Ω, parallelized using standard 3D MPI domain decomposition.

O
(
∆x5

)
FD-WENO flux reconstruction for F(w) [Shu, 2003].

Resulting IVP system: ẇ(t) = f1(w) + f2(w), w(t0) = w0, where f1(w) contains −∇ · F(w)
and is evaluated on the CPU, while f2(w) contains spatially-local reaction network R(w) and is
evaluted on the GPU.

Compare two forms of temporal evolution:

(a) Temporally-adaptive, O
(
H3
)
IMEX-ARK method from ARKStep: f1 explicit and f2 implicit,

(b) Fixed-step, O
(
H3
)
MRI-GARK method from MRIStep (temporally-adaptive fast step h):

f1 slow/explicit and f2 fast/DIRK.

https://www.smu.edu
https://www.temple.edu
https://www.llnl.gov
https://scidac5-fastmath.lbl.gov/home
https://www.exascaleproject.org/
https://computation.llnl.gov/projects/sundials
https://doi.org/10.1145/3594632
https://doi.org/10.1080/1061856031000104851
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Multirate reacting flow – ImEx and multirate results using hybrid CPU+GPU on OLCF Summit.
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Weak scaling runs with 1 MPI rank per GPU.

Both use robust, GPU-enabled MAGMA batched linear solver.

Multirate H chosen proportional to CFL condition on f1.

Both approaches show excellent algorithmic scalability.

Huge reduction in f1 evaluations allows ImEx → MR speedup of ∼70×.
GPU synchronization more severly hinders runtime scalability of ImEx than MR, due to increased frequency
(fast vs slow stages).

https://www.smu.edu
https://www.temple.edu
https://www.llnl.gov
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Conclusions

Large-scale multiphysics problems:

Nonlinear, interacting models pose key challenges to stable, accurate and scalable simulation.

Large data requirements require scalable solvers; while individual processes admit “optimal” algorithms &
time scales, these rarely agree.

Most classical methods derived for idealized problems perform poorly on “real world” applications.

Although operator-spliting remains standard, new & flexible methods are catching up, supporting high order
accuracy (even up to O

(
H6
)
) and multirate/ImEx flexibility.

The optimal choice of method depends on a variety of factors:

whether the problem admits a natural and effective ImEx and/or multirate splitting,

relative costs of fS(t, y) and fF (t, y) for multirate; availability of optimal algebraic solvers for fI(t, y),

desired solution accuracy, . . .

https://www.smu.edu
https://www.temple.edu
https://www.llnl.gov
https://scidac5-fastmath.lbl.gov/home
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Future Work

Much work remains to be done:

Improved stability analysis for partitioned Runge–Kutta methods, since assumption of
simultaneous diagonalizability for Dahlquist-like problem y′ =

∑
k

λky loses predictive capability.

Improved [embedded] IMEX-MRI-GARK and IMEX-MRI-SR methods (particulary for O
(
H4
)
).

Support for a broad range of adaptive MRI methods within open-source software libraries.

Rigorous testing of MRI methods in “challenging” multirate applications.

Robust temporal controllers for nested multirating, h1 > h2 > · · · > hm.

Robust (automated?) approaches for determining additive splittings f(t, y) =
∑
k

f{k}(t, y).

Suggestions?

https://www.smu.edu
https://www.temple.edu
https://www.llnl.gov
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Postdoctoral Positions in Numerical Methods for Fusion Energy

I’m looking to hire two postdocs to work on the development and implementation of advanced time
integration methods for large-scale simulations in magnetic fusion energy.

Looking for candidates with expertise in one or more of:

high-performance computing,

numerical analysis, and

simulation of differential equations.

Competitive salary (including benefits).

Initial appointment is for 1 year (renewable annually up to 4).

Funded by DOE SciDAC partnership program (ASCR & FES).

Contact me at reynolds@smu.edu with any questions or interest.

MGK+Partnership+(mgkscidac.org)

• Achieve&profound&scientific&
breakthroughs&on&‘frontier’&
multiscale turbulent&transport&
problems

• Develop&practical&new&
methods&to&bring&these&
problems&within&the&scope&of&
whole&device&modeling

• Ultimately:&integrate&with&
AToM framework

mgkscidac.org

https://www.smu.edu
https://www.temple.edu
https://www.llnl.gov
https://scidac5-fastmath.lbl.gov/home
https://www.exascaleproject.org/
https://computation.llnl.gov/projects/sundials
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