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Nonparametric Density 
Estimation

Let F be some distribution, with density f 2 F .

Given data X1, . . . , Xn ⇠ F .

Non-parametric Density Estimation: estimate f given {Xi}ni=1 given infinite-
dimensional space F .



Nonparametric Density 
Estimation

• preferably: making as few assumptions about       as possible 

Let F be some distribution, with density f 2 F .

Given data X1, . . . , Xn ⇠ F .

Non-parametric Density Estimation: estimate f given {Xi}ni=1 given infinite-
dimensional space F .

F



Why Density Estimation?
• An important “unsupervised learning” problem 

• density summarizes the data without any supervision 

• Can perform probabilistic reasoning

• how likely is some future event given evidence so far (e.g. how likely is 
it to have large value for invasive diagnostic test given other symptoms) 

• given joint density over all variables, can compute conditional probabilities 
of variables of interest given values of other variables  

• Given density, can compute functionals of interest 

• entropy, moments, …



Why Density Estimation?
• An important functional is the conditional independence graph

• one node for each variable, and no edge between two variables 
if they are conditionally independent given other variables 

• Conditional Independence Graph provides a much sparser 
“dependency graph” than correlation or thresholded correlation; 
connotes a more “direct” dependence

Example: Poisson Graphical Models

• MicroRNA network learnt from  
The Cancer Genome Atlas (TCGA)  
Breast Cancer Level II Data

Case Study: Biological Results

SPGM miRNA Network:

An Important Special Case: Poisson Graphical Model

Joint Distribution:

P(X ) = exp
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Node-conditional Distributions:
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Pairwise variant discussed as “Poisson auto-model” in (Besag, 74).



Example: Kernel Density 
Estimation
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is consistent for a broad class of density classes



Running Function Class:  
Sobolev order 2

F2(c) :=

⇢
f :

Z
|f (2)(x)|2dx < c2

�

Let Rf ( bfn) := Ef

R
( bfn(x)� f(x))2 dx.

inf bfn supf2F2(c) Rf ( bfn) ⇣ n�4/5.



Running Function Class:  
Sobolev order 2

F2(c) :=

⇢
f :

Z
|f (2)(x)|2dx < c2

�

Let Rf ( bfn) := Ef

R
( bfn(x)� f(x))2 dx.

inf bfn supf2F2(c) Rf ( bfn) ⇣ n�4/5.

Achieved by kernel density estimation  
(for appropriate setting of bandwidth)



Running Function Class:  
Sobolev order 2

• But in higher dimensions, where x is d-dimensional:

Let Rf ( bfn) := Ef

R
( bfn(x)� f(x))2 dx.

inf bfn supf2F2(c) Rf ( bfn) ⇣ n�4/(4+d).

(also achieved by  
kernel density estimation)



Running Function Class:  
Sobolev order 2

• But in higher dimensions, where x is d-dimensional:

Let Rf ( bfn) := Ef

R
( bfn(x)� f(x))2 dx.

inf bfn supf2F2(c) Rf ( bfn) ⇣ n�4/(4+d).

(also achieved by  
kernel density estimation)

no. of samples required scales exponentially with dimension d

For risk R( bfn)  ✏, need number of samples n � C
�
1
✏

�1+ d
4



Non-parametric Density 
Estimation

• For lower sample complexity, need to impose some 
“structure” on the density function 

• Typically, we impose this structure on the logistic 
transform of the density

f(x) =
exp(⌘(x))R

x exp(⌘(x))dx

⌘(x) s.t.



Non-parametric Density 
Estimation

• Estimate logistic transform \eta(x) from data 

• can impose constraints without worrying about 
positivity and normalizability 

• still has the same exponential sample complexity



Common Structural 
Assumptions: RKHS

• still has exponential sample complexity 

• also has computational caveat of how to solve 
infinite-dimensional estimation problem 

• finite-dimensional approximations of function 
spaces (but with no statistical guarantees)

Assume ⌘(x) lies in a Reproducing Kernel Hilbert Space (RKHS) Hk with re-

spect to some kernel function k(·, ·).

Silverman 82, Gu, Qiu 93, Canu, Smola 06



Common Assumptions: 
ANOVA Decomposition

• sample complexity analyses unavailable 

• computationally motivated finite-dimensional 
approximations of function spaces (with no 
statistical guarantees)

Gu et al, 13, Sun et al,15

⌘(x) =
X

s

⌘s(xs) +
X

(s,t)

⌘st(xs, xt) + . . .



