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Initial value problem for ODEs

Initial-value problem for ordinary differential equations (ODEs):{
y′(t) = f

(
y(t)

)
, t ∈ [t0,T],

y(t0) = y0.
(1)

In many applications such systems arise from semidiscretization of spatial
derivatives in PDEs of mathematical physics. Example: hyperbolic
conservation law (in two dimensions):

∂

∂t
u(x1, x2, t) +

∂

∂x1
f1
(
u(x1, x2, t)

)
+

∂

∂x2
f2
(
u(x1, x2, t)

)
= 0, (2)

where u : R2 × R → Rm, and f1, f2 : Rm → Rm, are given flux functions.
Discretization of the equation (2) in space variables x1 and x2 leads to (1).
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Strong stability preserving (SSP) property

We assume that the discretization of (1) by the forward Euler method

yn = yn−1 + hf (tn−1, yn−1), (3)

n = 1, 2, . . . ,N, Nh = T − t0, tn = t0 + nh, is monotone or contractive. This
means that the following inequality holds

∥yn∥ ≤ ∥yn−1∥, (4)

n = 1, 2, . . . ,N, in some norm or semi-norm ∥ · ∥, for a suitably restricted time
step determined by the so-called Courant-Friedrichs-Levy (CFL) condition

h ≤ hFE. (5)

It is then of interest to construct higher order numerical methods for (1),
which preserve the monotonicity property (4), under the perhaps modified
restriction on the time step of the form

h ≤ C · hFE, (6)

measured by the CFL coefficient of the method C ≥ 0.
MATHEMATICS AND STATISTICS 4 / 47
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Terminology

Numerical schemes for (1), which preserve the monotonicity condition (4)
under the modified restriction (6), are called strong stability preserving (SSP)
methods with CFL coefficient C ≥ 0.

SSP time discretization methods were first developed by Shu (1988) and Shu
and Osher (1988), and were called total variation diminishing (TVD) time
discretizations.
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Consider the explicit Runge-Kutta (RK) method with s stages for (1)
Y [n]

i = yn−1 + h
i−1∑
j=1

aijf (tn−1 + cjh,Y [n]
j ), i = 1, 2, . . . , s,

yn = yn−1 + h
s∑

j=1

bjf (tn−1 + cjh,Y [n]
j ).

(7)

The search for SSP RK methods (7) is facilitated by a clever representation of
these methods as convex combinations of Euler steps. This so-called
Shu-Osher (1988) representation has the form

Y [n]
1 = yn−1,

Y [n]
i =

i−1∑
j=1

(
αijY

[n]
j + hβijf (tn−1 + cjh,Y [n]

j )
)
, i = 2, 3, . . . , s,

yn =

s∑
j=1

(
αs+1,jY

[n]
j + hβs+1,jf (tn−1 + cjh,Y [n]

j )
)
.

(8)
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Formulas for new coefficients

Here αij are scalars such that

i−1∑
j=1

αij = 1, i = 2, 3, . . . , s + 1,

and the coefficients βij are given by
βij = aij −

i−1∑
k=j+1

αikakj, i = 2, 3, . . . , s, j = 1, 2, . . . , i − 1,

βs+1,j = bj −
s∑

k=j+1

αs+1,kakj, j = 1, 2, . . . , s.
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Characterization of SSP RK methods

The Shu-Osher representation (8) leads to the following characterization of
SSP RK methods (7).

Theorem

(Shu, Osher (1988)). Assume that the forward Euler method (2) applied to (1)
is strongly stable, i.e., the inequality ∥yn∥ ≤ ∥yn−1∥ holds under the time step
restriction h ≤ hFE. Assume also that αij ≥ 0 and βij ≥ 0. Then the solution
{yn} obtained by the RK method (7) or (8) satisfies the strong stability bound

∥yn∥ ≤ ∥yn−1∥,

n = 1, 2, . . . ,N, under the time step restriction h ≤ C · hFE, with CFL
coefficient C = C(α, β) given by

