
Phys. Biol. 12 (2015) 045007 doi:10.1088/1478-3975/12/4/045007

PAPER

Modeling for (physical) biologists: an introduction to the rule-based
approach

LilyAChylek1,2, LeonardAHarris3, JamesR Faeder4 andWilliam SHlavacek2,5
1 Department of Chemistry andChemical Biology, Cornell University, Ithaca, NY 14853,USA
2 Theoretical Biology andBiophysics Group, Theoretical Division andCenter forNonlinear Studies, Los AlamosNational Laboratory, Los

Alamos,NM87545,USA
3 Department of Cancer Biology, Vanderbilt University School ofMedicine, Nashville, TN 37212,USA
4 Department of Computational and Systems Biology, University of Pittsburgh School ofMedicine, Pittsburgh, PA 15260,USA
5 NewMexico Consortium, Los Alamos,NM87544,USA

E-mail: faeder@pitt.edu andwish@lanl.gov

Keywords: rule-basedmodeling, systems biology, cell signaling

Supplementarymaterial for this article is available online

Abstract
Models that capture the chemical kinetics of cellular regulatory networks can be specified in terms of
rules for biomolecular interactions. A rule defines a generalized reaction,meaning a reaction that
permitsmultiple reactants, each capable of participating in a characteristic transformation and each
possessing certain, specified properties, whichmay be local, such as the state of a particular site or
domain of a protein. In other words, a rule defines a transformation and the properties that reactants
must possess to participate in the transformation. A rule also provides a rate law. A rule-based
approach tomodeling enables consideration ofmechanistic details at the level of functional sites of
biomolecules and provides a facile and visualmeans for constructing computationalmodels, which
can be analyzed to study how system-level behaviors emerge from component interactions.

Introduction

Amodel is a representation or imitation of a system. A
model is especially useful when the systemof interest is
both complex and difficult to probe experimentally.
Models have long been used to study biological
systems, which are among the most complex systems
studied in science and engineering. Models take many
different forms. Two types of models that are familiar
to biologists are (1) a living system amenable to
experimental study (e.g., an animal in which charac-
teristic features of a human disease are recapitulated, a
mammalian cell line, or a model organism, such as
Escherichia coli, Saccharomyces cerevisiae or Caenor-
habditis elegans) and (2) a diagram, which is often used
to graphically summarize one’s understanding of how
a systemoperates.

Aspects of these two types of models, living sys-
tems and diagrams, are combined in mathematical/
computational models. (We will hereafter refer pri-
marily to computational models, because the vast
majority of mathematical models are now analyzed
with the aid of computers, and models formulated as

computer programs, meaning computational models,
are becoming more common and almost always have
an underlying mathematical basis.) Like a diagram, a
computational model is based on what a modeler
knows or hypothesizes about a system. A difference is
the greater precision of a computational model.
Whereas a diagram tends to be ambiguous and quali-
tative, a computational model requires a modeler to
make concrete, quantitative statements about how a
system is believed to behave. The precision and rigor
required to build a computational model can help to
identify gaps in knowledge and understanding. When
such gaps are encountered, a modeler is required to
generate hypotheses that fill the gaps. Knowledge and
hypotheses are formalized and used to create a set of
equations and/or a computer program, which can be
used, for example, to simulate how the state of a sys-
tem evolves over time in response to a stimulus or per-
turbation. In this way, a computational model shares
an important feature of a living model system: both a
computational model and a livingmodel enable biolo-
gical phenomena to be studied in a controlledmanner,
in a setting that allows questions about system
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behavior andmechanisms to be answeredwith relative
ease. Both types of models suffer from the pitfall that
the insights obtained may depend in an unknown way
on the degree to which the model at hand represents
the true object of study, the biological/physiological
system of interest. Nevertheless, models are essential
for progress in biological research, because many
questions simply cannot be studiedwithout them.

Biologists routinely use diagrams to reason about
biological systems, especially cellular regulatory net-
works. In the context of discussions about cell signal-
ing systems, these diagrams are sometimes called
pathway maps, or simply maps. Pathway maps, which
are commonly drawn ad hoc, despite attempts to
establish standardized conventions [1], can be viewed
as a type of conceptual model. A map can be used to
summarize and convey one’s understanding of how a
systemworks or to provide a broad overview of what is
known about a system. A limitation of a map is that its
interpretation ultimately relies on the intuition of its
reader, which is a serious weakness given the complex-
ity of cellular regulatory networks.

The complexity of cellular networks arises from
several sources. One is the ubiquitous presence of
feedback and feedforward loops, which can generate
exotic nonlinear behaviors, such as hysteresis and
oscillations [2, 3]. Another complicating feature is the
tendency of the biomolecules that comprise cellular
regulatory networks to interact with multiple binding
partners [4, 5]. This molecular promiscuity, or poly-
specificity, can generate crosstalk, meaning influences
between networks with distinct functions. Another
complication is that biomolecular interactions and
their consequences are sensitive to quantitative fac-
tors, including the copy numbers of binding partners,
binding cooperativity, and binding affinities and life-
times [6, 7]. In addition to these quantitative proper-
ties of biomolecular interactions, which can be viewed
as intrinsic properties, interactions are also likely to be
affected by extrinsic properties, such as compartmen-
talization [8] and binding competition within a com-
partment [9], which is a function of network
connectivity. The features mentioned above can either
alone or in combination give rise to non-intuitive sys-
tem behaviors. These complicating features limit our
ability to understand and manipulate cellular reg-
ulatory networks, and they beckon us to consider
models more sophisticated and powerful than dia-
grams, such as computationalmodels.

Computational models go beyond diagrams,
because the logical consequences of the information
used to formulate a model can usually be elucidated
through computer-aided calculations, or simulations.
The information that serves as the basis for a model
may include a synthesis of multiple mechanistic
insights, an integration of different types of quantita-
tive data (e.g., measurements of protein copy numbers
and dissociation constants), and plausible assump-
tions, which are often necessary to fill knowledge gaps

as noted earlier. The analysis of a computational
model can identify a potential system behavior that
one would not have expected and suggest experiments
to test the non-obvious (i.e., interesting) predictions
of the model. Validation of such predictions increases
one’s confidence in the model. Falsified predictions
can also be useful if they lead to revisions that increase
amodel’s reliability and generality.

Modeling is not a monolithic practice. Different
techniques are used to address different problems.
Even the same problems are commonly attacked using
a variety of techniques. Some models are formulated
to study specific systems, whereas others are for-
mulated to study phenomena found in many systems.
The physical and chemical principles captured in
models vary, and models incorporate biological
knowledge at differing resolutions, from abstract and
phenomenological to detailed and mechanistic [10].
Some approaches, such as logical modeling [11], are
unconnected or only loosely coupled to physicochem-
ical principles. This diversity reflects not only a need
for different approaches to address different questions
but also a lack of consensus about best practices.

Arguably, the field of computational systems biol-
ogy is at a stage where many different modeling
approaches are being tried partly because traditional
modeling approaches, meaning those long used,
mostly in non-biological fields, have shortcomings
when applied to biological systems. Models based on
ordinary differential equations (ODEs) are arguably
the most popular type of physicochemical model
employed in biology [12]; these models represent a
traditional modeling approach. ODEs have been used
to model (bio)chemical systems since before the exis-
tence of molecules was widely accepted [13, 14].
Although ODE models are undoubtedly useful, the
ODEmodeling approach when applied to cellular reg-
ulatory networks entails complicating requirements
that call for new ideas about how to model [15–17].
Namely, this approach requires one to enumerate the
potentially populated chemical species in a system.
Because biomolecules can usually be found in numer-
ous states and complexes, it is desirable to avoid this
requirement.

Rule-based modeling allows one to avoid enumer-
ating the potentially populated chemical species in a
system; it is an approach tailored for modeling a bio-
molecular interaction network, or indeed, any system
where structured objects interact via component parts
in a modular way. Here, we provide a brief introduc-
tion to rule-based modeling in systems biology, which
is characterized by the use of local rules to represent
biomolecular interactions [18–24]. In biology, rule-
based modeling has most often been used to study cell
signaling systems, but this modeling paradigm is more
broadly applicable [23, 25–27]. Indeed, rule-based
modeling has antecedents in physics, chemistry, and
computer science [22, 28–32]. Rules formalize
mechanistic understanding of biomolecular
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interactions according to conventions that allow a set
of rules to serve as an executable model, meaning a
model that can be used to obtain simulations of the
behavior of the system represented by the model.
Simulations may leverage different algorithms to cap-
ture system behavior at varying levels of abstraction of
the underlying physiochemical laws. For example,
simulations are possible that do and do not account
for fluctuations in copy numbers, depending on how
the simulation algorithm relates to the chemical mas-
ter equation [33]. Once a rule-based model is speci-
fied, it is relatively easy to perform multiple types of
simulations, which facilitates analysis. For example,
one can readily switch between stochastic and deter-
ministic simulation methods [34]. A rule-based
approach tomodel specification ismost justified when
one is concerned with biomolecular interactions that
depend on and impact site-specific details, or biomo-
lecular site dynamics [23], and moreover the interac-
tions of interest are modular, meaning somewhat
independent of each other.

Many rule-based models reported in the literature
are simulated using an ODE solver operating on rule-
derived ODEs, and so can be viewed as equivalent to
ODEmodels that produce the same simulation results.
However, rule-based models are specified in terms of
rules instead of equations. The different approaches
used to specify ODE and rule-based models are not
superficial; the differences in the way these models are
written (i.e., specified) encourage and usually entail
differentmodeling assumptions.

