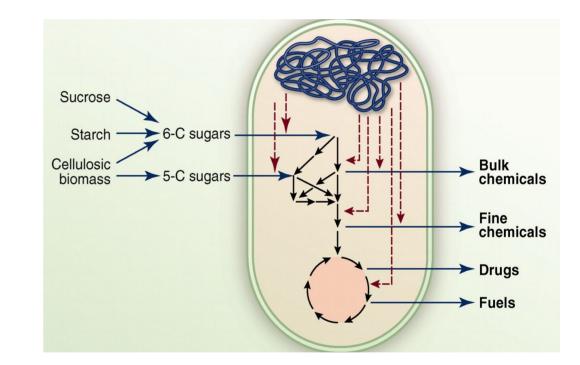

Introduction to

Flux Balance Analysis

Keesha Erickson keeshae@lanl.gov qBio Summer School June 21, 2018

Escherichia coli metabolic network



From the Kyoto Encycolopedia of Genes and Genomes, http://www.genome.jp/kegg/

Metabolism provides important insights

Studying evolution

- Effects of horizontal gene transfer
- Effects of gene deletion
- Prediction of essential genes
 - Minimal genome
- Metabolic engineering
 - Optimal overproduction of metabolites
 - Production coupled to growth

Orth, Fleming, Palsson (2010) EcoSal Plus. Keasling. (2010) Science.

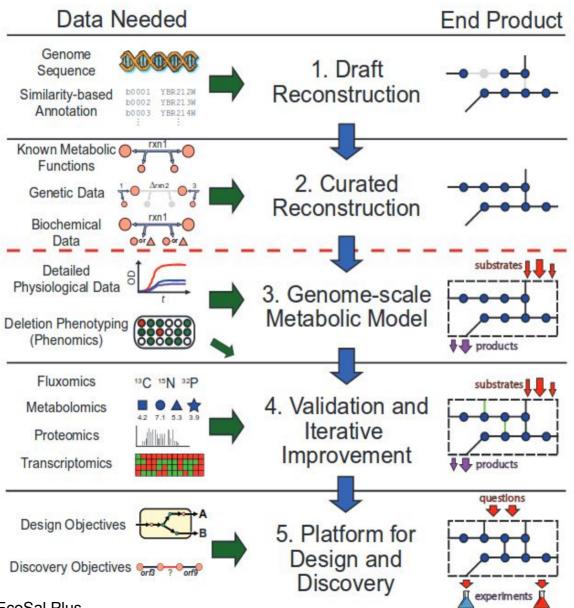
Flux Balance Analysis

FBA can be used to calculate the flow of metabolites through a metabolic network

FBA calculates rates

- Growth rate of an organism
- Production rate of a metabolite
- Yield of a product (production rate of product / consumption rate of substrate)

Typical FBA does not:

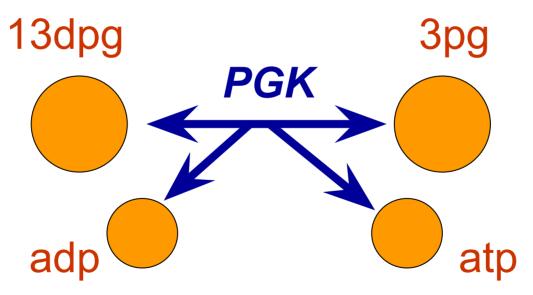

- Use kinetic parameters, so cannot predict metabolite concentrations or estimate changes over time
- Consider regulatory effects (gene expression, enzyme cascades, etc)

Outline

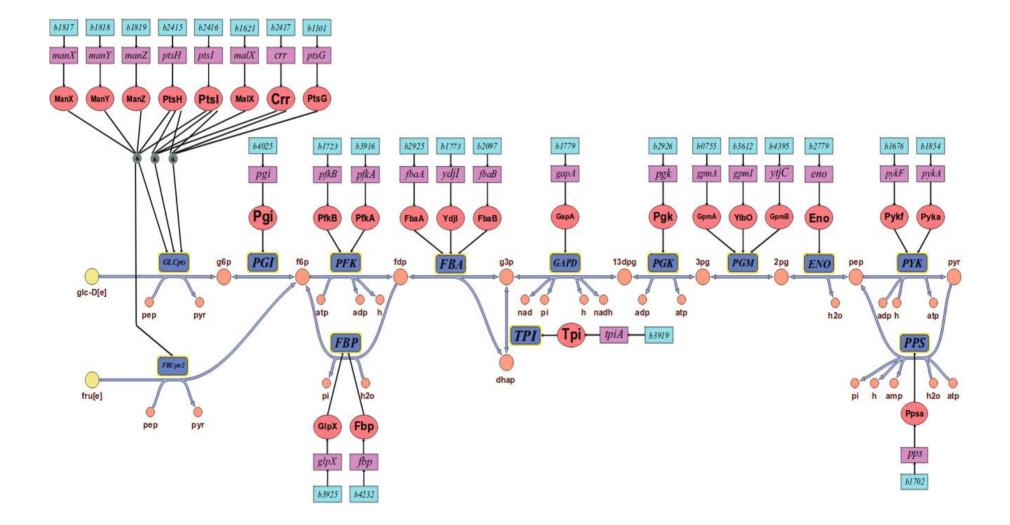
- . Metabolic network models
- . Accounting for growth requirements
- . Obtaining fluxes
- . Tools for FBA