C(α, β) = min

{
αij

βij
: i = 2, 3, . . . , s, j = 1, 2, . . . , i − 1

}
.
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Previous work on SSP methods

SSP RK and linear multistep methods (LMMs) have been studied by Shu and
Osher (1988), Gottlieb, Shu, and Tadmor (2001), Spiteri and Ruuth (2002),
Hundsdorfer, Ruuth, and Spiteri (2003), Gottlieb (2005), Gottlieb and Ruuth
(2006), Gottlieb, Ketcheson, and Shu (2009), (2011), Higueras (2004),
(2005), and Ferracina and Spijker (2004), (2005), (2008). SSP two-step
Runge-Kutta (TSRK) methods introduced by Jackiewicz and Tracogna
(1995) were investigated by Ketcheson, Gottlieb and Macdonald (2011).
Constantinescu and Sandu (2010) generalized Shu-Osher representation to a
class of multistep multistage schemes, which form a special subclass of
GLMs. SSP general linear methods (GLMs) were investigated by Spijker in
his seminal paper (2007). SSP GLMs were also investigated by Izzo and
Jackiewicz (2015, 2018, 2020), Califano, Izzo and Jackiewicz (2018), and
Braś, Izzo and Jackiewicz (2021).

In this talk we will employ Spijker’s (2007) results to construct new classes of
SSP GLMs up to the order p = 4 and stage order 1 ≤ q ≤ 4.
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Spijker formulation of GLMs

Following Spijker (2007) we consider the formulation of GLMs, for
numerical solution of (1), of the form

Y [n]
i = h

m∑
j=1

tijf (tn−1 + cjh,Y [n]
j ) +

ℓ∑
j=1

sijy
[n−1]
j , i = 1, 2, . . . ,m,

y[n]i = Y [n]
m−ℓ+i, i = 1, 2, . . . , ℓ,

(9)

n = 1, 2, . . . ,N, where 1 ≤ ℓ ≤ m. Here, Y [n]
i , i = 1, 2, . . . ,m, are internal

approximations or stages, which are used to compute the external
approximations y[n]i , i = 1, 2, . . . , ℓ, which propagate from step to step. This
method is specified by the abscissa vector c = [c1, . . . , cm]

T ∈ Rm, and the
coefficient matrices T = [tij] ∈ Rm×m and S = [sij] ∈ Rm×ℓ. Different
representations of (9) are discussed by Butcher (1987), (2003), (2008),
Hairer, Nørsett, and Wanner (1993), Hairer and Wanner (1996), and
Jackiewicz (2009).
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Observe that the RK method (7) can be written as GLM (9) with m = s + 1,
ℓ = 1, and

T =

[
A 0

bT 0

]
∈ R(s+1)×(s+1), S =

[
e

1

]
∈ Rs+1,

where e = [1, . . . , 1]T ∈ Rs.
As in Spijker (2007) we shall assume that the parameters sij of the coefficient
matrix S satisfy the condition

ℓ∑
j=1

sij = 1, i = 1, 2, . . . ,m. (10)

Observe that this assumption is automatically satisfied for the RK methods (7)
and for the class of DIMSIMs. Moreover, as observed by Spijker (2007), this
condition is no essential restriction on the method (9) since any preconsistent
GLMs can be transformed into an equivalent GLM satisfying (10).
Transformations of GLMs are discussed by Butcher (2003), (2008) and
Jackiewicz (2009).
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Characterization of CFL coefficient

Denote by I the identity matrix of dimension m, and let [S | γT], γ ∈ R, stand
for the m × (ℓ+ m) matrix whose first ℓ columns equal to those of S and the
last m columns equal to those of γT. Then following Spijker (2007), we
consider the condition

det(I + γT) ̸= 0 and (I + γT)−1[S | γT] ≥ 0, (11)

where the inequality in (11) should be interpreted componentwise. Then the
essence of the fundamental result obtained by Spijker (2007) is that the CFL
coefficient C = C(S,T) of the GLM (9) is given by

C = C(S,T) = sup
{
γ ∈ R : γ satisfies (11)