This review, mainly through discussion of exam-
ples of rules and simple but complete executable mod-
els, is meant to help biologists, including those who do
not specialize in modeling, create models for the sys-
tems they study. Models can serve as valuable reason-
ing aids, and with rule-based modeling, more
widespread use of models is foreseeable. This review
may also be helpful for experienced modelers new to
rule-based modeling, or even practitioners of the
approach, because the example models illustrate a
variety of rule-based modeling capabilities and may
therefore serve a valuable reference purpose. We will
focus on one particular approach that can be used to
specify and analyze rule-based models, the approach
enabled by the BioNetGen language (BNGL) and
BNGL-compatible software tools, such as BioNetGen
[34–36]. Our focus will also be on models appropriate
for well-mixed reaction compartments, because such
models are generally easier to specify and analyze.
With such models, there is no need to specify reaction
compartment geometry or boundary conditions, for
example. Later, we will mention other model-specifi-
cation approaches and software tools (many with cap-
abilities beyond what is offered by the BNGL
framework) and point to sources of information about
these methods. A tight focus is necessary to provide a
practical introduction to rule-based modeling and
concrete examples. After learning the principles

taught here, we encourage readers to explore other
approaches.

Whatmakesmodels useful?

Models have the potential to aid biologists in several
ways. First, a model can be used as a roadmap for
experimental design. Experiments are used to test
hypotheses, and the more complex a hypothesis, the
more complicated and numerous the necessary
experimental tests are likely to be. Models can
potentially be used to carefully design experimental
tests that would be optimal for supporting or disprov-
ing a hypothesis [37–39]. Second, models can also be
used to reconcile surprising or conflicting data. In
some cases, seemingly contradictory results may
actually be compatible when quantitative details are
taken into account [40]. Third, models can be used to
consolidate knowledge about a system [41, 42]. Analo-
gous to assembly of a jigsaw puzzle, models can be
used to piece together available information to form a
more complete picture of how a system works.
Furthermore, by comparing model-based simulations
to experimental data, discrepancies between under-
standing and reality can be identified, whichmay point
to areas where additional pieces of information need
to be discovered through further experiments.

What constitutes a useful model? The answer to
this question depends partly, or even largely, on cur-
rent modeling capabilities. For example, models that
require computer-aided operations to obtain predic-
tions of system behavior (e.g., generation of random
numbers as in Monte Carlo methods [43]) only
became useful after technological advances made ana-
lyses of such models practical. It has recently been
argued that those pursuing useful models in biology
should adhere to the following guidelines [44]: (1) ‘ask
a question’, (2) ‘keep it simple’, and (3) ‘if the model
cannot be falsified, it is not telling you anything’. The
latter guideline represents valuable advice, because if a
model cannot be falsified, it lies outside the realm of
science. However, this guideline should perhaps be
augmented with an admonition to seek models that
make not only testable predictions but also unex-
pected predictions. The first two guidelines also repre-
sent valuable advice, although their interpretation
should not be static. These guidelines must be tem-
pered with an awareness of what current modeling
methodology allows. For example, although ‘asking a
question’ is necessary as a starting point, it does not
mean that a model need be designed/used for only a
single purpose to the exclusion of model reuse [45],
which can be valuable and time saving. Similarly,
‘keeping it simple’ is partly defined by the tools and
data available to a modeler; what appears complex
using one modeling approach may actually be simple
using another. For example, the development of rule-
based modeling approaches, as we will see below, has
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made it relatively easy to specify models that would be
cumbersome if not impossible to specify asODEs.

Simplicity is viewed as a virtue, perhaps especially
so in mathematical pursuits, such as modeling. In his
famous lecture on mathematical problems, Hilbert
stated [46], ‘what is clear and easily comprehended
attracts, the complicated repels us’. A view among
some, if not most, modelers is that many biochemical
details elucidated by biologists are too complicated to
contemplate including in models. Accordingly, many
known biochemical details are omitted in models.
Simple, abstract models, which may focus, for exam-
ple, on capturing certain limited influences among
molecular entities and processes, have certainly been
useful [47, 48], and are likely to continue to be useful
for a long time. However, there are many important
questions that can now be feasibly addressed that
depend on consideration of biochemical details to an
extent beyond what is usually considered bymodelers.
Easing the consideration of mechanistic biochemical
details in models for cellular regulatory systems was
one of the driving motivations for the development of
the rule-based modeling approach in systems biology
[18]. With this approach, there is a new definition of
‘simple’. We should heed the saying attributed to Ein-
stein [49], ‘everything should be as simple as possible,
but not simpler’.

The ability to capture mechanistic details in a rule-
based model has opened new frontiers, such as the
development of ‘standard models’, which do not cur-
rently exist inmost if not all of biology. Standardmod-
els in other fields, such as the Standard Model of
particle physics [50], drive the activities of whole com-
munities and tend to be detailed, because they con-
solidate knowledge and are useful in large part because
they identify the outstanding gaps in understanding.
Would standard models benefit biologists? An affir-
mative answer is suggested by the fact that there are
many intricate cellular regulatory systems that have
attracted enduring interest, such as the epidermal
growth factor receptor (EGFR) signaling network
[51, 52], which has been studied for decades for
diverse reasons. Efforts to model EGFR signaling have
been hailed as paradigmatic of systems biology [53]. A
comprehensive, extensively tested, and largely vali-
dated model for the EGFR signaling network or any
other well-studied system, meaning a standard model,
would aid modelers by providing a trusted reusable
starting point for asking not one butmany questions.

Uses and advantages of rule-based
modeling

Rules describe the interactions and processes in a
system. Various established conventions exist for
writing rules, such as BNGL [34], but in each of these,
a modeler specifies (1) the properties required of
reactants, (2) the outcome of a reaction, or,

equivalently, the transformation that is applied to
reactants to obtain products, and (3) the rate law that
governs all reactions implied by the rule. A rule is
minimal if it does not depend on any properties of the
reactants other than those of the components that are
modified by the reaction. For example, a minimal rule
for association might only require that each of the two
sites participating in formation of a non-covalent
bond be free. The set of sites ormolecular components
modified by a rule is called the reaction center. Any
additional requirements on the reactants are consid-
ered contextual. When the interactions in a system are
known to be modular, the rules describing the system
will incorporate relatively little information about
molecular context and the contextual requirements
that are expressed in rules will be local, such as a
requirement that a site neighboring a reaction center
be bound or in a particular modification state. Rules
for the interactions in a cellular regulatory network
provide a high-level and relatively easy-to-obtain
representation of the network. As we will discuss later,
the rules of a model can often be translated automati-
cally into equations, which can then be analyzed using
conventional numerical methods. In cases where
translation of rules into equations is not possible, the
rules of a model can be used as event generators in a
discrete-event (stochastic) simulation algorithm.

Because rules can include information about spe-
cific biomolecular sites, such as a constraint limiting
an interaction between two proteins to cases where a
particular tyrosine residue in one of the proteins is
phosphorylated, rule-based modeling is ideal for
representing biomolecular site dynamics, the changes
in states occurring at the functional sites of biomole-
cules [23]. For proteins, these sites include conserved
domains [54], such as Src homology 2 (SH2) and SH3
domains [55], as well as catalytic domains; short linear
motifs [56]; and sites of post-translational modifica-
tions [57], such as an amino acid residue modified
through covalent enzyme-catalyzed addition of a che-
mical group (e.g., a phosphoryl group) or a peptide
bond that can be cleaved by a protease. The concept of
a rule, which provides an abstract representation of an
interaction (or process), should become clearer as we
discuss examples.

Rules can be specified using many different con-
ventions and means [35, 58–70]. Here, as indicated
earlier, we will focus on use of the BNGL [34] for spe-
cifying rules. Many of the available rule-based models,
which are essentially collections of rules, have been
formulated using this language [71] or can be readily
recast in this language.Much of what is said here about
BNGL and BNGL-compliant software also applies to
other model-specification languages and the software
compatible with these languages, which will be briefly
discussed later.

Several thorough but informal descriptions of
BNGL are available [34, 72, 73]. A formal description
is also available [74]. BNGL allows for the specification
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of complete, executable models, which again can be
viewed as collections of rules, as well as parameter
values and other ancillary information (e.g., initial con-
ditions). BNGL also allows for the specification of
actions, which include simulation protocols, and simu-
lation outputs. BNGL is a machine-readable (i.e., text-
based) language designed for modeling cellular reg-
ulatory systems (especially cell signaling systems), which
is akin to a domain-specific programming language. It is
compatible with a number of general-purpose software
tools, including BioNetGen [34, 35], RuleBuilder [75],
RuleBender [76, 77], MOSBIE [78], DYNSTOC [79],
RuleMonkey [80], and NFsim [81]. Once specified, a
BNGL-encodedmodel can be processed to perform dif-
ferent operations, including model visualization; trans-
lation of a BNGL-encoded model specification into
different formats, such as an equivalent systems biology
markup language (SBML) encoding [12] or aMATLAB
M-file or MEX-file [82]; and simulation [34]. A variety
of simulation methods (and simulators) are available
[23], aswewill discuss later.

It is important to understandhowrule-basedmodels
differ from traditionally formulatedmodels to appreciate
when a rule-based approach iswarranted andmost likely
to be helpful. As indicated earlier, a key distinction
between a rule-based model and a traditional equation-
based model is the way that it is specified, but there tend
to be important differences beyond themeans of specifi-
cation. We note that equation-based models that are
comparable to rule-based models may take the form of
ODEs for systems with well-mixed chemical kinetics or
the form of partial differential equations (PDEs) for sys-
tems in which reaction and diffusion are coupled.
Although one could in principle use either rules or
equations to specify essentially the samemodel for a sys-
temof interest, the differentmodel-specification approa-
ches tend to engender different modeling assumptions.
Indeed, when one compares models in the literature,
such as the ODE-basedmodels of Kholodenko et al [83]
and Chen et al [84] for ErbB receptor signaling and the
rule-based models of comparable scope of Blinov et al
[85] and Creamer et al [86], one sees that the different
types of models are based on very different assumptions.
Equation-basedmodels are based on assumptions about
which chemical species are populated and therefore
tracked. Thus, the size of a model corresponds to the
number of chemical species taken to be populated in a
system. Rule-based models, in contrast, are based on
assumptions about themodularity of interactions, which
affect the forms taken by rules. The size of amodel corre-
sponds to the number of interactions of interest. These
differences arise from the distinct approaches to model
specification,whichhavedifferent requirements.