Metabolic Network Models

Building a genome-scale metabolic network model

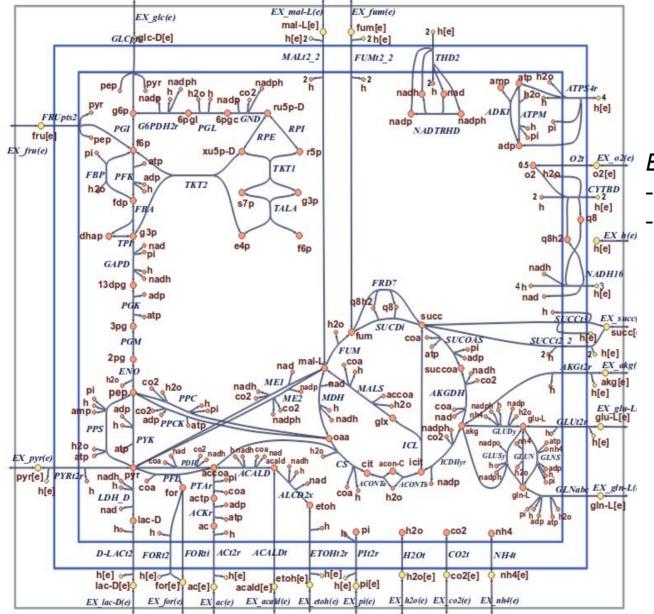


Orth, Fleming, Palsson (2010) EcoSal Plus.


Reactions are associated with specific genes

Gene:pgkProtein:Pgk (Phosphoglycerate kinase)Description:In glycolysis, catalyzes the transfer of a phosphoryl group from
1,3-bisphospho-D-glycerate to ADP, forming ATP
and 3-phospho-D-glycerate

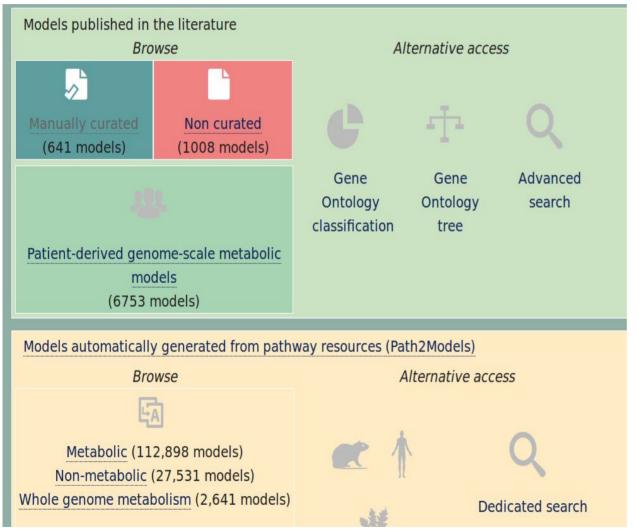
Reaction: 13dpg[c] + adp[c] <=> 3pg[c] + atp[c]



Sets of reactions can be assembled into subsystems

Orth, Fleming, Palsson (2010) EcoSal Plus.

Metabolic network models



E. coli iJO1366:

- 2251 metabolic reactions
- 1136 unique metabolites

Orth, Fleming, Palsson (2010) EcoSal Plus. Orth et al (2011) Mol Syst Biol.

BioModels Database

1990: first metabolic network model for *E. coli* (Majewski and Domach) 14 metabolic reactions

1997: E. coli genome sequenced

2000: first genome-scale network model for *E. coli* (Edwards & Palsson) ~ 720 metabolic reactions

2003: human genome sequenced

2007: first two metabolic network models for humans were published by Palsson group and Goryanin group ~ 3000 metabolic reactions

2011: *E. coli* model iJO1366 published (Orth et al) ~2000 metabolic reactions

2018: Rencon3D model of human metabolism published by Palsson group ~13000 metabolic reactions