}
. (12)
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Computation of CFL coefficient

The CFL coefficient can be computed by the solution to the constrained
minimization problem with the simple objective function F given by

F(γ, par) = −γ, (13)

where par stands for the remaining unknown parameters of the GLM (9)
(after satisfying the appropriate order, stage order, and perhaps some linear
stability conditions), and the (in general nonlinear) constrains are given by

− (I + γT)−1[S | γT] ≤ 0. (14)

This process will be discussed in more detail later in this talk for specific
examples of GLMs (9).
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Minimization problem for Euler method

In particular, solving the minimization problem

F(γ) = −γ −→ min,

for the forward Euler method (3), for which m = 1, ℓ = 1, and

T =

[
0 0

1 0

]
∈ R2×2, S =

[
1

1

]
∈ R2,

and the constrains (14) take the form

−(I + γT)−1[S | γT] =

[
−1 0 0

γ − 1 −γ 0

]
≤ 0,

we obtain C = C(S,T) = 1, as should be the case.
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Standard representation of GLMs

Consider the class of GLMs investigated by Burrage and Butcher (1980). On
the grid tn = t0 + nh, n = 0, 1, . . . ,N, Nh = T − t0, these methods take the
form

Y [n]
i = h

s∑
j=1

aijf (tn−1 + cjh,Y [n]
j ) +

r∑
j=1

uijy
[n−1]
j , i = 1, 2, . . . , s,

y[n]i = h
s∑

j=1

bijf (tn−1 + cjh,Y [n]
j ) +

r∑
j=1

vijy
[n−1]
j , i = 1, 2, . . . , r,

(15)

n = 1, 2, . . . ,N. Here,

Y [n]
i = y(tn−1 + cih) + O(hq+1), i = 1, 2, . . . , s,

and

y[n]i =

p∑
k=0

qikhky(k)(tn) + O(hp+1), i = 1, 2, . . . , r.
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Coefficients matrices and vectors

These method are specified by the abscissa vector

c = [c1, . . . , cs]
T ∈ Rs,

four coefficient matrices

A = [aij] ∈ Rs×s, U = [uij] ∈ Rs×r, B = [bij] ∈ Rr×s, V = [vij] ∈ Rr×r,

the vectors
qi = [q1,i, . . . , qr,i]

T ∈ Rr, i = 0, 1, . . . , p,

and four integers:

p -the order of the method
q - the stage order of the method
r - the number of external approximations
s - the number of internal approximations or stages
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GLMs with two external stages

In what follows we will restrict our attention to GLMs (15) with s internal
stages and r = 2 external stages of order p and stage order 1 ≤ q ≤ p.
Moreover, we shall assume that the matrix A is strictly lower triangular

A =



0

a2,1 0
...

. . . . . .

as−1,1
. . . . . . 0

as,1 as,2 · · · as,s−1 0


∈ Rs×s,

and the matrix U has the form

U =


u1
...

us

 ∈ Rs×2, ui =
[

ui,1 ui,2

]
∈ R2, ui,1 + ui,2 = 1.
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Coeffcicient matrix V

We shall also assume that the matrix V is a rank one matrix of the following
form

V = evT , e = [1, 1]T ∈ R2, v = [v1, v2]
T ∈ Rr, vTe = 1.

Then it follows that V is power bounded, and as a result the method (15) is
zero-stable.

In order to get methods with higher C coefficients we will also consider
methods having rank(V) = 2. In this case the matrix V will assume the form

V =

[
v1 1 − v1

v2 1 − v2

]
,

and its power boundedness will be ensured by the condition |v1 − v2| < 1.
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Order conditions

Algebraic analysis of order of GLMs was developed in the monographs by
Butcher (1987), (2003), (2008), Hairer, Nørsett, and Wanner (1993), and
Jackiewicz (2009). Here, we discuss derivation of order conditions for GLMs
using the approach by Albrecht (1985), (1987), (1989), (1996).
Put 

γ0 = e − Uq0,

γk =
ck

k!
− Ack−1

(k − 1)!
− Uqk, k = 1, 2, . . . , p,

(16)


