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Nonparametric Density
Estimation

Let F' be some distribution, with density f € F.

Given data Xq,..., X, ~F.

Non-parametric Density Estimation: estimate f given {X;}; given infinite-
dimensional space F.



Nonparametric Density
Estimation

Let F' be some distribution, with density f € F.

Given data Xq,...,X,, ~ F.

Non-parametric Density Estimation: estimate f given {X;}; given infinite-
dimensional space F.

preferably: making as few assumptions about F as possible



Why Density Estimation®

 An important “unsupervised learning” problem
e density summarizes the data without any supervision

« Can perform probabilistic reasoning

* how likely is some future event given evidence so far (e.g. how likely is
it to have large value for invasive diagnostic test given other symptoms)

e given joint density over all variables, can compute conditional probabilities
of variables of interest given values of other variables

e Given density, can compute functionals of interest

* entropy, moments, ...



Why Density Estimation®

* An important functional is the conditional independence graph

* one node for each variable, and no edge between two variables
if they are conditionally independent given other variables

Conditional Independence Graph provides a much sparser
“dependency graph” than correlation or thresholded correlation;
connotes a more “direct” dependence

 MicroRNA network learnt from
The Cancer Genome Atlas (TCGA)
Breast Cancer Level |l Data

hsafmir-4sc




Example: Kernel Density
Estimation

IS consistent for a broad class of density classes



Running Function Class:
Sobolev order 2



Running Function Class:
Sobolev order 2

Fae) = {1+ [ 1120 s < 2}

Let Ry(fn) := Ef [(fa(x) — f(2))* dx.

inffn Supfe}—Q(c) Rf(fn) = n_4/5.

Achieved by kernel density estimation
(for appropriate setting of bandwidth)



Running Function Class:
Sobolev order 2

* But Iin higher dimensions, where x Is d-dimensional:

Let Ry(fn) :=Ef [(fu(2) — f(2))* dz. (also achieved by

: ~ _ kernel density estimation
mf]?n SUD fe 7, () Bf(fn) X1 4/(4+d) y )



Running Function Class:
Sobolev order 2

* But Iin higher dimensions, where x Is d-dimensional:

Let Ry(fn) :=Ef [(fu(2) — f(2))* dz. (also achieved by

: ~ _ kernel density estimation
mf]?n SUD fe 7, () Bf(fn) X1 4/(4+d) y )

2 d
For risk R(f,) < ¢, need number of samples n > C (%)H‘l

no. of samples required scales exponentially with dimension d



Non-parametric Density
Estimation

* For lower sample complexity, need to impose some
“structure” on the density function

* lypically, we impose this structure on the logistic
transform of the density n(z) s.t.

- exp(n(z))
M) = T apn(e))ds



Non-parametric Density
Estimation

* Estimate logistic transform \eta(x) from data

* can impose constraints without worrying about
positivity and normalizability

* still has the same exponential sample complexity



Common Structural
Assumptions: RKHS

Assume 7(x) lies in a Reproducing Kernel Hilbert Space (RKHS) H; with re-
spect to some kernel function k(-, ).

Siverman 82, Gu, Qiu 93, Canu, Smola 06

still has exponential sample complexity

* also has computational caveat of how to solve
infinite-dimensional estimation problem

* finite-dimensional approximations of function
spaces (but with no statistical guarantees)



Common Assumptions:
ANOVA Decomposition

n(x) =Y ns(ws)+ Y ne(ws, @) + ...
5 (s,1)

Gueta 13, Suneta, 15

e sample complexity analyses unavailable

 computationally motivated finite-dimensional
approximations of function spaces (with no
statistical guarantees)



Common Structural
Assumptions

e Setting aside statistical i.e. sample complexity
analyses, these require computationally motivated
approximations

1. Finite-dimensional approximations of infinite-
dimensional function space of logistic
transtform \eta(x)

2. Surrogate likelihoods, since log-likelinood is
intractable due to normalization constant

[ exptnte)) do



EXPXOrcist

Makes the structural assumption:
n(r) = Z 0sBs(ws) + Z 0stBs(rs) Be(7¢)
S st
Why “expxorcist”

e follows “ghostbusting” naming trend for non-parametric densities:
non-paranormal, and non-paranormal skeptic (Gaussian Copulas)

e uses conditional exponential densities (clarified shortly)
Computational tractable estimator

Strong statistical guarantees (n{-4/5} convergence rate for risk)



Conditional Densities

Joint Density:

f(X) X €XP (Z HsBs(xs) + Z QstBs(ajs) Bt(xt) + Z Cs(ms))

seV (s,t)EE seV

where [ [,y exp(Cs(xs)) is a given product base measure.

Node-conditional Density:

FIX4|X_4) o< exp (Bs(ats) (98 + ) HStBt(a:t)) +08(a;8)>

teN(s)
* node-conditional density has exponential family form
* with sufficient statistics B_s(.)