Metabolites

Required attributes

Name Description Charged Formula Charge Compartment

Metabolite Abbreviation	Metabolite Name	Neutral Formula	Charged Formula	Charge Compartme	ent KEGG ID	CAS Number	Alternate Names
10fthf[c]	10-Formyltetrahydrofolate	C20H23N7O7	C20H21N7O7	-2 Cytosol	C00234		10-FormyI-THF
12dgr120[c]	1,2-Diacyl-sn-glycerol (didodecanoyl, n-C12:0)	C27H52O5	C27H52O5	0 Cytosol	C00641		1,2-Diacylglycerol/ D-1,2-Diacylglycerol
12dgr140[c]	1,2-Diacyl-sn-glycerol (ditetradecanoyl, n-C14:0)	C31H60O5	C31H60O5	0 Cytosol	C00641		D-1,2-Diacylglycerol/ 1,2-Diacylglycerol
12dgr141[c]	1,2-Diacyl-sn-glycerol (ditetradec-7-enoyl, n-C14	C31H56O5	C31H56O5	0 Cytosol	C00641		D-1,2-Diacylglycerol/ 1,2-Diacylglycerol
12dgr160[c]	1,2-Diacyl-sn-glycerol (dihexadecanoyl, n-C16:0)	C35H68O5	C35H68O5	0 Cytosol	C00641		D-1,2-Diacylglycerol/ 1,2-Diacylglycerol
12dgr161[c]	1,2-Diacyl-sn-glycerol (dihexadec-9-enoyl, n-C16	C35H64O5	C35H64O5	0 Cytosol	C00641		D-1,2-Diacylglycerol/ 1,2-Diacylglycerol
12dgr180[c]	1,2-Diacyl-sn-glycerol (dioctadecanoyl, n-C18:0)	C39H76O5	C39H76O5	0 Cytosol	C00641		D-1,2-Diacylglycerol/ 1,2-Diacylglycerol
12dgr181[c]	1,2-Diacyl-sn-glycerol (dioctadec-11-enoyl, n-C18	C39H72O5	C39H72O5	0 Cytosol	C00641		1,2-Diacylglycerol/ D-1,2-Diacylglycerol
12ppd-R[c]	(R)-Propane-1,2-diol	C3H8O2	C3H8O2	0 Cytosol	C02912	4254-14-2	(R)-1,2-Propanediol/ (R)-Propylene glycol/ D
12ppd-S[c]	(S)-Propane-1,2-diol	C3H8O2	C3H8O2	0 Cytosol	C02917	4254-14-3	(S)-1,2-Propanediol/ (S)-Propylene glycol/ L-
13dpg[c]	3-Phospho-D-glyceroyl phosphate	C3H8O10P2	C3H4O10P2	-4 Cytosol	C00236		1,3-bis-phosphoglycerate/ 3-Phospho-D-gly
14dhncoa[c]	1,4-dihydroxy-2-napthoyl-CoA	C32H38N7O19P3S	C32H38N7O19P3S	-4 Cytosol	C15547		Allerandes de la companya de la comp
14glucan[c]	1,4-alpha-D-glucan	C36H62O31	C36H62O31	0 Cytosol	C00718		
15dap[c]	1.5-Diaminopentane	C5H14N2	C5H16N2	2 Cvtosol	C01672	462-94-2	Cadaverine/ 1.5-Pentanediamine/ Pentame

Reactions

Required attributes

Name Description Formula Gene-reaction association Gene(s) Protein(s) Cellular subsystem Flux upper and lower bounds

Name	 Description 	⊤ Formula	 Gene-Protein-Reaction Association 	 Gene-Reaction Association 	Protein-Reaction Asso
ENO	enolase	2pg[c] <=> h2o[c] + pep[c]	Eno (b2779)	b2779	Eno
F6PA	fructose 6-phosphate aldolase	$f6p[c] \leq bda[c] + g3p[c]$	(Fsa (b0825)) or (TalC (b3946))	(b0825 or b3946)	(Fsa) or (TalC)
FBA	fructose-bisphosphate aldolase	$fdp[c] \leq bdp[c] + g3p[c]$	(FbaB (b2097)) or (B1773 (b1773))	or (b2097 or b1773 or b2925)	(FbaB) or (B1773) or (
FBP	fructose-bisphosphatase	fdp[c] + h2o[c] -> f6p[c] + pi[c]	(GlpX (b3925)) or (Fbp (b4232)) or	(>(b3925 or b4232 or b2930)	(GlpX) or (Fbp) or (Yg
G1PPpp	Glucose-1-phosphatase	g1p[p] + h2o[p] -> glc-D[p] + pi[p]	Agp (b1002)	b1002	Agp
G6PP	glucose-6-phosphate phosphatase	g6p[c] + h2o[c] -> glc-D[c] + pi[c]	YbiV (b0822)	b0822	YbiV
GAPD	glyceraldehyde-3-phosphate dehydrogenase	g3p[c] + nad[c] + pi[c] <=> 13dpg[c] + h[c] + nadh[c]	GapA (b1779)	b1779	GapA
GLBRAN2	1,4-alpha-glucan branching enzyme (glycoge	n ->glycogen[c] -> bglycogen[c]	GlgB (b3432)	b3432	GlgB
GLCP	glycogen phosphorylase	$glycogen[c] + pi[c] \rightarrow g1p[c]$	(GlgP (b3428)) or (MalP (b3417))	(b3428 or b3417)	(GlgP) or (MalP)
GLCP2	glycogen phosphorylase	bglycogen[c] + pi[c] -> g1p[c]	(MalP (b3417)) or (GlgP (b3428))	(b3417 or b3428)	(MalP) or (GlgP)
GLCS1	glycogen synthase (ADPGIc)	adpglc[c] -> adp[c] + glycogen[c] + h[c]	GlgA (b3429)	b3429	GlgA
GLDBRAN2	glycogen debranching enzyme (bglycogen ->	g⊁bglycogen[c] -> glycogen[c]	GlgX (b3431)	b3431	GlgX
GLGC	glucose-1-phosphate adenylyltransferase	$atp[c] + g1p[c] + h[c] \rightarrow adpglc[c] + ppi[c]$	GlgC (b3430)	b3430	GlgC
HEX1	hexokinase (D-glucose:ATP)	$atp[c] + gc-D[c] \rightarrow adp[c] + g6p[c] + h[c]$	Glk (b2388)	b2388	Glk
PDH	nvruvate dehvdronenase	coalc1 + nad(c1 + nvr(c1 -> accoalc1 + co2(c1 + nadh(c1	(AceFer (h0114) and AceFer (h0115)	an (h0114 and h0115 and h0116)	(AceFec and AceFec and