γ̂0 = q0 − Vq0,

γ̂k =

k∑
l=0

ql

(k − l)!
− Bck−1

(k − 1)!
− Vqk, k = 1, 2, . . . , p,

(17)

where
e = [1, . . . , 1]T ∈ Rs, ci := [ci

1, . . . , ci
s]

T .
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Preconsistency, consistency, stage consistency

It will be always assumed that

q0 = e = [1, . . . , 1]T ∈ Rr,

so that the stage preconsistency condition

γ0 = 0 or Uq0 = e,

and the preconsistency condition

γ̃0 = 0 or Vq0 = q0,

are automatically satisfied. Moreover, we will always assume that the GLM
(15) has stage order at least one, i.e.,

γ1 = 0 or Ae + Uq1 = c.
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Order conditions - continued

Assuming that the starting vector y[0] satisfies the condition

y[0] = q0y(t0) + hq1y′(t0) + · · ·+ hpqpy(p)(t0) + O(hp+1), (18)

order conditions for GLMs (15) up to p = 4 are listed in Table 1, where

g1(t) =
∂f
∂y

(
t, y(t)

)
, Γc = diag(c1, . . . , cs),

and when there is a couple of conditions separated by ‘or’, the first condition
refer to order p methods, while the second condition refers to methods with
order greater than p. In this table we have also listed the recursive differentials
used in Albrecht approach to the derivation of order conditions.
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Order Recursive differentials Corresponding order conditions

p = 1 y′ γ̂1 = 0

p = 2 y′′ γ̂2 = 0

p = 3 y′′′ γ̂3 = 0

g1y′′ VBγ2 = 0 or Bγ2 = 0

p = 4 y(4) γ̂4 = 0

g1y′′′ VBγ3 = 0

g2
1y′′ VBAγ2 = 0

g′1y′′ VBΓcγ2 = 0

Table: Recursive differentials and order conditions for p ≤ 4
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Spijker representation of GLMs

The methods (15) can be written as GLMs in Spijker form (9) with m = s + r,
ℓ = r, and the matrices T and S defined by

T =

[
A 0

B 0

]
∈ R(s+r)×(s+r), S =

[
U

V

]
∈ R(s+r)×r.

Observe that it follows from the assumptions on the form of U and V, that the
condition

r∑
j=1

sij = 1, i = 1, 2, . . . , s + r,

on the coefficient matrix S is automatically satisfied.
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Reformulation of characterization of C coefficient

We can reformulate the condition

det(I + γT) ̸= 0 and (I + γT)−1[S | γT] ≥ 0, (19)

and the characterization of CFL coefficient C = C(S,T) of GLM in Spijker
form (9) given by

C = C(S,T) = sup
{
γ ∈ R : γ satisfies (19)

}
(20)

in terms of the abscissa vector c, and the coefficient matrices A, U, B, and V
of GLM (15). We have

I + γT =

[
I + γA 0

γB I

]
.
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Reformulation of C - continued

It follows that

det(I + γT) ̸= 0 if and only if det(I + γA) ̸= 0.

Since A is strictly lower triangular we have det(I + γA) ̸= 0,[
I + γA 0

γB I

]−1

=

[
(I + γA)−1 0

−γB(I + γA)−1 I

]
,

and after some computations it follows that

(I + γT)−1[S | γT] =

[
(I + γA)−1U I − (I + γA)−1 0

V − γB(I + γA)−1U γB(I + γA)−1 0

]
.
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Characterization of C coefficient in terms of c, A, U, B, V

Hence, it follows that the condition (19)

det(I + γT) ̸= 0 and (I + γT)−1[S | γT] ≥ 0,

is equivalent to

(I + γA)−1U ≥ 0, I − (I + γA)−1 ≥ 0,

V − γB(I + γA)−1U ≥ 0, γB(I + γA)−1 ≥ 0,
(21)

and the characterization of the CFL coefficient (20) for GLM (15) can be
reformulated as