Common Structural 
Assumptions

• Setting aside statistical i.e. sample complexity 
analyses, these require computationally motivated 
approximations 

1. Finite-dimensional approximations of infinite-
dimensional function space of logistic   
transform \eta(x) 

2. Surrogate likelihoods, since log-likelihood is 
intractable due to normalization constant Z

exp(⌘(x)) dx



Expxorcist
• Makes the structural assumption: 

• Why “expxorcist” 

• follows “ghostbusting” naming trend for non-parametric densities: 
non-paranormal, and non-paranormal skeptic (Gaussian Copulas) 

• uses conditional exponential densities (clarified shortly) 

• Computational tractable estimator 

• Strong statistical guarantees (n^{-4/5} convergence rate for risk)
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Conditional Densities

• node-conditional density has exponential family form 

• with sufficient statistics B_s(.)  

• natural parameter that is a linear function of sufficient statistics of other node-
conditional densities

Joint Density:

Node-conditional Density:
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Node-conditional Densities
Theorem (Yang, Ravikumar, Allen, Liu 15): 
The set of node-conditional densities:
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are all consistent with a unique joint density:
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Node-conditional Densities
A more general set of node-conditional densities:

need not be consistent with a unique joint density.

f(xs|x�s) / exp(h(xs, x�s) + Cs(xs))

Arnold et al. 01, Berti  et al. 14, …



Conditional Density of 
Exponential Family Form

General conditional density:

f(xs|x�s) / exp(h(xs, x�s) + Cs(xs))

f(xs|x�s) / exp(Bs(xs)Es(x�s) + Cs(xs))

Conditional density of exponential family form:

Thus, conditional density of exponential family form  
has its logistic transform that factorizes:

h(xs, x�s) = Bs(xs)Es(x�s)



Node-conditional Densities
Theorem (Yang, Ravikumar, Allen, Liu 15): 
The set of node-conditional densities:

are all consistent with a joint density iff:
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and the resulting unique joint density has the form:

Thus the expxorcist class of densities follows without loss of much generality,  
in particular, if we make the very general assumption that the  
node-conditional densities have “exponential family form”



Estimation of Expxorcist 
Densities

• Expxorcist node-conditional densities are consistent with a 
unique expxorcist joint density 

• We reduce joint density estimation to a set of node-
conditional density estimation problems
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We estimate:

assuming, for identifiability that:
R
Bs(xs)dxs = 0,

R
B2

s (xs)dxs = 1, and ✓s � 0.



Estimation of Expxorcist Densities
Bt(Xt) (✓st/✓s)Bt(Xt), 8t 2 V \ {s}. With a slight abuse of notation we redefine Ls using this178

re-parametrization as179
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where A(X�s;B) is the log partition function. We solve the following optimization problem, which180

is closely related to the original optimization in Equation (5):181
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For more details on the relation between (5) and (7), please refer to Appendix.182

Algorithm: We now present our algorithm for optimization of (7). In the sequel, for simplicity,183

we assume that the domains Xt of random variables Xt are all the same and equal to X . In order to184

estimate functions Bt, we expand them over a uniformly bounded, orthonormal basis {�k(·)}1k=0 of185
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infinite dimensional optimization problem in (7) into a finite dimensional problem, we truncate the188

basis expansion to the top m terms and approximate Bt(·) as
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Iterative minimization of (8): Note that the objective in (8) is non-convex. In this work, we use193

a simple alternating minimization technique for its optimization. In this technique, we alternately194

minimize ↵s,m, {↵t,m}t2V \s while fixing the other parameters. The resulting optimization problem195

in each of the alternating steps is convex. We use Proximal Gradient Descent to optimize these196

sub-problems. To compute the objective and its gradients, we need to numerically evaluate the197

one-dimensional integrals in the log partition function. To do this, we choose a uniform grid of points198

over the domain and use quadrature rules to approximate the integrals.199

5 Statistical Properties200

In this section we provide parameter estimation error rates for the node conditional estimator in201

Equation (8). Note that these rates are for the re-parameterized model described in Equation (6) and202

can be easily translated to guarantees on the original model described in Equations (3), (4).203

Notation: Let B2(x, r) = {y : ky � xk2  r} be the `2 ball with center x and radius r. Let204

{B⇤

t (·)}t2V be the true functions of the re-parametrized model, which we would like to estimate205

from the data. Denote the basis expansion coefficients of Bt(·) with respect to orthonormal basis206

{�k(·)}1k=0 by ↵t, which is an infinite dimensional vector and let ↵⇤

t be the coefficients of B⇤

t (·).207

And let ↵t,m be the coefficients corresponding to the top m basis in the basis expansion of Bt(·).208

Note that
R
Bt(X)2dX = k↵tk

2
2. Let ↵ = {↵t}t2V and ↵m = {↵t,m}t2V . Let L̄s,m(↵m) =209

E [Ls,m(↵m;Xn)] be the population version of the sample loss defined in Equation (8). We will often210

omit Xn from Ls,m(↵m;Xn) when clear from the context. We let (↵t � ↵t,m) be the difference211

between infinite dimensional vector ↵t and the vector obtained by appropriately padding ↵t,m with212

zeros. Finally, we define the norm R(·) as R(↵m) =
P

t2V k↵t,mk2 and its dual as R⇤(↵m) =213

supt2V k↵t,mk2. The norms on infinite dimensional vector ↵ are similarly defined.214

