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Value added by modeling of cellular regulatory systems

=  We can use models to organize and evaluate information
e To think with greater rigor and precision
e To discover knowledge gaps
* To identify key quantitative factors that affect system behavior
 To summarize observations and preserve knowledge

=  We can analyze models to obtain insights and generate hypotheses
 To elucidate general design principles
 To explain counterintuitive behavior
 To enhance experimental efforts (e.g., through experimental design)
 To guide interventions
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Influences within the AMPK-MTORC1-ULK1 network
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lllustration of details involved in tracking site dynamics
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Outline

1.  Features of signaling proteins

2. Combinatorial complexity: the key problem solved by rule-based modeling
3. Basic concepts of rule-based representation of biomolecular interactions
4. Simulation methods for rule-based models (indirect and direct)

5.  Exercises (computer lab)
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A signaling protein is typically composed of multiple
components (subunits, domains, and/or linear motifs)
that mediate interactions with other proteins
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Domain-motif interactions are often controlled by post-
translational modifications

s Los Alamos
NATIONAL LABORATORY

@ Grb2 <
[ Shc @w Cbl

EGFR

" pY-0998

0’ »D (X

pY-1110

pY-1197

pY-0764
pY-0801
pY-0813
pY-0827
pY-0869
pY-0891
pY-0800

pY1016 <>
pY-1069 Wl
pY-1092 P

pY-1125 ¢

ErbB2

pY-0685
[ —
DY-0772
pY-0781
pY-0803
0Y-0835
pY-0876
o) %’j ROE 3

2Y-0952
pY-1005 [

pY-1023™>

pY-1112
pY-1127

pY-1130 €D
py-1196 [

pY-1221
pY-1222 [

pY-1248 [

PI3K-p85 @B STATS . Crk 4@ Src/CSK
~PTP-2c [l Nck

() SH3BGRL
ErbB3 ErbB4
A
| |
|
(
!
l! y
W
v
733
l pY-0680 PY-0807
pY-0789 pY-0833
pY-0823 pY0875
pY-0824 '
pY-0868
pY-0888
pY-088]
pY-0941 pY-1022 A
pY-1035
e pY-1056 >
pY-1054 T pY-1066
pY-1132 pY-1081
pY-1152 pY-1128
pY-1197 < PY-1150
py-1162 €D
pY-1199 , o)
pY-1188 u
pY-1222<_ pY-1202 G
pY-1224 =0 pY-1208 G
pY-1260<_

i py-1221 G
py-1262 €D W ;
pY-1276<_ py- R

— pY-125
PY-1289C_ pY-1262
pY-1307 pY-1266

| |pY-1328 RY-A208
pY-1284 [
pY-1301

Schulze WX et al. (2005)
Mol. Syst. Biol.




Outline

1. Features of signaling proteins

2. Combinatorial complexity: the key problem solved by rule-based
modeling

3.  Basic concepts of rule-based representation of biomolecular interactions
4. Simulation methods for rule-based models (indirect and direct)

5.  Exercises (computer lab)

» Los Alamos
NATIONAL LABORATORY
EEEEEEEE




Complexity arises from post-translational modifications

@

Epidermal growth factor receptor (EGFR)

O sites => 2°=512 phosphorylation states

Each site has = 1 binding partner
=> more than 3°=19,683 total states

EGFR must form dimers to become active

ECD

™

PTK
Y869
Y915
Y944

=> more than 1.9x108 states
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Complexity arises from oligomerization/aggregation

Mahajan et al. (2014) ACS Chem Biol 9: 1508-1519.
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The textbook approach

Conventional representation of a biochemical reaction network
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Network (model) size tends to grow nonlinearly
(exponentially) with the number of molecular interactions

Network size increases nonlinearly when an extra interaction is considered

16 chemical species

60 unidirectional reactions :[ — ]E) - O—_ _—Q
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—_, O_.O There are only three interactions. We can
. use a “rule” to model each of these
s interactions.
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Rule-based modeling solves the problem of
combinatorial complexity

= Inside a Chemical Plant
e Large numbers of molecules...

o ...of afew types
e Conventional modeling works fine (a good idea since Harcourt and Esson, 1865)

= Inside a Cell
e Possibly small numbers of molecules...
e ...of many possible types
* Rule-based modeling is designed to deal with this situation (new)
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Rule-based modeling: basic concepts

Graphs represent molecules/complexes, their component parts, and
“internal states”

collections of same-colored vertices represent “molecule types”

vertices represent “sites”

vertex labels represent “states”

edges represent bonds

connnected molecule types represent complexes
Graph-rewriting rules represent molecular interactions

addition of an edge to represent bonding

removal of an edge to represent dissociation

change of a vertex label to represent change of state

(e.g., change of conformation, location, or PTM status)
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The site graphs of a model for EGFR signaling
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A rule for EGF-EGFR binding

EGF binds EGFR

EGF-/M

N
+ CR1 | O

EGFR
begin reaction rules
EGF(R)+EGFR(L1,CR1)<->EGF(R!1).EGFR(CL1!'1,CR1)

end reaction rules
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A rule for ligand-dependent EGFR dimerization
EGFR dimerizes (600 reactions are implied by this one rule)

y

EGF

dimerization

EGFR

No free lunch: According to this rule, dimers form
and break up with the same fundamental rate
constants regardless of the states of cytoplasmic
domains, which is a simplification.
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Many different traditional simulation
techniques are compatible with RBM

1.

Ordinary differential equations (ODEs) - BioNetGen

- One equation per chemical species in the reaction network
- Each reaction contributes a negative term to a reactant’s equation and a

positive term to a product’s equation

Markov chains — BioNetGen + NFsim

- Gillespie’s method or stochastic simulation algorithm (SSA) or KMC
- Each trajectory represents one sample from probability space of the chemical

master equation (CME)
Partial differential equations (PDEs) - VCell

- Species concentrations are resolved in space

Particle-based stochastic spatial simulations — Smoldyn + MCell

Force field- or potential-based calculations with excluded volume
and orientation constraints (molecular dynamics) - SRSim
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Two types of methods for simulating RBMs

Direct

Reaction Rules

Reaction Volume




Indirect Methods — Network Generation
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Direct Methods — rules generate reaction events
and system configurations

reaction rules event generation
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RuleBender/BioNetGen/NFsim

RuleBender - integrated development environment (IDE)
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Why use rule-based modeling techniques?

m Concise and precise representation of biochemical knowledge
e Rules provide a convenient language for representing biomolecular interactions
e Intricate molecular mechanisms can be captured easily in rule-based models

m Flexible with respect to simulation method

« Deterministic / Stochastic = I9G =
 Well-mixed / Compartmental / Spatial

=  Model elements are modular and reusable
e Rule libraries (Chylek et al., 2014) Frontiers in Immunology

= Compact and automatic visualization Avr\ Sk

» Contact map and beyond [5Hz] ) (;tsl__my
= Easy annotation La

¢ Model elements can be directly mapped to database entries =3
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During the afternoon computer lab (6/11, Mon), we will build a simple
rule-based model using RuleBender and look at several example
models presented in this tutorial/review: Chylek et al. (2015) Phys Biol
12: 045007.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4526164/
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A rule-based model corresponding to the equilibrium
continuum model of Goldstein and Perelson (1984)

Molecules
5 o/ i s This is the “TLBR model.”
ngand Receptor

Interactions (reaction rules)
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“Generate-first” method starts with seed species

Ligand Receptor
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After first round of rule application
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After the second round of rule application
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Rule-derived network can be too large to simulate using
conventional population-based methods
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