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Fig. 4 (Color online) As pointed
out by Swingle [91], the scale
invariant MERA for the ground
state of a quantum spin chain can
be interpreted as a discrete
realization of the AdS/CFT
correspondence. The ground state
of the one-dimensional lattice
model corresponds to a discrete
version of the vacuum of a
CFT1+1, whereas the MERA
spans a two dimensional
geometry that corresponds to a
discrete version of a time slice of
AdS2+1. The Figure shows a
MERA similar to that of Fig. 3,
but from another perspective,
with the scale parameter z as a
radial coordinate

Fig. 5 (Color online) Homogeneous tensor network states for the ground state in an infinite lattice in D = 1
spacial dimensions. (i) A homogeneous MPS is characterized by a single tensor that is repeated infinitely
many times throughout the tensor network. (ii) A homogeneous scale invariant MERA is characterized by two
tensors, a disentangler and an isometry, repeated throughout the tensor network, which consists of infinitely
many layers

4 Correlations and Geodesics

The asymptotic decay of correlations has long been known to be exponential in an MPS
[1–3] and polynomial in the scale invariant MERA [16, 18, 19]. In this section we point out
that such behavior is dictated by the structure of geodesics in the geometry attached to each
of these tensor network states. For an MPS, the later is a rather straightforward statement;
for the MERA, it was first noted by Swingle [91].

4.1 Geodesics Within a Tensor Network

Given a tensor network state for the state |!⟩ of a lattice L, and two sites of L at positions
x1 and x2, we can define a notion of distance between these two sites within the tensor
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Are tensor networks useful for 
machine learning?

This Talk

Tensor networks can represent weights of 
useful and interesting machine learning models

Flexibility of tensor network algorithms leads 
to creativity in devising new approaches



What are Tensor Networks?



Original setting is quantum mechanics
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Wavefunction just a rule to 
map spin configurations to numbers
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 s1s2s3s4s5s6s7s8

Simplest rule: store every amplitude separately
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Let's make a different rule

Introduce matrices, one for each spin

#

" M"

M#

Östlund, Rommer, Phys. Rev. Lett. 75, 3537 (1995)



Compute amplitude by multiplying matrices together 
(with boundary vectors       and       )vRvL
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Östlund, Rommer, Phys. Rev. Lett. 75, 3537 (1995)



This rule is called a matrix product state (MPS)

 s1s2s3s4 = v†LM
s1Ms2Ms3Ms4vR

• Size of matrices called m  (the "bond dimension") 

• For m = 2N/2  can represent any state of N spins 

• Really just a way of compressing a big tensor

Represents 2N amplitudes using only 
(2 N m2) parameters



Tensor Diagrams



Helpful to draw N-index tensor as blob with 
N lines

s1 s2 s3 s4

 s1s2s3···sN =

sN

No symmetries, transformation properties assumed



Diagrams for simple tensors
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Joining lines implies contraction, can omit names
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Matrix product state in diagram notation
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Fig. 2. (Color online) Two examples of tensor network diagrams: (a)Matrix Product State (MPS) for 4 sites with open boundary
conditions; (b) Projected Entangled Pair State (PEPS) for a 3 ⇥ 3 lattice with open boundary conditions.

states is radically different from the usual approach, where one just gives the coefficients of a wave-
function in some given basis. When dealing with a TN state we will see that, instead of thinking
about complicated equations, we will be drawing tensor network diagrams, see Fig. 2. As such, it has
been recognized that this tensor description offers the natural language to describe quantum states
of matter, including those beyond the traditional Landau’s picture such as quantum spin liquids and
topologically-ordered states. This is a new language for condensed matter physics (and in fact, for all
quantum physics) that makes everything much more visual and which brings new intuitions, ideas
and results.

3.3. Entanglement induces geometry

Imagine that you are given a quantum many-body wave-function. Specifying its coefficients in
a given local basis does not give any intuition about the structure of the entanglement between its
constituents. It is expected that this structure is different depending on the dimensionality of the
system: this should be different for 1d systems, 2d systems, and so on. But it should also depend on
more subtle issues like the criticality of the state and its correlation length. Yet, naive representations
of quantum states do not possess any explicit information about these properties. It is desirable, thus,
to find a way of representing quantum states where this information is explicit and easily accessible.

As we shall see, a TN has this information directly available in its description in terms of a network
of quantum correlations. In a way, we can think of TN states as quantum states given in some
entanglement representation. Different representations are better suited for different types of states
(1d, 2d, critical, etc.), and the network of correlations makes explicit the effective lattice geometry in
which the state actually lives. We will be more precise with this in Section 4.2. At this level this is
just a nice property. But in fact, by pushing this idea to the limit and turning it around, a number
of works have proposed that geometry and curvature (and hence gravity) could emerge naturally
from the pattern of entanglement present in quantum states [51]. Here we will not discuss further
this fascinating idea, but let us simply mention that it becomes apparent that the language of TN is,
precisely, the correct one to pursue this kind of connection.