We now state our assumptions on the loss functions L̄s,m(·) and Ls,m(·). Our first assumption is on215

the gradient of the population loss L̄s,m.216
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Iterative minimization of (8): Note that the objective in (8) is non-convex. In this work, we use193

a simple alternating minimization technique for its optimization. In this technique, we alternately194

minimize ↵s,m, {↵t,m}t2V \s while fixing the other parameters. The resulting optimization problem195

in each of the alternating steps is convex. We use Proximal Gradient Descent to optimize these196
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With some re-parameterization, ell_1 regularized  
node-conditional MLE can be written as:



Estimation of Expxorcist Densities

Expansion of B_t(.) in terms of this basis yields:
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Iterative minimization of (8): Note that the objective in (8) is non-convex. In this work, we use193

a simple alternating minimization technique for its optimization. In this technique, we alternately194

minimize ↵s,m, {↵t,m}t2V \s while fixing the other parameters. The resulting optimization problem195

in each of the alternating steps is convex. We use Proximal Gradient Descent to optimize these196

sub-problems. To compute the objective and its gradients, we need to numerically evaluate the197

one-dimensional integrals in the log partition function. To do this, we choose a uniform grid of points198

over the domain and use quadrature rules to approximate the integrals.199
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Equation (8). Note that these rates are for the re-parameterized model described in Equation (6) and202
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t (·)}t2V be the true functions of the re-parametrized model, which we would like to estimate205

from the data. Denote the basis expansion coefficients of Bt(·) with respect to orthonormal basis206

{�k(·)}1k=0 by ↵t, which is an infinite dimensional vector and let ↵⇤

t be the coefficients of B⇤

t (·).207

And let ↵t,m be the coefficients corresponding to the top m basis in the basis expansion of Bt(·).208

Note that
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Iterative minimization of (8): Note that the objective in (8) is non-convex. In this work, we use193

a simple alternating minimization technique for its optimization. In this technique, we alternately194

minimize ↵s,m, {↵t,m}t2V \s while fixing the other parameters. The resulting optimization problem195

in each of the alternating steps is convex. We use Proximal Gradient Descent to optimize these196

sub-problems. To compute the objective and its gradients, we need to numerically evaluate the197

one-dimensional integrals in the log partition function. To do this, we choose a uniform grid of points198

over the domain and use quadrature rules to approximate the integrals.199
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Expxorcist Estimation
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• But can compute a local minimum efficiently using 
alternating minimization and proximal gradient descent
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Iterative minimization of (8): Note that the objective in (8) is non-convex. In this work, we use193

a simple alternating minimization technique for its optimization. In this technique, we alternately194

minimize ↵s,m, {↵t,m}t2V \s while fixing the other parameters. The resulting optimization problem195

in each of the alternating steps is convex. We use Proximal Gradient Descent to optimize these196
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Statistical Guarantees
• Theorem (Suggala, Kolar, Ravikumar 17): 

Under some regularity conditions, any local minimum of the expxorcist density
estimation problem b↵m satisfies:

kb↵m � ↵⇤
mk2  C

p
d krLsm(↵⇤

m)k1,

where d := maximum node-degree of conditional independence graph of multi-
variate expxorcist density.



Statistical Guarantees

• One-dimensional non-parametric rate, dependence 
on dimension p is logarithmic

• Corollary (Suggala, Kolar, Ravikumar 17): 

Suppose Bs(·) 2 F2(c), {�k}1k=0 be the trigonometric basis of F2(c), and let
d := maximum node-degree of conditional independence graph of multivariate
expxorcist density. Then under some regularity conditions, any local minimum
expxorcist node-conditional density estimate bfn satisfies:

Rf ( bfn) ⇣ d3 (log p)4 n�4/5.