Accounting for growth requirements

The Biomass Reaction

To predict growth rate, we need to estimate the rate at which metabolites are converted to biomass constituents (e.g., nucleic acids, proteins, lipids)

The "biomass reaction" predicts the exponential growth rate (μ) of the organism.

Coefficients on metabolites are experimentally determined.

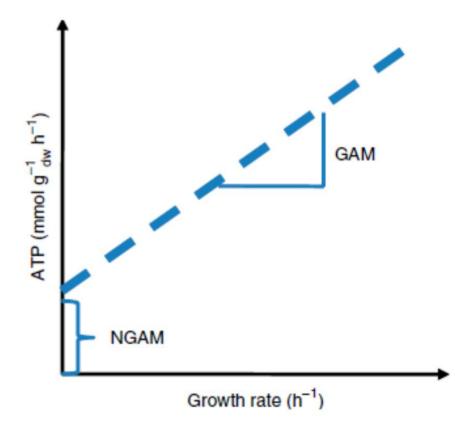
Biomass reaction for *E. coli* iJO1366:

0.000223 10fthf[c] + 0.000223 2dmmql8[c] + 2.5e-005 2fe2s[c] + 0.000248 4fe4s[c] + 0.000223 5mthf[c] + 0.000279 accoa[c] + 0.000223 adocbl[c] + 0.49915 ala-L[c] + 0.000223 amet[c] + 0.28742 arg-L[c] + 0.23423 asn-L[c] + 0.23423 asp-L[c] + 54.12 atp[c] + 0.000116 bmocogdp[c] + 2e-006 btn[c] + 0.004952 ca2[c] + 0.000223 chor[c] + 0.004952 ca2[c] + 0.000223 enter[c] + 0.24805 dttp[c] + 0.024805 dttp[c] + 0.025612 dctp[c] + 0.024805 dttp[c] + 0.00223 gthrd[c] + 0.000223 fad[c] + 0.006388 fe2[c] + 0.007428 fe3[c] + 0.25571 gln-L[c] + 0.25571 glu-L[c] + 0.5953 gly[c] + 0.15419 glycogen[c] + 0.000223 gthrd[c] + 0.20912 gtp[c] + 48.7529 h20[c] + 0.000223 hemeO[c] + 0.092056 his-L[c] + 0.28231 ile-L[c] + 0.43778 leu-L[c] + 3e-006 inpob[c] + 0.33345 lys-L[c] + 3.1e-005 malcoa[c] + 0.14934 met-L[c] + 0.008253 mg2[c] + 0.000223 mthf[c] + 0.000658 mn2[c] + 7e-006 mobd[c] + 7e-006 mobd[c] + 7e-006 mocogdp[c] + 0.000223 mql8[c] + 0.00177 nad[c] + 4.5e-005 nadh[c] + 0.00112 nadp[c] + 0.00335 nadph[c] + 0.012379 nh4[c] + 0.000307 ni2[c] + 0.012366 pe160[c] + 0.009218 pe161[c] + 0.000223 q8h2[c] + 0.000223 q8h2[c] + 0.00223 mpl8[c] + 0.000223 mpl570 pg160[c] + 0.00223 mpl570 pg160[c] + 0.00223 mpl570 pg160[c] + 0.00223 mpl570 pg160[c] + 0.00223 sheme[c] + 0.000223 heme[c] + 0.000223 mpl570 pg160[c] + 0.00223 mpl570 pg160[c] + 0.000223 sheme[c] + 0.000223 htmp270 pg160[c] + 0.000223 mpl570 pg160[c] + 0.000223 sheme[c] + 0.000223 htmp270 pg160[c] + 0.000223 mpl570 pg160[c] + 0.000223 mpl570 pg160[c] + 0.000223 sheme[c] + 0.000223 htmp270 pg160[c] + 0.000223 mpl570 pg160[c] + 0.000223 sheme[c] + 0.000223 htmp270 pg160[c] + 0.000223 mpl570 pg160[c] + 0.000223 sheme[c] + 0.000223 htmp270 pg160[c] + 0.000223 mpl570 pg1670 pg180[c] + 0.000223 mpl570 pg1670 pg180[c] + 0.000223