To specify an ODE or PDE model, for example,
one must enumerate the chemical species that are
potentially populated and write an equation for each.
Thus, in modeling a cell signaling system with ODEs
or PDEs, amodeler is obligated to specify which protein
states and signaling complexes are populated.

Unfortunately, there is usually no empirical data avail-
able to guide amodeler in decidingwhich chemical spe-
cies and reactions are important, and a comprehensive
enumeration of all possibly populated chemical species
is often impracticable. When site dynamics are con-
sidered there may be more chemical species that could
potentially be populated than there are molecules in a
cell. This barrier to model specification has been called
combinatorial complexity [15, 16].We note that lack of
information about which chemical species are popu-
lated in a system is an issue of concern even if one takes
a rule-based modeling approach (which eliminates the
requirement to enumerate chemical species), because
this information, if available, would impose useful con-
straints on the rules of model. However, the rules and
parameters of a rule-based model implicitly identify
important species and reactions, which can be revealed
through simulation [87]. Thus, a rule-based modeling
approach does not eliminate the problem of absence of
knowledge about the important chemical species and
reactions in a system but it does provide a tool for dis-
covering this information starting from the known bio-
molecular interactions of the system.

An example of combinatorial complexity is pro-
vided in figure 1(A), which illustrates the reaction net-
work that arises in a model for a protein with two
phosphorylation sites that can bind other proteins
when phosphorylated. This model implies a reaction
network with 9 distinct chemical species and 12 possi-
ble reactions, but it can be encoded with a set of four
rules under the assumption that phosphorylation or
binding at one site does not affect the rate of reactions
taking place at the other site. The use of rules
(figure 1(B)) circumvents the requirement to identify
the possible chemical species and reactions in advance
and greatly reduces the size of the model specification
in this case (from 12 reactions to 4 rules). Each rule
specifies the necessary and sufficient conditions for
occurrence of the interaction represented by the rule.
In our example, each rule only specifies the state of the
site being modified by phosphorylation or binding,
but not that of the other site. Each rule generates a
reaction for each allowable set of reactant species it
encounters, and furthermore, each reaction generated
by a rule is parameterized by the same rate constant.
The latter represents a coarse graining of the chemical
kinetics, because in principle, each species may be
associated with a unique reactivity, as suggested by
figure 1(A). The effect of this modularity assumption
is shown in figure 1(C), where each of the three reac-
tions generated by each rule is governed by the same
rate constant. This rule-based version of the model is
thus not quite as general as the full reaction scheme.

Although rules tend to involve assumptions of
modularity, rules can be made as precise as necessary
to represent knowledge or hypotheses about the
underlying biochemistry. It would be possible, for
example, to use rules to fully specify the reaction net-
work shown in figure 1(A) using a set of 12 rules
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havingmore contextual constraints than the four rules
discussed above, making each of these rules as specific
in regards to reactants as the 12 distinct reactions.
Thus, these rules would be equivalent to or essentially
the same as the reactions shown in figure 1(A). Such a
specification would not be more concise than a tradi-
tional one, but it would have the advantage that the
precise structural (i.e., site-specific) requirements for
each reactionwould be recorded in the rules.

Rule-based modeling can be viewed as a general-
ization of traditional approaches to modeling

biochemical kinetics that lifts the burden of needing to
make an explicit listing of the chemical species and
reactions that are important in a system. The burden
of enumerating species and reactions often leads to
ad hoc assumptions to limit the number of species and
reactions included in a model. Two such assumptions
are illustrated in figure 1(D). Both reaction schemes
include the same types of reactions (binding and
phosphorylation) used in the full and rule-based
versions, but the majority of species and reactions
are eliminated. Although assumptions of sequential

Figure 1.Reaction network-based and rule-based representations of a simple biochemical system. (a)Reaction network for a protein
(roundedbox) that can be phosphorylated andmodified at two sites. The unmodified forms andphosphorylated formsof each site are
representedby anopen circle andfilled circle, respectively. Bindingof another protein to a phosphorylated site is indicated by additionof
an edge. Because of combinatorial complexity, there are a total of nine possible chemical species (labeled s1–s9) corresponding to distinct
states of phosphorylation andbinding,with a total of 12possible (bio)chemical reactions (labeled r1–r12) connecting these states.
Although such transformations are reversible in general,wehavemade the reactions unidirectional here for simplicity. (b)Ruleswith
modularity assumptions that represent the networkwith simplifying rate assumptions. Each of the four rules describes a transformation,
either phosphorylationor binding, that occurs at oneof the two sites. Because each rule refers to only one site, the state of the other site
affects neither the applicability of the rule nor the rate of the reactions that are generated. (c)Reaction network generated by themodular
rules in (b). Labels on the reaction arrows indicate the rate constants governing each reaction. Each rule generates three reactionswith
identical rate constants as indicated.Although the number of species and reactions is the same as the network shown in (a), the number
of parameters governing the rate equations in themodel has been reduced from12 to 4 byneglectingpossible cooperative interactions
between the sites. (d) Simplified reactionnetworkmodelswith assumptions to limit combinatorial complexity. Two types of common
implicit assumptions are illustrated: sequentialmodification,where themodificationsof the sites are assumed tooccur in a particular
order, and competitive binding,whereonly one binding partner is allowed to bind at a time. These assumptions limit both the reaction
network size and the number of parameters. All but one of the reactions depicted has a corresponding transformation in the rule-based
versionof themodel (c), as indicated by the indexof the rate constants. A prime is used todenote approximate correspondence, because
the underlying assumptions of themodels differ. The competitive bindingmodel also includes a lumped reaction inwhichboth sites are
assumed tobe phosphorylated to enable binding of oneor the other of the protein’s binding partners.
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modification or competitive binding may be justified
in some cases, expedience is often the (unstated) ratio-
nale. Because traditional modeling approaches also
lack standard nomenclature for tracking bonds or
post-translational modifications, the composition of
species can be ambiguous and the nature of assump-
tionsmade in constructing amodel difficult to assess.

Although cell signaling has been studied for decades,
we have limited knowledge about how modifications
and binding at different sites of a protein are coupled
(e.g., [20, 24, 88]). We argue that rules expressing a high
degree of modularity represent a more natural starting
point for model development than making assumptions
for the sake of limiting network size. At the same timewe
caution that assumptions of modularity may not always
be valid, as exemplified by the model of Ullah et al [89]
for the behavior of a ligand-gated ion channel, the inosi-
tol 1, 4, 5-trisphosphate receptor. This model includes
only a fraction of the possible states of the receptor, those
identified as being critical for reproducing an impressive
collection of data. Although the model is inconsistent
with ligand binding sites in the receptor behaving inde-
pendently, ormodularly, the states included in themodel
are highly idiosyncratic, meaning that the importance of
these particular states is not at all apparent. Thus, this
model is representative of models having structures that
can only be found through inference from data. Models,
especially at early stages of investigation, are usually taken
to have less labyrinthine structures, regardless of model-
ing approach. Successive refinement of modular rules
represents one principled approach that may prove use-
ful in the future for the inference of such complex coop-
erative interactions fromdata.

Examples of rules for interactions in a cell
signaling system

To make the concept of rules more concrete, let us
introduce and then discuss three sets of BNGL-
encoded rules, which describe various processes
involved in IgE receptor (FcεRI) signaling (figure 2).
(As we discuss these rules, we will also discuss the
underlying biological details, hopefully in an intelligi-
ble manner for readers unfamiliar with FcεRI signal-
ing.) These rules are drawn froma larger set of such rules

[41], discussed below, and do not by themselves form a
coherent model of the system. Before discussing the
example rules and presenting them in BNGL format, it
should be noted that rules generally encode molecular
mechanisms, which may seem arcane and which can
make the writing or interpretation of a rule somewhat
challenging. Of course, the ability to naturally capture
(i.e., formalize)molecularmechanisms of biomolecular
interactions is an advantage of rules, but because of the
intimate link between the form of a rule and the
underlying biological details, the presentation of rules
below is necessarily entwined with a discussion of
molecular mechanisms (i.e., site-specific details of
biomolecular interactions) involved in FcεRI signaling.
If these details obscure our introduction of rules (which
we hope is not the case), we encourage the reader to
return to this section after examining the complete
models discussed later; these models consist of rules
that can be interpretedmore easily without background
knowledge about a particular biological system.

FcεRI is a multichain antigen recognition receptor
that is expressed, for example, on mast cells [90]. The
antigen specificity of a given FcεRI receptor is deter-
mined by the IgE antibody with which the receptor is
associated. IgE-FcεRI complexes are long lived relative
to the time scale of the signaling events initiated by the
interactions of IgE-FcεRI complexes with a multi-
valent antigen. Signaling may be initiated in the
laboratory by crosslinking of FcεRI through use of var-
ious reagents, such as bivalent haptens, multivalent
haptenated proteins (or other carrier molecules), che-
mically crosslinked oligomers of IgE, anti-IgE anti-
bodies, and anti-FcεRI antibodies [91].