C = C(c,A,U,B,V) = sup
{
γ ∈ R : γ satisfies (21)

}
. (22)
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Minimization problem

We will use characterization (22) of CFL coefficient C to search for new
methods, for which C is as large as possible. We will systematically
investigate GLMs with 2 ≤ p ≤ 4, 1 ≤ q ≤ 4, r = 2, and 2 ≤ s ≤ 10.
Consider the minimization problem

F(γ, c,A,U,B,V) = −γ −→ min (23)

subject to the inequality constrains

(I + γA)−1U ≥ 0, I − (I + γA)−1 ≥ 0,

V − γB(I + γA)−1U ≥ 0, γB(I + γA)−1 ≥ 0,
(24)

and the equality constrains

Φp,q(c,A,U,B,V,q1, . . . ,qp) = 0, (25)

where Φp,q represents the order conditions up the the order p and stage order
conditions up to the stage order q ≤ p.
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Ceff coefficients for GLMs

The solution of this minimization problem (23), (24), and (25) leads to
specific SSP GLMs (15) with CFL coefficient C. To compare methods with
different number of stages s we also define the effective CFL coefficient by
the normalization

Ceff =
C
s
.

The Ceff coefficients for methods with two external stages are listed in
Tables 2–4, using the notation

GLM pqr,

where p is the order, q is the stage order, and r now stands for the rank of the
coefficient matrix V. For comparison, in these tables we have also listed Ceff
coefficients for SSP TSRK methods investigated by Ketcheson Gottlieb and
MacDonald (2011).
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s GLM 211 GLM 221 GLM 212 GLM 222 TSRK2

2

0.740 0.691 0.847 0.822

0.707

3

0.829 0.787 0.902 0.881

0.816

4

0.873 0.837 0.928 0.910

0.866

5

0.899 0.868 0.943 0.928

0.894

6

0.916 0.889 0.953 0.940

0.913

7

0.928 0.905 0.960 0.948

0.926

8

0.937 0.916 0.965 0.955

0.935

9

0.944 0.925 0.969 0.960

0.943

10

0.950 0.936 0.972 0.964

0.949

Table: Ceff for GLMs (15) with p = 2, q = 1, 2 and rank(V) = 1, 2, and Ceff for
TSRK methods of order p = 2, with s internal stages, 2 ≤ s ≤ 10
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s GLM 211 GLM 221 GLM 212 GLM 222 TSRK2

2

0.740

0.691

0.847 0.822

0.707

3

0.829

0.787

0.902 0.881

0.816

4

0.873

0.837

0.928 0.910

0.866

5

0.899

0.868

0.943 0.928

0.894

6

0.916

0.889

0.953 0.940

0.913

7

0.928

0.905

0.960 0.948

0.926

8

0.937

0.916

0.965 0.955

0.935

9

0.944

0.925

0.969 0.960

0.943

10

0.950

0.936

0.972 0.964

0.949

Table: Ceff for GLMs (15) with p = 2, q = 1, 2 and rank(V) = 1, 2, and Ceff for
TSRK methods of order p = 2, with s internal stages, 2 ≤ s ≤ 10
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s GLM 311 GLM 321 GLM 331 GLM 312 GLM 322 GLM 332 TSRK

2 0.401 0.222 0.412 0.293 0.366

3 0.452 0.398 0.106 0.550 0.483 0.136 0.550

4 0.530 0.516 0.249 0.612 0.527 0.360 0.578

5 0.564 0.551 0.344 0.659 0.572 0.423 0.598

6 0.607 0.579 0.410 0.694 0.581 0.443 0.630

7 0.636 0.569 0.426 0.711 0.575 0.461 0.641

8 0.661 0.562 0.474 0.750 0.565 0.477 0.653

9 0.680 0.570 0.481 0.742 0.570 0.489 0.667

10 0.688 0.577 0.477 0.734 0.569 0.498 0.683

Table: Ceff for GLMs (15) with p = 3, q = 1, 2, 3 and rank(V) = 1, 2, and Ceff for
TSRK methods of order p = 3, with s internal stages, 2 ≤ s ≤ 10
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s GLM 411 GLM 421 GLM 431 GLM 412 GLM 422 GLM 432 TSRK