Energy requirements

There are two reactions that account for energy required to maintain viability

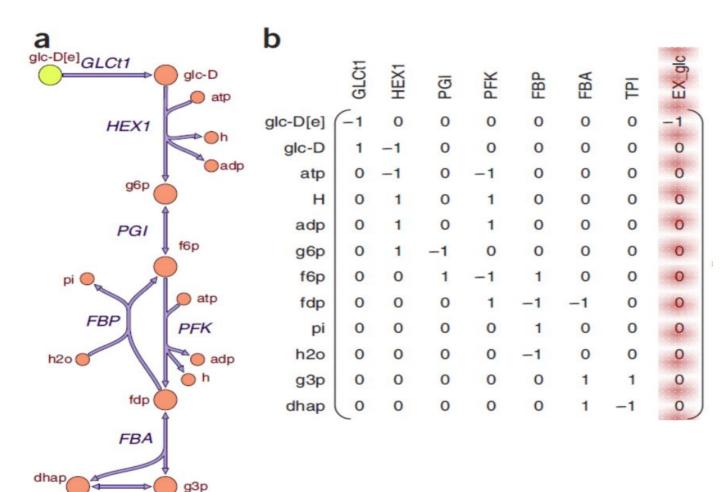
Growth associated maintenance (GAM)


represents ATP needed for replication. It is included as part of the biomass reaction.

Non-growth associated maintenance

(NGAM) accounts for all other energy needs, and the constraint on this reaction is experimentally determined.

atp[c] + h2o[c] -> adp[c] + h[c] + pi[c]

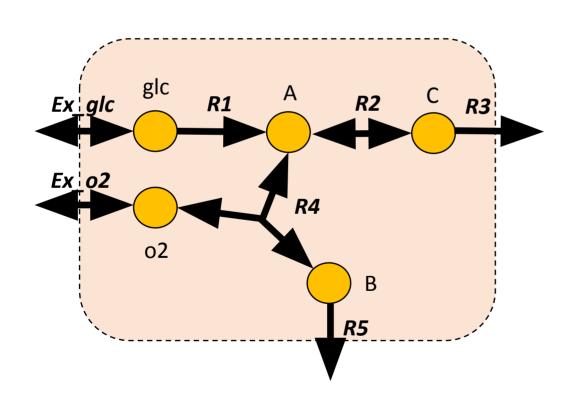

(Lower bound of 3.15 mmol/gdcw/hr in iJO1366)

Thiele & Palsson (2010) Nature Protocols.

FBA: Calculating fluxes for all reactions in the network, given an objective and constraints

Stoichiometric matrix

Reactions in columns Rows are metabolites


Negative indicates consumption (reactant)

Positive indicates production (product)

TPI

Exercise 1

Write the *S* for the following system:

 Reactions

 $Ex_g|c$ g|c <=> 0

 Ex_02 o2 <=> 0

 R1 g|c -> A

 R2 A <=> C

 R3 C -> 0

 R4 A + o2 <=> B

 R5 B -> 0

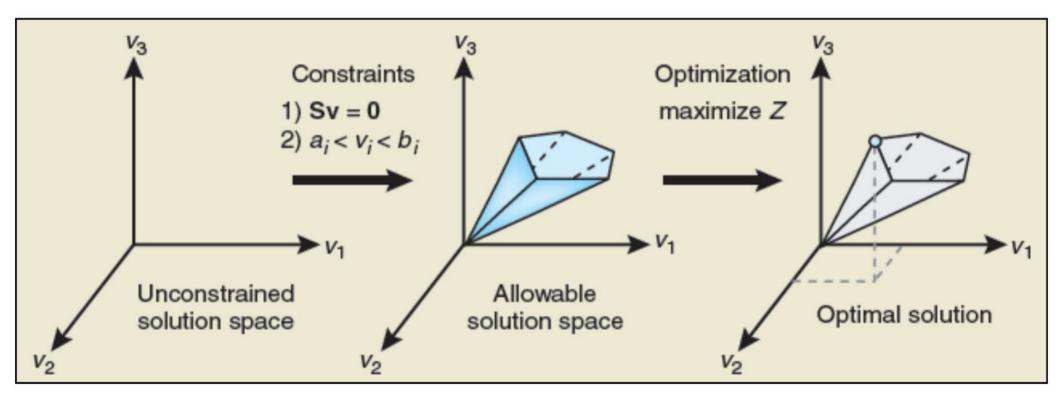
The steady state assumption

The inner product of the stoichiometric matrix S (size m x r) and the flux vector \mathbf{v} (length r) gives the change in metabolite concentrations over time (d**x**/dt), where **x** is a vector of metabolite concentrations (length m).

$$\frac{d\mathbf{x}}{dt} = S \cdot \mathbf{v}$$

We are interested in solving for *v*.