Here, we will discuss rules for the following signal-
ing processes, which can all be considered early steps
in FcεRI signaling (figure 2(A)): (1) binding and cross-
linking of receptors by a bivalent anti-FcεRI IgG anti-
body (figure 2(B)); (2) recruitment of a protein
tyrosine kinase, Lyn, to a docking site at Y218 in the β
chain of an activated receptor (UniProt [92] number-
ing for the rodent protein Ms4a2), which depends on
phosphorylation of Y218 (figure 2(C)); and (3) phos-
phorylation of amembrane-localized substrate (Y175)
in Lat by a second receptor-associated protein tyrosine
kinase, Syk (figure 2(D)). Rules for these processes can
bewritten in BNGL as follows:

a( ) ( ) ( ! ). ( ! ) (1 )Lig r,r Rec l −>Lig r,r l Rec l 1 kp1+
b( ! ) ( ) ( ! ! ). ( ! ) (1 )Lig r ,r Rec l −>Lig r ,r 1 Rec l 1 kp2+ + +
c( ! ). ( ! ) ( ) ( ) (1 )Lig r 1 Rec l 1 −>Lig r Rec l koff+

( ) ( _ ) ( ! ). ( _ ! ) (2)Lyn SH2 Rec b Y218 P − Lyn SH2 1 Rec b Y218 P 1 kp1,kmL+ ∼ < > ∼

a( ! ) ( ) ( ! ! ). ( ! ) (3 )Syk tSH2 ,kin Lat Y175 0 Syk tSH2 ,kin 1 Lat Y175 0 1 kf+ + ∼ −> + ∼
b( ! ). ( ! ) ( ) ( ) (3 )Syk kin 1 Lat Y175 0 1 Syk kin Lat Y175 0 kr∼ −> + ∼
c( ! ). ( ! ) ( ) ( ) (3 )Syk kin 1 Lat Y175 0 1 Syk kin Lat Y175 P kcat∼ −> + ∼
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These rules, which represent direct binding and
catalytic interactions, are visualized in figure 3 in
accordance with the conventions of Faeder et al [93].
Note that bonds between molecular components are
indicated by sharing of bond indices, which are pre-
fixed by the ‘!’ symbol. The notation ‘!+’ indicates a
bond without indicating the binding partner. Simi-
larly, internal states of molecular components are pre-
fixed by the ‘∼’ symbol. The conventions of BNGL-
encoded rules are discussed further below.

The rule of equation (1a) represents capture of a
free ligand by a free receptor site, meaning capture of
free anti-FcεRI IgG antibody by the epitope in FcεRIα
recognized by the antibody. The rule of equation (1b)
represents crosslinking of two receptors by a receptor-
tethered ligand. The rule of equation (1c) represents
dissociation of a ligand–receptor (non-covalent)
bond. Note that in the graphical depictions of these
interactions, which are shown in figures 2(B) and
3(A), (B), the two binding rules are depicted as rever-
sible, whereas in equation (1c) we have combined the
two types of dissociation events captured in the rever-
sible rules into a single dissociation rule. The rule of
equation (2) represents reversible recruitment of the
Src-family protein tyrosine kinase Lyn to a phospho-
tyrosine docking site in the receptor via Lyn’s SH2
domain. The docking site is located at Y218 in the
receptor’s β chain, which is part of an immunor-
eceptor tyrosine-based activation motif (ITAM). The
rules of equations (3a) through (3c) represent Syk-
mediated phosphorylation of a substrate in the mem-
brane adaptor protein Lat (Y175, UniProt numbering
for the rodent protein) via a Michaelis–Menten
mechanism [94, 95]. The rule of equation (3a) indi-
cates that a component in Syk, which is named tSH2
to suggest ‘tandem SH2 domains,’ is bound, which is
indicated by the notation ‘!+.’ (The tandem SH2
domains in Syk interact with a pair of ITAMphospho-
tyrosines in each of the receptor’s γ chains.) Thus, the
rule of equation (3c) represents an activity of Syk that
is restricted to receptor-associated forms of this pro-
tein tyrosine kinase, because binding of the kinase
domain of Syk, denoted kin, to its substrate, Y175 in
Lat, depends on Syk association with the receptor, as
indicated by the rule of equation (3a).

As can be seen from the example rules presented
above, formal elements of a rule are often in one-to-
one correspondence with material entities. For exam-
ple, Lyn in the rule of equation (2) refers to Lyn and
SH2 refers to the SH2 domain of Lyn.

Each of our example rules ends with a listing of
either one or two names of parameters. These rule-
associated parameters are, by convention, taken to
be rate constants in mass-action (elementary) rate
laws. (Other types of rate laws can also be
associated with rules, but when only a parameter
name is given, a mass-action rate law is implied
by convention.) The numerical values (and the units)
of the rate constants associated with rules are

usually defined separately from the rules within a
model-specification file. There is at least one rate law
associated with each rule. Reversible rules, such as the
rule of equation (2), may be associated with two rate
laws, one for the forward transformation defined by
the rule and one for the reverse transformation
defined by the rule.

The rule of equation (2) is associated with two rate
constants and has two directions. It can be viewed as a
generalized reversible reaction, or a reaction generator
that defines forward and reverse transformations aris-
ing from a reversible interaction between two mole-
cules named Lyn and Rec. The rule indicates that the
interaction between Lyn and the receptor is mediated
by molecular components named SH2 (a constituent
of Lyn) and b_Y218 (a constituent of FcεRI’s β-chain
ITAM). The nomenclature of rules is similar to that of
standard chemical reactions; however, rules differ
from standard chemical reactions in that they do not
uniquely identify reactants (or products), which
allows for concise model specification. For example,
the rule of equation (2) is silent about functional com-
ponents of Lyn and FcεRI other than the SH2 domain
in Lyn and its phosphotyrosine docking site in FcεRI.
Thus, under a ‘don’t care, don’t write’ convention
[23], the rule potentially applies tomultiple forms and
states of these proteins and consequently defines mul-
tiple reactions if multiple forms and states are encom-
passedwithin amodel specification.

The rule of equation (2) has left- and right-hand
sides, which are separated by the symbol ‘<−>.’ This
symbol indicates that the interaction represented by
the rule is reversible and that the rule defines transfor-
mations/reactions in forward and reverse directions.
The other rules presented above are each unidirec-
tional, which is indicated by the symbol ‘−>.’ By con-
vention, unidirectional rules are written (and read)
from left to right. In equations (1a), (1b), (2) and (3a),
the plus sign on the left-hand side indicates that the
rule defines bimolecular (association) reactions, read-
ing from left to right. The absence of a plus sign on the
right-hand side of equation (2) indicates that the rule
defines unimolecular (dissociation) reactions when it
is read in the opposite direction. The rules of
equations (1c), (3b), and (3c) also define unidirec-
tional reactions. When two rate constants are asso-
ciated with a rule, as is the case for equation (2), two
elementary mass-action rate laws are implied. In the
rule of equation (2), one rate law, with rate constant
kpL, is implied for all association reactions defined by
the rule, and a second rate law, with rate constantkmL,
is implied for all dissociation reactions defined by the
rule. The use of a single rate law for all association (or
dissociation) reactions is a simplification, a type of
coarse graining, as noted earlier.

The left-hand side of a rule defines necessary and
sufficient conditions. In the case of equation (2), this
rule defines necessary and sufficient conditions for
Lyn association with FcεRI. Namely, association may
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Figure 2.Early events in IgE receptor (FcεRI) signaling. (a) An activation cascade in the signaling network of FcεRI, amultichain
antigen-recognition receptor. A ligand or crosslinking reagent, such as amultivalent antigen or, as shown, an IgG antibody specific for
the receptor’sα chain, activates the receptor by inducing receptor clustering. Receptor clustering allows Lyn, a Src-family protein
kinase that constitutively associates with the receptor’s β chain, to phosphorylate tyrosines in neighboring, co-clustered receptors,
which serves to recruitmore Lyn to receptors as part of a positive feedback loop. Lyn kinase activity also serves to recruit a second
protein kinase, Syk, to receptors, which enhances Syk’s ability to phosphorylate tyrosines in the transmembrane adaptor protein Lat.
(b) Pictorial representation of the steps involved in receptor crosslinking by a bivalent ligand (anti-FcεRIα): capture of free ligand
(top) and crosslinking of receptors by a receptor-tethered ligand (bottom). (c) Pictorial representation of reversible Lyn association
with FcεRIβ. (d) Pictorial representation of phosphorylation of Lat by receptor-bound Syk via aMichaelis–Mentenmechanism.

Figure 3.Visualization of rules. The rules of equations (1)–(3) are visualized in accordancewith the graphical conventions of BNGL
[93]. According to these conventions, functional components ofmolecules (e.g., binding sites and sites of phosphorylation) are
represented as vertices of colored graphs. The color of a graph corresponds to the type ofmolecule represented by the graph. The
components of a given type ofmolecule share the same color (or equivalently, they share the samemolecule type name). Vertices have
optional attributes (or equivalently, labels), which indicate internal states (i.e., local properties, such as phosphorylation status).
Bonds betweenmolecular components are represented by (undirected) edges. As a simplification, one normally only uses edges to
represent those bonds that break and/or formunder conditions of interest. (a), (b)Graphical depiction of equations (1a) and (1b).
These rules formalize the pictorial representations offigure 2(B). (c)Graphical depiction of equation (2). This rule formalizes the
pictorial representation offigure 2(C). (d)–(f) Graphical depiction of equations (3a), (3b) and (3c). These rules formalize the pictorial
representations offigure 2(D). It should be noted that rules, which are used to represent themolecular interactions in a system, are
simply collections of possibly connected subgraphs of the graphs used to represent themolecules in a system. The subgraphs
comprising a rule identify themolecular components that affect, or are affected by, the interaction represented by the rule.
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occur if and only if the SH2 domain of Lyn is free
(indicated by an absence of a bond index appended to
the component name SH2, which when present in a
rule is prefixed by a ‘!’ symbol) and Y218 in FcεRI’s β-
chain is both free (again indicated by the absence of a
bond index) and in an internal state labeled ‘P.’ Inter-
nal states are convenient abstractions, which can be
used to represent local properties of molecular com-
ponents. Here, the label P is used to represent a phos-
phorylated tyrosine; the label 0 (which is intended to
suggest nomodification) could be used to represent an
unphosphorylated tyrosine. Internal state labels are
prefixed by a tilde (∼). Similarly, as already noted,
bond indices are prefixed by an exclamationmark (!).
The right-hand side of the rule defines the outcome of
Lyn association with FcεRI: the formation of a bond
between Lyn’s SH2 domain and the phosphotyrosine
in FcεRI’s β-chain. The bond is indicated through
name sharing. In BNGL, associating a common bond
index, such as ‘1’ in the rules presented above, with a
pair of component names indicates that the compo-
nents are connected. A dot (.), which appears on the
right-hand side of equations (1a), (1b), (2) and (3a),
serves as a separator. A dot also indicates connection.
For example, the dot in equation (2) indicates that Lyn
and FcεRI are connected (without specifying how). In
the case of this particular rule, the dot is redundant,
because sharing of the bond index 1 by SH2 and
b_Y218 also indicates that Lyn and FcεRI are con-
nected. When read from right to left, the rule of
equation (2) indicates that a bond between Lyn’s SH2
domain and pY218 in FcεRI’s β-chain can be broken
and that breaking of the bond causes dissociation of
the proteins.