* natural parameter that is a linear function of sufficient statistics of other node-
conditional densities



Node-conditional Densities

Theorem (Yang, Ravikumar, Allen, Liu 15):
The set of node-conditional densities:

F(Xo|X_y) o< exp (BS(:I:S) (93 + ) HStBt(xt)) +cs(a;s)>

teN (s)

are all consistent with a unique joint density:

F(X) o exp (Z 0sBs(ws) + »  04By(xs) Be(we) + C’S(xs))

seV (s,t)eEE seV



Node-conditional Densities

A more general set of node-conditional densities:
flzslr_s) x exp(h(xs,z_s) + Cs(xy))

need not be consistent with a unique joint density.

Amold et al, O1, Bertl etal, 14 .



Conditional Density of
Exponential Family Form

General conditional density:
flzslr_s) x exp(h(xs,z_s) + Cs(xy))

Conditional density of exponential family form:
f(xs|r_s) x exp(Bs(xs) Fs(x_s) + Cs(zs))

Thus, conditional density of exponential family form
has its logistic transform that factorizes:

h(xs,x_s) = Bs(xs) Es(x_s)



Node-conditional Densities

Theorem (Yang, Ravikumar, Allen, Liu 15):
The set of node-conditional densities:

f(zs|z_s) oc exp(Bs(ws) Es(v—s) + Cs(xs))

are all consistent with a joint density iff:

Es(x—s) — 65 =+ Z HstBt<xt)

teVv

and the resulting unique joint density has the form:

F(X) o exp (Z 0sBs(ws) + »  04By(xs) Bi(we) + C’S(ws))
seV (s,t)EE seV

Thus the expxorcist class of densities follows without loss of much generality,
in particular, if we make the very general assumption that the
node-conditional densities have “exponential family form”



Estimation of Expxorcist
Densities

* Expxorcist node-conditional densities are consistent with a
unigue expxorcist joint density

* We reduce joint density estimation to a set of node-
conditional density estimation problems

We estimate:

FIXg|X_4) o< exp (BS(:ES) (93 + ) HStBt(;ct)) —I—C’S(x8)>

teN(s)
assuming, for identitiability that:

[ Bs(xs)dxs =0, [ B2(xs)dxs =1, and 65 > 0.



Estimation of Expxorcist Densities

Let;

Ls(BiXn) = — 2y { <1 i ZtGV\S (X ) AR B)} |

With some re-parameterization, ell_1 regularized
node-conditional MLE can be written as:

mgn Ls(B;Xn) + A ey \/th By (X)2dX
st [y, Bi(X)dX =0 VteV.



Estimation of Expxorcist Densities

Suppose we are given a uniformly bounded orthonormal basis {¢x(-)}72, for
the function space of {B(+)}scv -

Expansion of B_t(.) in terms of this basis yields:

oo

BuX) =" auxdu(X)+pm(X) where (X)) =arodo(X)+> . aprén(X).

k=m-+1

Then the infinite-dimensional problem earlier,
can be approximated as:

where otg m = {4 ke 1> @m = {0, m jtev and L, is defined as

Lo m(0m; Xn) = % ) { 3 andr(X) (1 + Yat,mﬁl(X,f“)) + AXY); am>} .
k=1

i=1 teV\{s} =1




EXpXorcist Estimation

where ot m = { ke 1> @m = {0, m jtev and L, is defined as

Es,m(anﬁxn) = %Z { Z&s,kﬁbk(x,gi)) (1 + Sj Sjat,lﬁbl(Xt(i))) + A(X(—zg5 am)} -
k=1

i=1 teV\{s} =1

e Non-convex

 But can compute a local minimum efticiently using
alternating minimization and proximal gradient descent



Statistical Guarantees

* Theorem (Suggala, Kolar, Ravikumar 17):

Under some regularity conditions, any local minimum of the expxorcist density
estimation problem @, satisfies:

|G — agullz < CVA |V Lo ()]0,

where d := maximum node-degree of conditional independence graph of multi-
variate expxorcist density.



Statistical Guarantees

» Corollary (Suggala, Kolar, Ravikumar 17):

Suppose B;(:) € Fa(c), {or}72, be the trigonometric basis of Fa(c), and let
d := maximum node-degree of conditional independence graph of multivariate
expxorcist density. Then under some regularity conditions, any local minimum
expxorcist node-conditional density estimate f,, satisfies:

AN

Ry (fn) = d® (logp)* n=*/".

 One-dimensional non-parametric rate, dependence
on dimension p Is logarithmic



ROC Plots for estimating
Conditional Independence Graph
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Top: chain graphs, Bottom: grid graphs
Columns correspond to different multivariate densities

» (Generated synthetic data from multivariate densities with different
non-linearities (cosine, exponential, Gaussian)

e Our non-parametric estimator (expxorcist) recovers these adaptively



Futures Intraday Data

Gaussian Copulas Expxorcist

Top 26 most liquid instruments (traded at CME)
1 minute price returns (from 9 AM - 3 PM Eastern); multimodal, fat tailed
895 training, 650 test samples

Expxorcist can be seen to identity clusters better



summary

General non-parametric density estimation has high sample complexity in high
dimensions

Need to impose structural assumptions
Expxorcist imposes the following very natural non-parametric assumptions:

* Node-conditonal densities follow “exponential family form”
(for unknown sufficient statistics)

o Conditional Independence Graph of density is sparse

We propose a computationally practical estimator with strong statistical
guarantees:

e node-conditional density estimation has one-dimensional
non-parametric rate