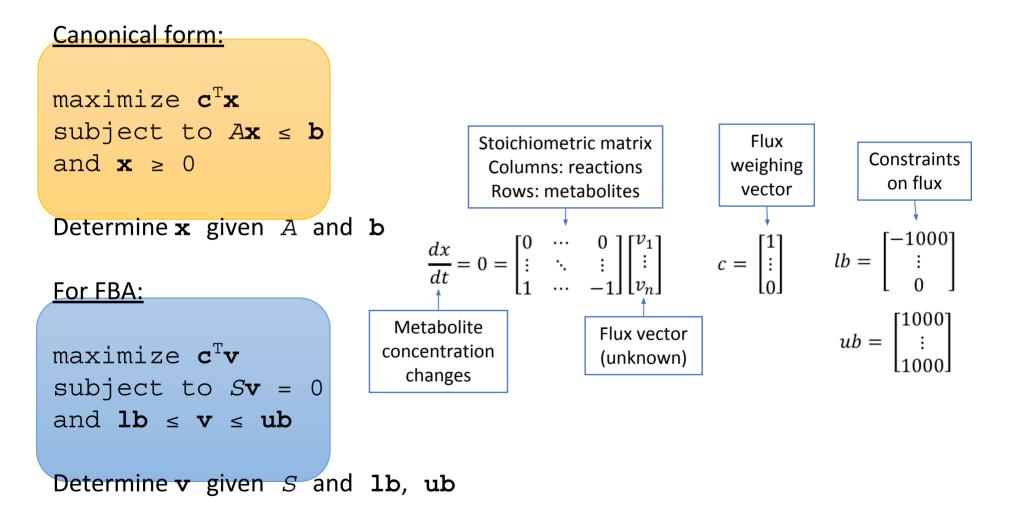
Assuming the cell is in one phenotype for a time longer than it takes for metabolite concentrations to change dramatically, we make the <u>steady state assumption</u>:


$$\frac{d\mathbf{x}}{dt} = 0 = S \cdot \mathbf{v}$$

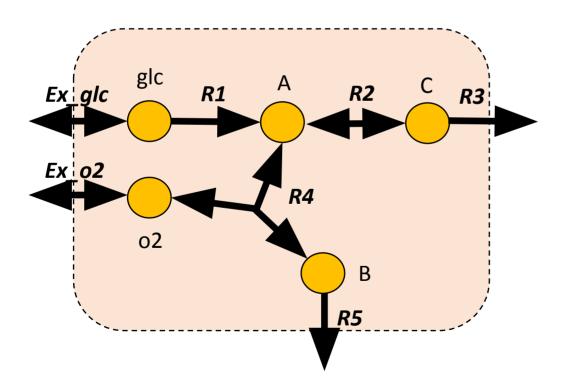
Now we can solve for *v*.

However, as there are many more reactions (unknown variables) than metabolites, there will not be one unique solution.

Thus, it is helpful to impose constraints.

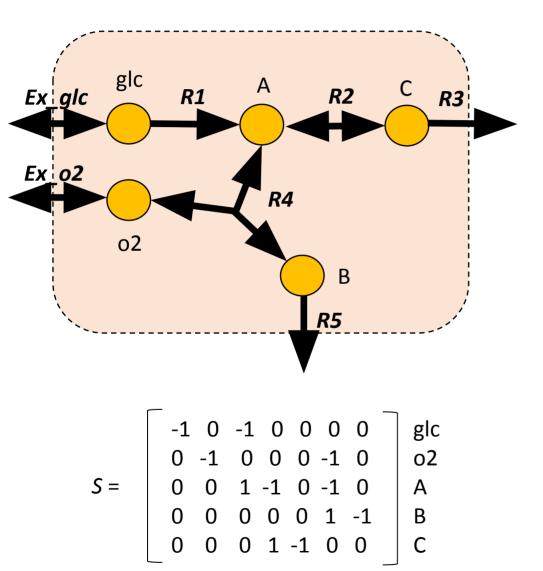

Constraining the solution space

Orth & Thiele (2010) Nature Biotech. Becker et al (2007) Nature Protocols.


The linear programming problem

Linear programming: optimizing a linear function subject to various constraints

Exercise 2


Write S, c, lb, and ub for the following system, where you want to maximize production of species C.

Reactions

- Ex_glc glc <=> 0 Ex_o2 o2 <=> 0 R1 glc \rightarrow A R2 A <=> C R3 C->0 R4 A + $02 \le B$
- R5 B->0

Exercise 2

Reactions

- Ex_glc glc <=> 0
- Ex_02 02 <=> 0
- R1 glc -> A
- R2 A <=> C
- R3 C -> 0
- R4 A + o2 <=> B
- R5 B -> 0

Important constraints

Reversibility

Substrates/media conditions

- Carbon source
- Nitrogen source

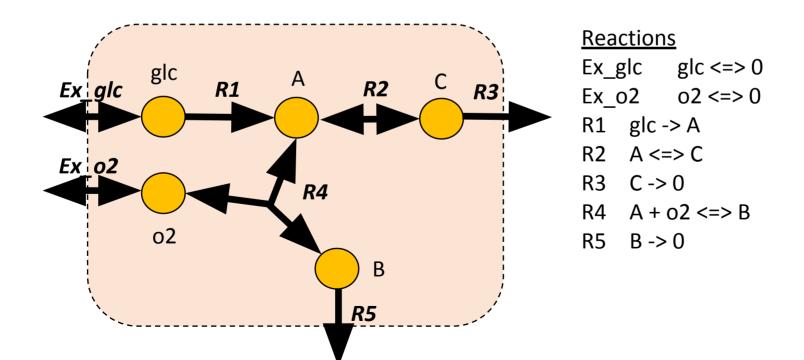
Varma & Palsson (1994) Applied Environmental Biology:

Flux balance models of metabolism use stoichiometry of metabolic pathways, metabolic demands of growth, and optimality principles to predict metabolic flux distribution and cellular growth under specified environmental conditions. These models have provided a mechanistic interpretation of systemic metabolic physiology, and they are also useful as a quantitative tool for metabolic pathway design. Quantitative predictions of cell growth and metabolic by-product secretion that are experimentally testable can be obtained from these models. In the present report, we used independent measurements to determine the model parameters for the wild-type *Escherichia coli* strain W3110. We experimentally determined the maximum oxygen utilization rate (15 mmol of O_2 per g [dry weight] per h), the maximum aerobic glucose utilization rate (10.5 mmol of Glc per g [dry weight] per h),

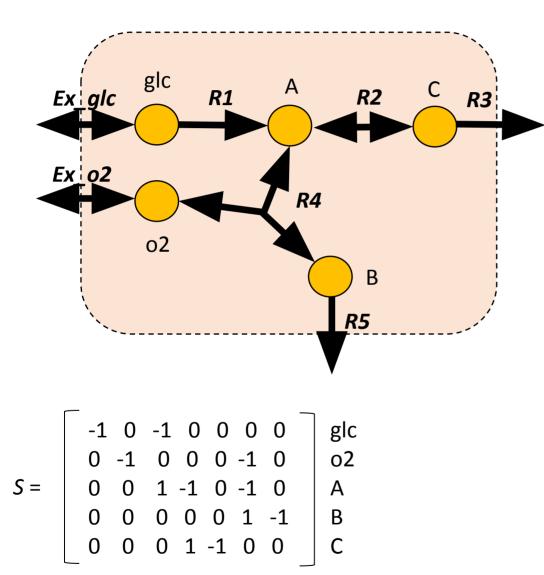
Minimum growth rate

Selecting the objective

What do you want to maximize/minimize?

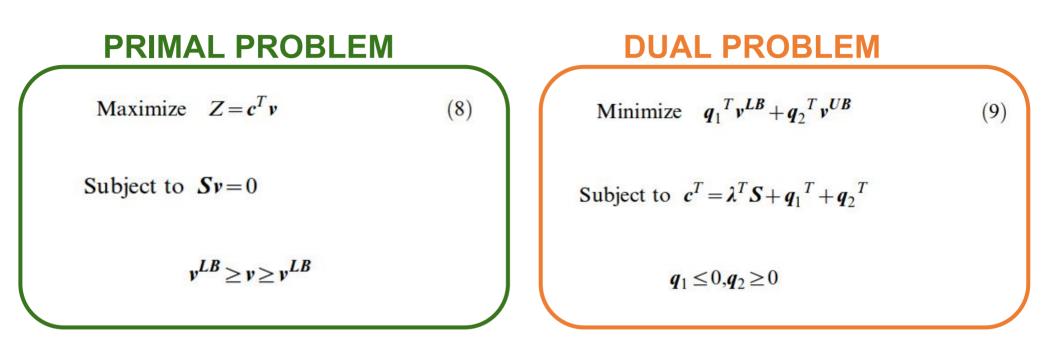

Common objectives:

Objective	Rationale	Example reaction
Biomass reaction	Biologically relevant – safe to assume organism tries to optimize growth	biomass
Transport reaction	Calculate maximum theoretical yield or production rate	EX_etoh(e)