A complete, executablemodel and its
analysis

The rules discussed above are simplified versions of
rules taken from a recently developed library of rules
for interactions involved in FcεRI signaling [41]. Each
rule in this library is typically associated with com-
ments that provide annotation, including a rationale
for the formalization of the interaction represented by
the rule and supporting references. This library was
developed with the intention of enabling agile devel-
opment of models for studying the system-level
behavior of the FcεRI signaling network. A limiting
step in model development is often a literature search
and review, conducted for the purpose of collecting,
organizing and formalizing the available mechanistic
knowledge that is relevant for addressing a specific
research question or other purpose. With a reliable
rule library, this aspect of model development is
streamlined. In supplementary file S1, which is a plain-
text BioNetGen input file, we have combined the rules
given in equations (1)–(3) with additional rules
(sourced from the FcεRI rule library), and other

elements of an executable model specification, such as
parameter values, to obtain an executable model
encompassing the rules illustrated in figure 3. This
model can be used, for example, to predict how the
binding properties of a bivalent ligand, which we take
here to be an FcεRI-specific IgG antibody, affect FcεRI
signaling events downstream of FcεRI crosslinking.
An example of the type of behavior we can investigate
using the model is provided in figure 4, which shows
how the extent of Lat phosphorylation depends on the
lifetime of a ligand–receptor bond.

As noted above, the model specification of supple-
mentary file S1 was constructed by reusing rules col-
lected in the FcεRI rule library of Chylek et al [41]. The
ability to construct a new model by assembling exist-
ing rules in a newway, albeit with somemodifications,
illustrates the compositionality of the rule-basedmod-
eling approach. In table 1, we compare the rules of
supplementary file S1 with their parent rules in the
FcεRI rule library. The modifications of the parent
rules were introduced as simplifications and to obtain
a self-consistent set of rules. The molecule types and
interactions considered in the model are illustrated in
figure 5, which shows a contact map automatically
generated from supplementary file S1 (stacks.iop.org/
PB/12/045007/mmedia) by RuleBender [76, 77]
(figure 5(A)) and an extended contact map manually
constructed in accordance with recommended guide-
lines [96] (figure 5(B)). Boxes in the maps illustrate
molecules and the functional components of mole-
cules considered in the model. Arrows in the maps
represent interactions captured by rules in themodel.

It should be noted that a complete model specifi-
cation invariably consists of several other parts in
addition to rules. These parts of a model may include,
for example, a declaration of the different types of
molecules considered in the model, parameter values,
and user-defined functions for rate laws. A model is
also usually associated with specifications of model
outputs, which are called observables, and one or
more (simulation) commands, which are called
actions. Tables 2 and 3 provide listings of some of the
available BNGL actions and their arguments.

Although themodel of figure 5 and supplementary
file S1 was constructed quickly, this model is fairly ela-
borate. To introduce and discuss the various parts of a
complete executable BNGL-encoded model specifica-
tion, let us consider a simpler model, a model for
interaction of a solublemonovalent ligand with a biva-
lent cell-surface receptor (figure 6). This model corre-
sponds to the experimental system considered in the
study of Erickson et al [97], in which the ligand was
DCT (a monovalent hapten) and the receptor was
hapten-specific cell-surface IgE (bound to FcεRI). In
this study, Erickson et al [97] studied the effect of dif-
fusion on ligand capture by the cell-surface receptor
and escape of the ligand from the receptor to the bulk
extracellularfluid.
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Themodel of figure 6 (and supplementary file S2),
as is typical of BNGL-encoded models, consists of sev-
eral named blocks of code, as well as comments, which
are each preceded by the ‘#’ symbol. In figure 6, com-
ments are used to indicate the units of parameters,
which must be specified in a self-consistent unit sys-
tem. Each block of code in figure 6 is identified and
delineated by a block name associated with the
‘begin’ and ‘end’ keywords. The model specifica-
tion, which consists of six blocks, is contained within a
block of code that is delineated by ‘begin model’
and ‘end model’ and followed by two commands or
actions, which together define a simulation protocol.
This protocol consists of two parts: (1) network gen-
eration (as specified by the ‘generate_network’
command), which involves finding the chemical reac-
tion network (i.e., the reactions and species) implied
by the rules of the model; and (2) construction and
numerical integration of the corresponding ODEs for
the chemical kinetics of the network (as specified by
the ‘simulate’ command).

The blocks of code comprising the model specifi-
cation of figure 6 (i.e., the six blocks within themodel
block) are the parameters, molecule types,
seed species, observables, functions,
and reaction rules blocks. These blocks of code
provide the following information: (i) parameters
—values for useful physical/mathematical constants
(e.g., π) and parameters of the model (e.g., ligand and
receptor abundances, an equilibrium association con-
stant for ligand–receptor binding, and a dissociation
rate constant) in a consistent unit system, one inwhich
concentrations are expressed on a per cell basis, which
has certain advantages discussed elsewhere [34]; (ii)
moleculetypes—definitions of the types ofmole-
cules considered in the model (here, a monovalent
ligand and a bivalent receptor), including their rele-
vant component parts (one ligand binding site and
two identical cognate receptor binding sites); (iii)
seed species—the species initially present in the
system (here, the free form of the ligand and the free
form of the receptor) and their abundances, which for
this model serve to define an initial condition for an
initial value problem; (iv) observables—the
model outputs of interest, which are defined as sums
over the concentrations of speciesmatching a specified
pattern or set of patterns (e.g., the amount of bound
ligand); (v) functions—mathematical functions
defined using parameters and observables that are
used to specify complex observables (i.e., observables
that cannot be represented by a sum or weighted sum
of concentrations) and non-elementary rate laws
(here, functions are used to define forward and reverse
ligand–receptor binding coefficients in accordance
with the theory of Berg and Purcell [98]); (vi) reac-
tion rules—local rules that model/represent
interactions (here, a reversible rule is defined for
ligand–receptor association and dissociation and the

rule is associated with a pair of forward and reverse
rate laws specified using functions).

The use of rules does not simplify the specification
of this model, but the model-specification file shown
in figure 6, introduces the various parts of BNGL-
encoded models and illustrates the use of functions,
which is a fairly new capability [23, 81]. Below, after
briefly discussing available simulation methods and
software tools, we will consider additional examples of
model specifications and actions, including a (simple)
model that would be difficult to specify in a traditional
manner (supplementary file S3).

Abrief survey of usefulmethods and
software tools

Various methods and software tools are available to
support rule-based modeling. The vast majority of the
presently available methods and tools are designed to
support model specification and/or simulation. These
tasks are somewhat interdependent but less so than is
typical for traditionalmodeling approaches.

Methods

To specify models in terms of rules, one needs
conventions and compatible software tools for operat-
ing on and analyzing compliant model specifications.
Because of the newness of rule-based modeling,
conventions are still emerging. However, BNGL and
BNGL-compliant tools are used commonly [22, 71].
Alternative methods for specifying models include
languages/formats with syntactic differences that tend
to offer similar functionality [58, 62, 99, 100];
domain-specific languages that offer higher-level
abstractions that can ease the task of model specifica-
tion [101]; and embedded languages, which allow a
modeler to leverage the power of a general-purpose
programming language [69]. There are also BNGL
extensions and other languages that enable modeling
capabilities beyond what is available within the BNGL
framework [67, 68, 102–107]. We note that rules and
rule-based models are readily visualized [76–
78, 93, 96, 105, 108, 109] and software tools exist that
enable a visual approach to model specification, such
as RuleBuilder [75] and Simmune [63, 104, 105].
(RuleBuilder is not currently supported but the Java
code is available.)

As we have discussed above, the rule-basedmodel-
ing paradigm allows site-specific details about biomo-
lecular interactions to be captured and represented
using an understandable language, such as BNGL. The
understandability of BNGL stems from its underlying
graphical formalism [36, 74, 110], which makes indi-
vidual rules and collections of rules (models) amen-
able to visualization [76–78, 93, 96, 105, 108, 109], as
well as annotation [96]. Computer-aided analysis of
BNGL-encoded models is enabled by general-purpose
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BNGL-compatible software tools that can process
model specifications to obtain simulation results.
These tools implement simulation algorithms that fall
into one of two categories: direct methods or indirect
methods, both of which are based on physicochemical
principles [23]. (Some researchers refer to direct
methods, or even rule-based modeling, as a form of
agent-based modeling; we discourage this practice,
because agent-based models are not typically based on
physicochemical principles.)