3 0.277 0.239 0.017 0.318 0.293 0.030 0.286

4 0.393 0.368 0.114 0.409 0.444 0.156 0.398

5 0.471 0.455 0.219 0.485 0.477 0.260 0.472

6 0.507 0.479 0.302 0.541 0.495 0.395 0.506

7 0.543 0.500 0.415 0.569 0.513 0.422 0.534

8 0.575 0.515 0.434 0.583 0.520 0.434 0.562

9 0.609 0.516 0.444 0.609 0.516 0.447 0.586

10 0.629 0.518 0.451 0.619∗ 0.518 0.458 0.610

Table: Ceff for GLMs (15) with p = 4, q = 1, 2, 3 and rank(V) = 1, 2, and Ceff for
TSRK methods of order p = 4, with s internal stages, 3 ≤ s ≤ 10
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Stability regions of SSP GLMs with p = 2 and q = 1,
2 ≤ s ≤ 10
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Figure: Stability region of RK method with p = s = 2 (thick line) and scaled stability
regions of SSP GLMs of order p = 2 and stage order q = 1 with s stages (thin lines).
These regions increase in size as s ranges from 2 to 10.
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Stability regions of SSP GLMs with p = 3 and q = 1,
2 ≤ s ≤ 10
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Figure: Stability region of RK method with p = s = 3 (thick line) and scaled stability
regions of SSP GLMs of order p = 3 and stage order q = 1 with s stages (thin lines).
These regions increase in size as s ranges from 2 to 10.
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Stability regions of SSP GLMs with p = 4 and q = 1,
3 ≤ s ≤ 10
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Figure: Stability region of RK method with p = s = 4 (thick line) and scaled stability
regions of SSP GLMs of order p = 4 and stage order q = 1 with s stages (thin lines).
These regions increase in size as s ranges from 3 to 10.
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Test equation for order of convergence verification

To verify order of convergence of the methods discussed in this talk we will
use the test problem from Sanz-Serna, Verwer, Hundsdorfer (1987) and
Constantinescu and Sandu (2010)

∂y(x, t)
∂t

= −∂y(x, t)
∂x

+
t − x

(1 + t)2 , 0 ≤ x ≤ 1, 0 ≤ t ≤ 1, (26)

with initial condition y(x, 0) = 1 + x, 0 ≤ x ≤ 1, and left boundary condition
y(0, t) = 1/(1 + t), 0 ≤ t ≤ 1. The exact solution to this problem is

y(x, t) =
1 + x
1 + t

, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1.

This solution is linear in space and, as observed by Constantinescu and Sandu
(2010), we can use first-order upwind discretization in space variable x
without introducing discretization errors.
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Figure: Order verification for GLMs of order p = 2 and stage order q = 1 with
2 ≤ s ≤ 10 stages.
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Figure: Order verification for GLMs of order p = 3 and stage order q = 1 with
2 ≤ s ≤ 10 stages.
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Figure: Order verification for GLMs of order p = 4 and stage order q = 1 with
2 ≤ s ≤ 10 stages.
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Order verification

SSP p = s = 2, q = 1 SSP p = s = 3, q = 1 SSP p = s = 4, q = 1

N error order error order error order

64 6.61e-05 – 1.01e-05 – 2.69e-08 –

128 1.64e-05 2.01 1.27e-06 3.00 1.54e-09 4.13

256 4.09e-06 2.00 1.58e-07 3.00 9.21e-11 4.06

512 1.02e-06 2.00 1.98e-08 3.00 5.63e-12 4.03

1024 2.55e-07 2.00 2.47e-09 3.00 3.49e-13 4.01

Table: Accuracy test for problem (26) for the SSP GLM methods with p = s = 2,
p = s = 3, p = s = 4, and q = 1. The first columns displays the number of steps N.
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Monotonicity verification