Exercise 3

Adjust S, c, lb, and ub to simulate

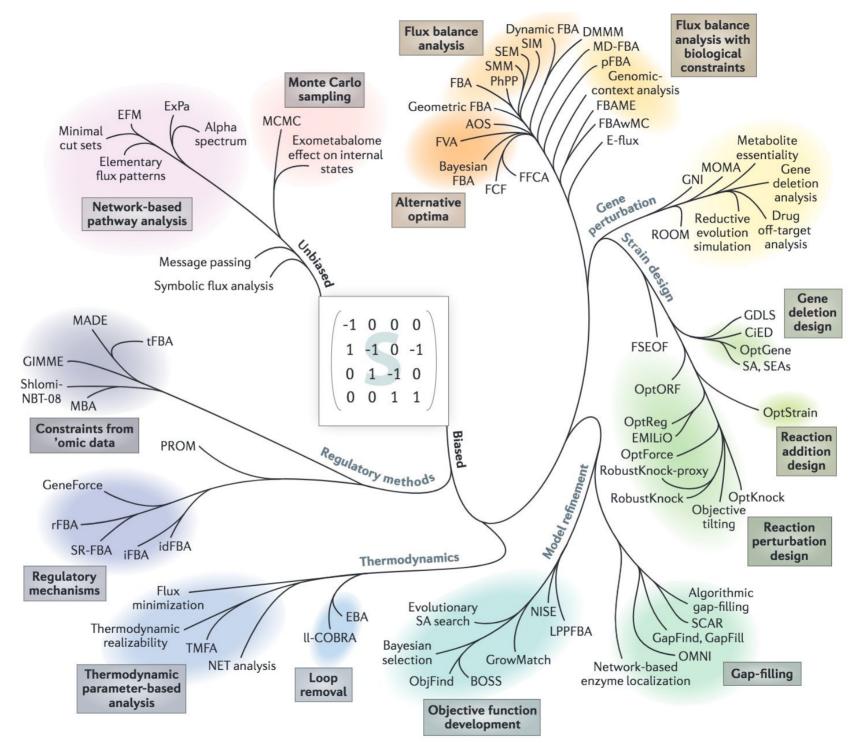
- a. anaerobic conditions
- b. aerobic conditions
- maximizing production of species C.


Exercise 3

Reactions

- Ex_glc glc <=> 0 Ex_o2 o2 <=> 0
- R1 glc -> A
- R2 A <=> C
- R3 C->0
- R4 A + o2 <=> B
- R5 B -> 0

Duality

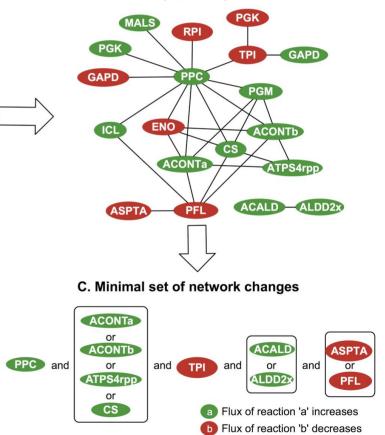

Primal solution gives a set of optimal fluxes

Dual solution gives the shadow price for each metabolite

- "Sensitivity of the objective function to each steady state metabolite constraint"
- In economic terms, the marginal cost / marginal utility of relaxing a constraint
- Provides a way to find which metabolites have greatest impact on the solution
 - Very negative shadow prices influence objective function more

Reznik et al. (2013) PLOS Comp. Biol.

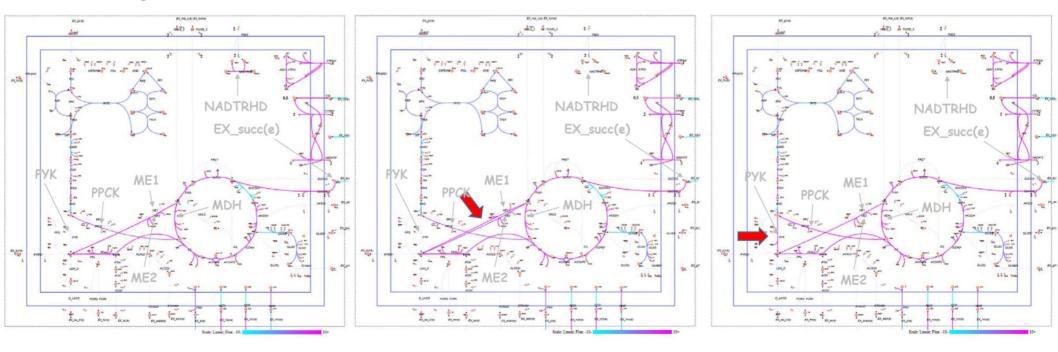
Tools for FBA


Lewis et al (2012) Nature Reviews Microbiology.

Identifying many genetic interventions

- OptKnock
- OptForce

MUST ^{UU}		MUS	ST ^{UL}	MUSTLL		
PPC	MALS	ICL	PFL	PFL	ASPTA	
PPC	ICL	cs	PFL	TPI	PGK	
PPC	ACONTb	ACONTa	PFL			
PPC	ACONTa	ACONTb	PFL			
PPC	CS	CS	ENO			
PGM	CS	ACONTa	ENO			
PGM	ACONTb	ACONTb	ENO			
PGM	ACONTa	PPC	TPI			
ATPS4rpp	CS	PPC	RPI			
ATPS4rpp	ACONTa	PPC	GAPD			
ATPS4rpp	ACONTb	PPC	ENO			
PPC	PGM	GAPD	TPI			
PPC	PGK					
ALDD2x	ACALD					


A. MUST^{UU}, MUST^{UL}, and MUST^{LL} set of reactions B. Network of MUST^{UU}, MUST^{UL}, and MUST^{LL} reactions

Burgard et al. (2003) Biotechnol Bioeng. Ranganathan et al. (2010) PLOS Comp Biol.

Flux variability analysis

- Even with constraints, there is not necessarily one unique solution
- Flux variability analysis (FVA) is a method to identify min/max flux values for every reaction that allow objective function to be satisfied

Hinton (2015) BIE5500/6500 lecture notes