Indirect methods involve the interpretation of the
rules of a model to obtain (through network genera-
tion, i.e., through enumerating the reactions implied
by rules) an equivalent model specification that has a
traditional form, such as that of a coupled system of
ODEs [34–36, 74, 111]. Once a traditional formula-
tion has been obtained, then standard tools can be
applied, such as the ODE solvers suitable for stiff pro-
blems available within SUNDIALS [112] or MATLAB
(MathWorks, Natick, MA). Use of an indirect method
allows one to leverage mature, sophisticated, and

diverse simulation and analysis tools. However, indir-
ect methods have limited applicability, because a set of
rules sometimes cannot be practically translated into
an equivalent, traditional model form, often because
of memory requirements [74]. (Recall the problem of
combinatorial complexity.) A not unrelated issue is
runaway network generation. In general, one cannot
determine beforehand whether the network-genera-
tion step of an indirect method will finish running
(yielding a finite-size list of reactions and/or
equations) or continue indefinitely. In other words,
when one tries to apply an indirect method, network
generation may or may not terminate. In practice, one
can anticipate a failure to terminate if one can detect
rules that introduce a polymerization-like process.
Trying to determine if network generation will termi-
nate is equivalent to trying to solve the famous halting
problem. Rule-based modeling systems have been
shown to be Turing complete [113], and for such sys-
tems, the halting problem is known to be undecidable.
In cases where indirect methods are inapplicable,

Figure 4. Sensitivity of phosphorylation to the lifetime of a ligand–receptor bond. Themodel of supplementaryfile S1 (stacks.iop.org/
PB/12/045007/mmedia)was used to predict how the lifetime of a ligand–receptor bond influences the (steady-state) level of
phosphorylation of Y218 in the β chain of FcεRI (dotted line), which is a docking site of Lyn’s SH2domain; the steady-state level of
phosphorylation of Y65 andY76 in the γ chain of FcεRI (broken line), which are docking sites of Syk’s tandemSH2 domains; and the
steady-state level of phosphorylation of Y136 in Lat (solid line), which is a substrate of Syk. The simulation results underlying the plots
shown here are reported in a.gdatfile that is created by BioNetGen after processing themodel specified in supplementary file S1 and
then executing the actions defined in supplementaryfile S1. The lifetime of a ligand–receptor bond corresponds to the inverse of the
rate constant associatedwith the rule of equation (1c), i.e., 1/koff. The dependence of phosphorylation levels on ligand–receptor
bond lifetime arises from the interplay between kinetic proofreading, which tends to increase phosphorylation levels as lifetime
increases, and serial engagement, which tends to decrease phosphorylation levels as lifetime increases [17, 151].

Table 1.Comparison of two parent rules in the library of [41] and the derived rules of supplementary file S1 available at stacks.iop.org/PB/
12/045007/mmedia. Each derived rule was obtained from its parent rule through a simplification, removal of a constraint requiring the SH3
domain in Lyn to be free, because in themodel of supplementary file S1, the binding partners of Lyn’s SH3domain are not considered.

Parent rule Derived rule

# Lyn unique domain binds receptor
Rec(b_Y218∼0)+ Lyn(U,SH3,SH2) −> \ Lyn(U,SH2)+ Rec(b_Y218∼0)−> \
Rec(b_Y218∼0!1).Lyn(U!1,SH3,SH2)kfRecLyn1 Lyn(U!1,SH2).Rec(b_Y218∼0!1)

# Lyn SH2 domain binds receptor
Rec(b_Y218∼P)+ Lyn(U,SH3,SH2) −> \ Lyn(U,SH2)+ Rec(b_Y218∼P)−> \
Rec(b_Y218∼P!1).Lyn(U,SH3,SH2!1)kfRecLyn2 Lyn(U,SH2!1).Rec(b_Y218∼P!1)
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Figure 5.Visualization of a rule-basedmodel. Rules can be precisely visualized, as illustrated infigure 3, but a coarse description of the
rules comprising amodel is often useful for obtaining an overview ofwhat is captured in amodel. Two visualizations of themodel of
supplementary file S1 (stacks.iop.org/PB/12/045007/mmedia) a contactmap and an extended contactmap, are shownhere. (a)
Contactmap. This type of visualization can be generated automatically from the rules of amodel. RuleBender provides this
functionality. A contactmap shows the types ofmolecules considered in amodel, their functional components, and the bonds that can
form and break between these components. (b) Extended contactmap. This type of visualization adds information beyond that
encoded directly in rules and serves an annotation purpose. At present, extended contactmapsmust bemanually constructed. In an
extended contactmap, one represents the hierarchical substructures ofmolecules; enzyme-substrate relationships, which are usually
implicit in rules; and the dependence of interactions on the internal states ofmolecular components. Each arrow in an extended
contactmap represents a set of rules that share a common reaction center. (Multiple rules correspond to one arrow if a transformation
is taken to occur inmultiplemolecular contexts in a context-dependentmanner.) Arrows that begin and endwith arrowheads
represent direct binding interactions. Arrows that begin at a nested box and end at a small circle represent catalytic interactions. The
box associatedwith such an arrow represents an enzyme; the circle points to a substrate of the enzyme. Components taken to have
internal states are attached to flags. Here,flags are used to identify tyrosine residues taken to have phosphorylated and
unphosphorylated internal states. If an arrow representing a direct binding interaction points to a solid dot on a flag, then the arrow
should be understood to represent an interaction that depends on the internal state indicated by theflag.Note that phosphatase
activities are not represented here because phosphatases are implicit in themodel of supplementary file S1.

Table 2. Summary of selected BioNetGen actions and arguments. For a complete listing of actions and arguments, see the documentation
available at [73].

Action/argument Description Default

generate_network Process the rules of amodel to generate the reaction network implied by the rules
overwrite=>1/0 Allow an existing .net file to be overwritten 0
max_iter=>int Specify themaximumnumber of iterations for the network generation

procedure
100

max_agg=>int Specify themaximumnumber ofmolecules in an aggregate or complex 1e9
simulate Perform a deterministic or stochastic simulation (theode,ssa andplamethods require prior

execution ofgenerate_network and thenfmethod requiresNFsim)
prefix=>‘string’ Specify the base filename for output Base name of bnglfile
suffix=>‘string’ Specify a suffix to be added to output filenames Empty
verbose=>1/0 Request verbose output 0
method=>‘string’ Specify simulationmethod,stringmust beode,ssa,plaornf Required
t_start=>float Start time for simulation 0
t_end=>float End time for simulation Required
n_steps=>int Number of report times betweent_start andt_end 1
print_functions=>1/0 Request that function evaluations be sent to .gdat file 0
atol=>float Absolute tolerance (usedwithode) 1e-8
rtol=>float Relative tolerance (usedwithode) 1e-8
steady_state=>1/0 Check for steady state (usedwithode) 0
seed=>int Seed for generation of pseudo randomnumbers (usedwithssa,pla,

andnf)
Random

parameter_scanbifurcate Perform simulations to a specified end time over a specified range of values for a parameter (these
commands are useful formaking steady-state dose-response curves and bifurcation diagrams);
usebifurcate if bistability is suspected

The arguments ofsimulate are available, plus those described below
parameter=>‘string’ Name of the parameter to be scanned Required
par_min=>float Minimumvalue of parameter Required
par_max=>float Maximumvalue of parameter Required
n_scan_pts=>int Number of points betweenpar_min andpar_max to sample Required
log_scale=>1/0 Sample points logarithmically/linearly 0

13

Phys. Biol. 12 (2015) 045007 LAChylek et al

http://stacks.iop.org/PB/12/045007/mmedia


direct methods, which are specialized for simulation
of rule-basedmodels, are used.

Direct methods are fairly new, and methodology
tailored for simulation and analysis of rule-based
models is still being developed. Thus, compared to the
toolbox of methods available for traditionally for-
mulated models, direct method options are relatively
limited. The available direct methods are all particle-
based stochastic simulation algorithms
[79, 80, 114, 115]. Particle-based stochastic simulation
allows the state of a system to be tracked in terms of
molecular site states instead of population levels of
chemical species, which obviates the need to enumer-
ate the chemical species (and reactions) implied by
rules. In direct methods, rules are used as event gen-
erators. An event changes the state of at least onemole-
cular site, and the state of the system is found as a
function of time through the firing of probabilistically
chosen rule-defined reaction events, one event at a
time. Although this type of simulation algorithm can
be less efficient than an indirect method (because of
the drawbacks of discrete-event procedures [116]),
direct methods are the most generally applicable type
of simulation method available for rule-based models.
Some models that have been developed to study cel-
lular regulatory systems can only be simulated using a
directmethod [86, 117–119].

A hybrid particle/population (HPP) method has
recently been implemented that lies intermediate
between indirect and direct methods [74]. Like indir-
ect methods, HPP expands the rules of a model to
obtain an alternative, equivalent model specification.
However, unlike with indirectmethods, the expansion

with HPP is only partial and the resulting model is still
rule-based, although with a larger number of rules
than the original. The advantage of this partial expan-
sion is that it allows a subset of the species to be treated
as population variables rather than particles. This
approach can significantly reduce computational
memory requirements [74]. Simulations of the par-
tially expandedmodel can be performed using a recent
version of NFsim (1.11 or later) that can handle popu-
lation variables.

Software tools
Two useful simulation tools for rule-based compart-
mental models are BioNetGen [34] and NFsim [81].
BioNetGen is a BNGL-compatible simulation tool that
implements a variety of indirect methods, including
both deterministic and stochastic methods. The
options available include methods suitable for stiff
problems, such as the default ODE solver (invoked
with the ‘ode’ method flag) and the partitioned-
leaping algorithm for stochastic simulation (invoked
with the ‘pla’ method flag) (table 2). The latter
method is a variant ofGillespie’s tau-leaping algorithm
[116, 120]. NFsim is a BNGL-compatible simulation
tool that implements a (stochastic) direct method
[81, 121]. BioNetGen and NFsim, which offer the
ability to specify rate laws that have arbitrary func-
tional forms [23, 81], can each be accessed from the
command line, through scripting, or through a
graphical user interface (GUI), which is provided by
RuleBender [76, 77]. The Python-based framework
PySB (for systems biology modeling) provides an
additional means for using these and other tools [69].