To verify monotonicity properties of GLMs discussed in this talk we consider,
following Constantinescu and Sandu (2010) and Ketcheson, Gottlieb and
MacDonald (2011), the inviscid Burgers equation

∂y(x, t)
∂t

+
∂

∂x

(
1
2

y2(x, t)
)

= 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ tend, (27)

with discontinuous initial condition

y(x, 0) =

{
0, 0 ≤ x < 0.5 or 1 < x ≤ 2,

1, 0.5 ≤ x ≤ 2,

and periodic boundary conditions

y(0, t) = y(1, t), 0 ≤ t ≤ tend.
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Space discretization

The space derivative in (27) was discretized by the conservative upwind
approximation of the first order

y2(xi, t) ≈ y2(xi, t)− y2(xi−1, t)
∆x

,

i = 1, 2, . . . ,N, where xi = i∆x, i = 0, 1, . . . ,N, N∆x = 2.

The resulting system of ordinary differential equations corresponding to
N = 100 spatial points was then solved on the time interval [0, 0.5].
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Figure: Numerical approximations at tend = 0.5 to the discretization of Burgers
equation with N = 100, obtained by SSP GLM of order p = 2 and stage order q = 1,
and by DIMSIM of order p = 2 and stage order q = 2 which is not SSP
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Buckley-Leverett equation

Following Ferracina and Spijker (2008) and Ketcheson, Gottlieb and
MacDonald (2011) we consider also the Buckley-Leverett equation

∂y(x, t)
∂t

+
∂

∂x

(
Φ
(
y(x, t)

))
= 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ tend, (28)

with

Φ(y) =
y2

y2 + a(1 − y)2 .

This equation models a two-phase flow through the porous media (LeVeque
(2002)). We take a = 1/3 and assume the discontinuous initial condition

y(x, 0) =

{
0, 0 ≤ x ≤ 0.5,

1, 0.5 < x ≤ 1,

and periodic boundary conditions

y(0, t) = y(1, t), 0 ≤ t ≤ tend.
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Space discretization

As in Ferracina and Spijker (2008) the equation (28) was approximated by the
system of ordinary differential equations of the form

y′i(t) =
Φ
(
yi− 1

2
(t)

)
− Φ

(
yi+ 1

2
(t)

)
∆x

, (29)

where yi(t) ≈ y(xi, t), xi = i∆x, i = 0, 1, . . . ,N, N∆x = 1. We define

yj+ 1
2
(t) = yj(t) +

1
2
ϕ
(
θj(t)

)(
yj+1(t)− yj(t)

)
,

where ϕ(θ) is a limiter function, due to Koren (1993), which is defined by

ϕ(θ) = max
{

0,min
{

2,
2
3
+

1
3
θ, 2θ

}}
,

and

θj(t) =


0, j = 0,
yj(t)− yj−1(t)
yj+1(t)− yj(t)

, j = 1, 2, . . . ,N.
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Space discretization - continued

We semi-discretize the problem (28) using N = 100 spatial points and, as in
Ferracina and Spijker (2008) and Ketcheson, Gottlieb and MacDonald
(2011), we integrate the resulting system of ordinary differential equations
(29) on the interval [0, 1/8].
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Figure: Numerical approximations at tend = 1/8 to the discretization of the
Buckley-Leverett equation with N = 100, obtained by SSP GLM of order p = 2 and
stage order q = 1, and by DIMSIM with p = q = 2 which is not SSP
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Concluding remarks

We presented a systematic approach to the construction of SSP GLMs
for ODEs.

The search for SSP GLMs is based on the characterization of CFL
coefficient, which was derived by Spijker (2007).

SSP GLMs were computed by the solution of constrained optimization
problem with inequality constrains which characterize CFL coefficient,
and equality constrains corresponding to order and stage order
conditions.

SSP GLMs do not lead to spurious oscillations when applied to
discretization of hyperbolic conservation laws with discontinuous initial
conditions.

SSP GLMs up to order p = 4 were analyzed. Future work will address
the construction of SSP GLMs of higher order and the construction of
implicit SSP GLMs.
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