ROC Plots for estimating 
Conditional Independence Graph

• Generated synthetic data from multivariate densities with different 
non-linearities (cosine, exponential, Gaussian) 

• Our non-parametric estimator (expxorcist) recovers these adaptively
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Figure 1: ROC plots from synthetic experiments. Top and bottom rows show plots for chain and grid graphs
respectively. Left column shows plots for data generated from our non-parametric model with Bs(X) = cos(X),
Cs(X) = 0, n = 500 and center column shows plots for the other choice of sufficient statistic with Cs(X) =
�|X|, n = 500. Right column shows plots for Gaussian data with n = 100.

performance on non-Gaussian data. On these datasets, even at n = 500 the baselines chose edges302

at random. This suggests that in the presence of multiple modes and fat tails, Expxorcist is a better303

model. Expxorcist has slightly poor performance than baselines on Gaussian data. However, this is304

expected because it learns a broader family of distributions than Nonparanormal.305

7.2 Futures Intraday Data306

(a) Nonparanormal (b) Expxorcist

Figure 2: Graph Structures learned for the Futures Intraday Data. The Expxorcist graph shown here was
obtained by selecting � = 0.1. Nodes are colored based on their categories. Edge thickness is proportional to
the magnitude of the interaction.
We now present our analysis on the Futures price returns. This dataset was downloaded from307

http://www.kibot.com/. We focus on the Top-26 most liquid instruments being traded at the308

Chicago Mercantile Exchange (CME). The instruments span different sectors like Energy, Agriculture,309

Currencies, Equity Indices, Metals and Interest Rates. We focus on the hours of maximum liquidity310

(9am Eastern to 3pm Eastern) and look at the 1 minute price returns. The return distribution is a311

mixture of 1 minute returns with the overnight return. Since overnight returns tend to be bigger than312

the 1 minute return within the day, the return distribution is multimodal and fat-tailed. We treat each313

instrument as a random variable and the 1 minute returns as independent samples drawn from these314

random variables. We use the data collected in February 2010 as training data and data from March315

2010 as held out data for tuning parameter selection. After removing samples with missing entries316

we are left with 894 training and 650 held out data samples. We fit Expxorcist and baselines on this317

data with the same parameter settings described above. For each of these models, we select the best318

tuning parameter through log likelihood on held out data. However, this criteria resulted in complete319

graphs for Nonparanormal and GGM (325 edges) and a relatively sparser graph for Expxorcist (168320

edges). So for a better comparison of these models, we selected tuning parameters for each of the321

models such that the resulting graphs have almost the same number of edges. Figure 2 shows the322

learned graphs for one such choice of tuning parameters, which resulted in ⇠ 52 edges in the graphs.323

Nonparanormal and GGM resulted in very similar graphs, so we only present Nonparanormal here. It324

can be seen that Expxorcist is able to identify the clusters better than Nonparanormal. More detailed325

graphs and comparison with GGM can be found in Appendix.326

8
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Futures Intraday Data

• Top 26 most liquid instruments (traded at CME) 

• 1 minute price returns (from 9 AM - 3 PM Eastern); multimodal, fat tailed 

• 895 training, 650 test samples 

• Expxorcist can be seen to identify clusters better
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Figure 1: ROC plots from synthetic experiments. Top and bottom rows show plots for chain and grid graphs
respectively. Left column shows plots for data generated from our non-parametric model with Bs(X) = cos(X),
Cs(X) = 0, n = 500 and center column shows plots for the other choice of sufficient statistic with Cs(X) =
�|X|, n = 500. Right column shows plots for Gaussian data with n = 100.
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the magnitude of the interaction.
We now present our analysis on the Futures price returns. This dataset was downloaded from307

http://www.kibot.com/. We focus on the Top-26 most liquid instruments being traded at the308

Chicago Mercantile Exchange (CME). The instruments span different sectors like Energy, Agriculture,309
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the 1 minute return within the day, the return distribution is multimodal and fat-tailed. We treat each313

instrument as a random variable and the 1 minute returns as independent samples drawn from these314

random variables. We use the data collected in February 2010 as training data and data from March315

2010 as held out data for tuning parameter selection. After removing samples with missing entries316

we are left with 894 training and 650 held out data samples. We fit Expxorcist and baselines on this317

data with the same parameter settings described above. For each of these models, we select the best318

tuning parameter through log likelihood on held out data. However, this criteria resulted in complete319

graphs for Nonparanormal and GGM (325 edges) and a relatively sparser graph for Expxorcist (168320

edges). So for a better comparison of these models, we selected tuning parameters for each of the321

models such that the resulting graphs have almost the same number of edges. Figure 2 shows the322

learned graphs for one such choice of tuning parameters, which resulted in ⇠ 52 edges in the graphs.323

Nonparanormal and GGM resulted in very similar graphs, so we only present Nonparanormal here. It324

can be seen that Expxorcist is able to identify the clusters better than Nonparanormal. More detailed325

graphs and comparison with GGM can be found in Appendix.326
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Summary
• General non-parametric density estimation has high sample complexity in high 

dimensions 

• Need to impose structural assumptions 

• Expxorcist imposes the following very natural non-parametric assumptions: 

• Node-conditonal densities follow “exponential family form”  
(for unknown sufficient statistics) 

• Conditional Independence Graph of density is sparse 

• We propose a computationally practical estimator with strong statistical 
guarantees: 

• node-conditional density estimation has one-dimensional  
non-parametric rate