Table 3. Summary of additional BioNetGen actions and arguments. For a complete listing of actions and arguments, see the documentation
available at [73].

Action/argument Description

readFile Import text from a designated file
file=>‘string’ Name offile to be read and path (required)
blocks=>[‘string’,…] An optional list of blocks to be imported from afile (by default, all available blocks are

imported)
writeSBMLwriteMfilewriteMexfile Report as output a generated reaction network in SBML,M-file, orMEX-file format
prefix=>‘string’ Attach a prefix to the base filename used for output
suffix=>‘string’ Attach a suffix to the basefilename used for output
setConcentration(‘species’,val) Set the value of the concentration of a species
species The BNGLname of the species
val Anumerical value
saveConcentrations(‘label’) Save inmemory all current species concentrations
label Anoptional label that can be used to reference saved information
resetConcentrations(‘label’) Set all species concentrations to the values stored inmemory (at the last save, by default, or

to those values referenced by the indicatedlabel)
label Anoptional label that can be used to reference saved information
setParameter(‘param’,val) Set the value of a parameter
param The name of the parameter
val Anumerical value
saveParameters(‘label’) Save inmemory all current parameter values
label Anoptional label that can be used to reference saved information
resetParameters(‘label’) Set all parameters to the values stored inmemory (at the last save, by default, or to those

values referenced by the indicatedlabel)
label Anoptional label that can be used to reference saved information
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The RuleBender/BioNetGen/NFsim software stack
can be freely downloaded as a bundle, along with
documentation, and installed (typicallywithout a need
for compilation) on commonly used platforms,
including Windows, Mac OS, and Linux [122]. We
should emphasize that this software stack is designed
and intended for the analysis of models in which

reaction compartments are spatially homogeneous
(i.e., well-mixed). Consequently, other tools, such as
Simmune [104, 105], must be used for spatial model-
ing. There are a number of software tools for rule-
based spatial modeling based on physicochemical
principles, which account for coupling between reac-
tion and diffusion in different ways (viz., the next

Figure 6.Amodel for ligand–receptor bindingwith diffusion effects. An annotated, executable version of thismodel is provided as
supplementary file S2 available at stacks.iop.org/PB/12/045007/mmedia. Themodel specification consists of several parts, which
define parameters,molecule types, seed species, observables, functions, and rules. Themodel specification is accompanied by several
commands, or actions. If supplementary file S2 is submitted to BioNetGen for processing, these actionswill be performed
automatically after themodel specification is parsed. The actions shownhere instruct BioNetGen to perform three simulations of
ligand–receptor binding kinetics with different values of the ligand diffusion coefficient.
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subvolume method, PDEs, and Brownian dynamics)
[66, 67, 102–105, 123]. Although the definition of a
reaction network does not provide a complete specifi-
cation of a spatial model, it is often a significant part of
a spatial model specification. Thus, it is perhaps worth
noting that BioNetGen currently supports export of
rule-derived reaction networks in a number of formats
that can be loaded directly into various spatial model-
ing tools, including VCell [66], SSC [67], Smoldyn
[123], and MCell [124]. Most spatial modeling tools
implement indirect simulation methods (i.e., most
tools rely on network generation). However, there are
exceptions [102, 103].

More examplemodels

To further illustrate the parts of a BNGL-encoded
model, various features of BNGL, and some of the
available capabilities of BNGL-compatible software
tools, a series of example models is presented in
Figures 7–9. The model specifications shown in these
figures are complemented by annotated BioNetGen
input files, which are provided in the supplementary
material (supplementary files S3–S5). Figure 10 shows
simulation results obtained from the models of
figure 7–9, as well as the model of figure 6 considered
earlier (figure 10(A)). These results were obtained by
passing themodel specifications and actions of supple-
mentary files S2–S5 to BioNetGen for processing.
Processing can be initiated either at the command line
via a command of the form ‘path/BNG2.pl filename.
bngl’ or via a point-and-click procedure within the
GUI of the RuleBender environment [76, 77].

The model of figure 7 (supplementary file S3)
illustrates the conciseness that is possible with a rule-
based approach to model specification. This model,
although it accounts for interactions among only a
handful ofmolecules, is rather large when expressed as
an equivalent reaction network. The network implied
by the rules of the model, which can be found auto-
matically by BioNetGen and reported in the various
formats mentioned above, consists of 156 chemical
species and 1218 unidirectional reactions. The corre-
sponding system of coupled ODEs for themass-action
kinetics of this network consists of 156 equations, one
for each species, which collectively contain 1218 dis-
tinct right-hand-side terms, one for each unidirec-
tional reaction. As indicated by itsmoleculetypes
block, themodel offigure 7 accounts explicitly for four
molecules. These molecules are a receptor tyrosine
kinase (RTK), which has two sites of autopho-
sphorylation; an SH2 domain-containing adaptor
protein, which interacts with the two sites in the RTK
when they are phosphorylated; a phosphatase; and a
phosphatase inhibitor. The rules of the model capture
the following picture. The two sites in the RTK are
phosphorylated constitutively in a non-specific man-
ner by cytoplasmic protein tyrosine kinases, which are

implicitly considered, and dephosphorylated by a con-
stitutively active phosphatase. The two sites in the
RTK are also phosphorylated in a specific manner
when the RTK is dimeric. In the absence of a ligand,
the RTK constitutively dimerizes through a (weak)
self-interaction.

The model of figure 7, because of constitutive
phosphorylation and dephosphorylation of the RTK,
has a non-trivial basal steady state, meaning the steady
state of the system before a perturbation. This steady
state is non-trivial in the sense that its specification
requires the definition of the population levels of each
of the 156 chemical species implied by the rules of the
model and many of these species have concentrations
that are significantly different from zero. The basal
steady state can be found through an equilibration
procedure, which is specified in the actions block
of figure 7. In this procedure, the population levels
specified in the seed species block of the model
are taken to define an initial condition and a simula-
tion starting from this initial condition and continuing
for a sufficiently long time is then performed to find
the basal steady state. After setting the phosphatase
inhibitor abundance to a non-zero level, a second pro-
duction simulation is performed, starting from the
basal steady state, to predict the effect of phosphatase
inhibition. Results from the equilibration and produc-
tion simulations are shown infigure 10(B).

The model of figure 8 captures processes involved
in a genetic toggle switch [125], such as regulated
mRNA/protein synthesis. This model, as para-
meterized, exhibits bistability. The ‘bifurcate’
action in the actions block of figure 8 invokes a series
of simulations that serve to find stable steady states of
the system as a function of a bifurcation parameter
(figure 10(C)). The ‘writeMfile’ command creates
an M-file that can be used within MATLAB together
with MatCont [126], a MATLAB toolbox for numer-
ical continuation and bifurcation analysis, to find
unstable steady states.

The model of figure 9 is taken from the review of
Munsky et al [127]. It is intended to capture and illus-
trate fluctuations in gene expression arising from the
inherent stochasticity of (bio)chemical reactions and
small population sizes. A constitutively expressed gene
and three regulated genes, which each have ‘on’ and
‘off’ states, are considered. The state of each gene is
controlled by a transcription factor, which is implicitly
considered. Parameters of the model are such that the
regulated genes all have the same average level of
expression; however, distributions of transcript abun-
dance are distinct. As illustrated in the actions block of
figure 9, an (indirect) stochastic simulation method is
invoked by simply specifying the appropriate method
flag, ‘ssa’, as an argument of the ‘simulate’ com-
mand (table 2). The results of a single stochastic simu-
lation run are shown in figure 10(D). An alternative,
accelerated-stochastic simulation method [120] can
be invoked by setting the method flag to ‘pla’

16

Phys. Biol. 12 (2015) 045007 LAChylek et al



(table 2) [73]. In addition, NFsim [81], which imple-
ments a network-free (i.e., direct) stochastic simula-
tion method, can be invoked using the ‘nf’ method
(table 2). For cases where there are large differences in
the population sizes of chemical species, the HPP
method is available [73, 74].

Three further example models, which illustrate
powerful but uncommonly used (to date) modeling
capabilities, are provided in supplementary files S6–
S8. The first of these files is simply a preprocessed ver-
sion of the model of figure 7. The preprocessing step
performed to obtain supplementary file S6 (stacks.iop.

org/PB/12/045007/mmedia) is called fragmentation
[111], which can be likened to amodel reduction tech-
nique. However, the technique is not based on typical
model reduction strategies, such as timescale separa-
tion [128]. Fragmentation simplifies a model specifi-
cation, such that when the rules of the model are
processed to derive the implied reaction network, a
minimal network, which can be viewed as a reduced
form of the network that would be found through
naïve rule specification and application, is found. Sim-
plifications are obtained, for example, by representing
independent sites in a molecule separately.

Figure 7.Amodel for receptor signalingwith a non-trivial basal steady state. An annotated, executable version of thismodel is
provided as supplementary file S3 available at stacks.iop.org/PB/12/045007/mmedia. Because of space limitations, the parameters
block of themodel specification is not shown. Instead, a ‘readFile’ command is shownwhere the parameters blockwould normally
appear. This command directs BioNetGen to read a (plain-text)file named ‘supplementaryfileS3.bngl’ in the current working
directory and to import the parameters block from thatfile. (If the block is not present in the designated file, or thefile cannot be
found, an error report is generated.) The actions associatedwith themodel specification instruct BioNetGen tofind the basal steady
state of the system, inwhich the receptor is constitutively phosphorylated, and then to simulate the response to addition of a
phosphatase inhibitor.
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Fragmentation is compatible with deterministic simu-
lation methods. It is a fairly simple procedure that can
be performed manually using the recipe provided by
Feret et al [111]. Related methods have also been
described recently [129–133]. We note that fragmen-
tation is connected to modeling approaches that have
long been used in polymer chemistry (see [88] and
references therein).

Supplementary file S7 (stacks.iop.org/PB/12/
045007/mmedia) provides an example of a model spe-
cified using compartmental BNGL (cBNGL) [134],
which enables the definition of reaction compart-
ments and transport between them. The topology of
the compartments is assumed to be composed of a
hierarchy of membrane-enclosed volumes. Each sur-
face encloses a single volume, which in turn can con-
tain an arbitrary number of surfaces. Each
compartment has a specified reaction volume, which
for surface compartments is given by the product of
the surface area and an effective width that has typical
values corresponding to the molecular dimensions of
proteins (see Harris et al [33, 134] for more details).
The use of effective volumes for surface compartments

allows all bimolecular rate constants to be specified in
the same units (e.g., M−1 s−1), with automatic conver-
sion being performed to obtain the correct rates for
surface-surface, surface-volume, and volume-volume
reactions. In cBNGL both species and their molecular
constituents have a location attribute that maps them
to a specific compartment. Membrane-associated spe-
cies may have molecular constituents that are located
in volume compartments on either side of the mem-
brane compartment, which facilitates correct localiza-
tion of product species upon dissociation. Most
cBNGL rules do not explicitly reference location attri-
butes but rely instead on additional semantics that
only allow reactions between species in the same or
adjacent compartments and automatically determine
the correct volume of reaction for determining reac-
tion rates. Currently, simulations of cBNGL models
can only be performed using indirect methods. In
addition to ODE and stochastic simulations based on
well-mixed compartments, it is possible to perform
spatially resolved simulations of cBNGL models using
MCell, a particle-based spatial stochastic simulator
[135]. A tutorial describing how to perform spatial

Figure 8.Amodel for a genetic toggle switch. An annotated, executable version of thismodel is provided as supplementary file S4
available at stacks.iop.org/PB/12/045007/mmedia. The actions associatedwith themodel specification instruct BioNetGen tofind
(stable) steady states through simulation for a long time for a range of values of a bifurcation parameter. Simulations are performed as
the bifurcation parameter is varied from the designatedminimumvalue to the designatedmaximumvalue, and then in the reverse
direction. Simulations are initiated from the previously found steady state. The first simulation is initiated from the starting condition
specified via ‘setConcentration’ commands.
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simulations of cBNGL models using realistic geome-
tries is available online [136], which also describes
how to obtain realistic geometries for cell simulation
from statistical models built from experimental ima-
ging data using a tool called CellOrganizer [137].

Supplementary file S7 (stacks.iop.org/PB/12/045007/
mmedia) defines a simplified model that encompasses
many key events in signal transduction including
ligand–receptor binding, receptor trafficking, tran-
scriptional activation, and negative feedback through

Figure 9.Amodel for stochastic gene expression. An annotated, executable version of thismodel is provided as supplementary file S5
available at stacks.iop.org/PB/12/045007/mmedia. Thismodel considers a gene expressed at a low constitutive level, and three
regulated genes, which are each expressed at an identical average level. Although the regulated genes each have the same expected level
of expression at steady state, their distributions of expression are different. The actions associatedwith themodel specification instruct
BioNetGen to perform a stochastic simulation.
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expression of an inhibitor of receptor activity. The
model demonstrates that oscillations may arise in the
system when there is a sharp threshold for transcrip-
tional activation, which can occur, for example, if
there is an inhibitor that binds and inactivates the
transcription factorwith high affinity [138].

Our last example uses a recent extension of BNGL
called eBNGL [139], in which one can represent inter-
actions using minimalist rules together with energy
patterns that define cooperative interactions [139].
eBNGLwas inspired by and builds upon an earlier tool

called the allosteric network compiler [140] and the
work of Danos et al [141]. An eBNGL-encoded model
is parameterized in terms of thermodynamic quan-
tities, which ensures that constraints of detailed bal-
ance [142–145] are satisfied. Kinetics can still be
predicted on the basis of assumptions about activation
energy barriers and transition state theory. The model
of supplementary file S8 (stacks.iop.org/PB/12/
045007/mmedia) captures coupled folding and bind-
ing of a disordered protein to a second, folded protein
in accordance with a reaction scheme discussed by

Figure 10. Simulation results obtained from themodels offigures 6–9. (a) Simulation results for themodel offigure 6 (deterministic
time courses of ligand–receptor binding for different values of the ligand diffusion coefficient). The solid, broken and dotted lines
correspond to large,medium and small values for the ligand diffusion coefficient. Time is indicated on the horizontal axis, and the
amount of bound ligand is indicated on the vertical axis in dimensionless units. The vertical axis is scaled such that a value of 1
corresponds to 100 000 bound ligands per cell. (b) Simulation results for themodel offigure 7 (deterministic time courses for
equilibration to a basal steady state and for the response to phosphatase inhibition). An equilibration simulationwas started at an
arbitrary, easy-to-specify starting condition at time t=0. The purpose of this simulation is to find the non-trivial, difficult-to-specify
basal steady state. A production simulationwas started at time t= 100 s, with the addition of a phosphatase inhibitor. The horizontal
axis indicates time, and the vertical axis indicates the amount of receptor phosphorylated at siteY1 (solid curve) and siteY2 (dotted
curve) relative to the basal levels of phosphorylation for these sites (i.e., phosphorylation levels are normalized). (c) Simulation results
for themodel offigure 8 (a bifurcation diagram summarizing the stable steady states found through simulation and parameter
scanning). In the top and bottompanels, the horizontal axis indicates the value of the bifurcation parameter. In the top panel, the
vertical axis indicates the level of repressorX. In the bottompanel, the vertical axis indicates the level of repressorY. Units are the same
for all axes (copies per cell). Each point corresponds to a stable steady state (i.e., afixed point) at the indicated value of the bifurcation
parameter (Kxy). Only stable steady states are represented in these plots. (d) Simulation results for themodel offigure 9 (stochastic
time courses). The black curve indicates thefluctuating level of expression from the unregulated gene. The colored curves indicate the
fluctuating levels of expression from the three regulated genes (red, gene 1; blue, gene 2; green, gene 3). The average level of expression
is the same for each regulated gene. The horizontal axis has been scaled such that a value of 1 corresponds to 1000 s.
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Kiefhaber et al [146]. This scheme encompasses a two-
step folding-after-binding mechanism, as well as a
two-step conformational selection mechanism, in
which the disordered protein first folds and then
binds.

Conclusions

Rule-based modeling is different from traditional
equation-basedmodeling. Equations are jettisoned for
the most part. Instead, one relies on sophisticated
software packages, which are more accessible than
equations (or software that requires equations as
input). Use of these packages, by design, does not
require specialized mathematical training or extensive
programming skills. Models are specified using a
specialized model-specification language, which can
be understood by both a computer and a user/
biologist. Using one of the available languages to
specify a model is similar to writing a simple program,
or a script. Thus, some aptitude for programming is
required, but learning a model-specification language,
such as BNGL, is considerably easier than learning,
say, a general-purpose programming language, such as
Python [147]. BNGL, like most available model-
specification languages, by design, is streamlined and
less complex than a general-purpose programming
language.

BNGL, which is representative of other rule-
based modeling languages, has been designed for use
by (physical) biologists; it is intended to allow easy
representation of knowledge about biomolecules
and their interactions. Within the framework of
BNGL, molecules are represented as structured
objects, with the component parts of these objects
corresponding to the functional sites in biomole-
cules that are responsible for binding and catalytic
interactions of interest. BNGL-encoded rules define
necessary and sufficient conditions for interactions
and provide rate laws. Capturing the site-specific
details of interactions is relatively straightforward.
The problem of combinatorial complexity, which
quickly stymies traditional modeling approaches
and severely limits the biochemical details that can
be considered in traditional models, is sidestepped,
provided that assumptions of modularity can be
plausibly justified or used as a first-order or initial
approximation. Because BNGL is based on a graphi-
cal formalism for representing molecules and inter-
actions, models and the formal elements of models
can be readily visualized with precision. Indeed,
automatic visualization capabilities are available for
both individual rules and entire rule-based models
[76–78, 108, 109]. It is even possible to use a simple
drawing tool to specify a rule-basedmodel [75, 105].

A strong advantage of rule-based modeling, which
has yet to be fully leveraged, is the ease with which
thesemodels can be annotated [38, 41, 42, 86, 96, 119],

as there is often a one-to-one correspondence between
the formal elements of a model and entries in public
databases that collect information about biomolecules
and their interactions. Thus, rule-based modeling
could provide a foundation for building standard
models for well-studied cellular regulatory networks
of outstanding interest, such as those implicated in
diseases.

Long ago, mathematicians developed formalisms
tomodel and analyze natural phenomena of interest at
the time, through the methods available at the time,
such as calculations possible through reasoning and
the use of pen and paper. These methods were even-
tually applied to study chemical and biochemical sys-
tems [148, 149], and they remain popular to this day.
However, biologists now have at hand more powerful
modeling tools, which also happen to be easier to use.
It is time to pick up these tools and use them as com-
plements to intuition and reasoning and quantitative
experimental approaches. For those interested in tak-
ing up this challenge, a number of resources are avail-
able beyond this review, including a primer [72], a
wiki with extensive documentation and links to addi-
tional resources [73], and an annual short course
where hands-on instruction in rule-based modeling is
offered [150].
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