3.4. Hilbert space is far too large

This is, probably, the main reason why TNs are a key description of quantum many-body states of
Nature. For a systemof e.g.N spins 1/2, the dimension of theHilbert space is 2N , which is exponentially
large in the number of particles. Therefore, representing a quantum state of the many-body system
just by giving the coefficients of the wave function in some local basis is an inefficient representation.
TheHilbert space of a quantummany-body system is a really big placewith an incredibly large number
of quantum states. In order to give a quantitative idea, let us put some numbers: if N ⇠ 1023 (of the
order of the Avogadro number) then the number of basis states in the Hilbert space is ⇠O(101023),
which is much larger (in fact exponentially larger) than the number of atoms in the observable
universe, estimated to be around 1080! [52].

Luckily enough for us, not all quantum states in the Hilbert space of amany-body system are equal:
some are more relevant than others. To be specific, many important Hamiltonians in Nature are such
that the interactions between the different particles tend to be local (e.g. nearest or next-to-nearest

PEPS
(2D systems)

Besides MPS, other successful tensor are 
PEPS and MERA

Verstraete, Cirac, cond-mat/0407066 (2004)
Orus, Ann. Phys. 349, 117 (2014)

tation of two-point correlators! and also leads to a much
more convenient generalization in two dimensions.

II. MERA

Let L denote a D-dimensional lattice made of N sites,
where each site is described by a Hilbert space V of finite
dimension d, so that VL"V!N. The MERA is an ansatz used
to describe certain pure states #!$!VL of the lattice or, more
generally, subspaces VU!VL.

There are two useful ways of thinking about the MERA
that can be used to motivate its specific structure as a tensor
network, and also help understand its properties and how the
algorithms ultimately work. One way is to regard the MERA
as a quantum circuit C whose output wires correspond to the
sites of the lattice L.5 Alternatively, we can think of the
MERA as defining a coarse-graining transformation that
maps L into a sequence of increasingly coarser lattices, thus
leading to a renormalization-group transformation.1 Next we
briefly review these two complementary interpretations.
Then we compare several MERA schemes and discuss how
to exploit space symmetries.

A. Quantum circuit

As a quantum circuit C, the MERA for a pure state #!$
!VL is made of N quantum wires, each one described by a
Hilbert space V, and unitary gates u that transform the unen-
tangled state #0$!N into #!$ %see Fig. 1!.

In a generic case, each unitary gate u in the circuit C
involves some small number p of wires,

u: V!p → V!p, u†u = uu† = I , %1!

where I is the identity operator in V!p. For some gates, how-
ever, one or several of the input wires are in a fixed state #0$.
In this case we can replace the unitary gate u with an iso-
metric gate w

w: Vin → Vout, w†w = IVin
, %2!

where Vin"V!pin is the space of the pin input wires that are
not in a fixed state #0$ and Vout"V!pout is the space of the
pout= p output wires. We refer to w as a %pin , pout! gate or
tensor.

Figure 2 shows an example of a MERA for a 1D lattice L
made of N=16 sites. Its tensors are of types %1,2! and %2,2!.
We call the %1,2! tensors isometries w and the %2,2! tensors
disentanglers u for reasons that will be explained shortly, and
refer to Fig. 2 as a binary 1D MERA, since it becomes a
binary tree when we remove the disentanglers. Most of the
previous work for 1D lattices1,5–7,16–18 has been done using
the binary 1D MERA. However, there are many other pos-

FIG. 1. %Color online! Quantum circuit C corresponding to a
specific realization of the MERA, namely, the binary 1D MERA of
Fig. 2. In this particular example, circuit C is made of gates involv-
ing two incoming wires and two outgoing wires, p= pin= pout=2.
Some of the unitary gates in this circuit have one incoming wire in
the fixed state #0$ and can be replaced with an isometry w of type
%1,2!. By making this replacement, we obtain the isometric circuit
of Fig. 2. FIG. 2. %Color online! %Top! Example of a binary 1D MERA for

a lattice L with N=16 sites. It contains two types of isometric
tensors, organized in T=4 layers. The input %output! wires of a
tensor are those that enter it from the top %leave it from the bottom!.
The top tensor is of type %1,2! and the rank "T of its upper index
determines the dimension of the subspace VU!VL represented by
the MERA. The isometries w are of type %1,2! and are used to
replace each block of two sites with a single effective site. Finally,
the disentanglers u are of type %2,2! and are used to disentangle the
blocks of sites before coarse-graining. %Bottom! Under the
renormalization-group transformation induced by the binary 1D
MERA, three-site operators are mapped into three-site operators.

G. EVENBLY AND G. VIDAL PHYSICAL REVIEW B 79, 144108 %2009!
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PEPS Tensor Network

Powerful algorithms to address 
infinite 2D systems

PHILIPPE CORBOZ PHYSICAL REVIEW B 94, 035133 (2016)

benchmark results for the 2D Heisenberg model, the Shastry-
Sutherland model, and the t-J model to demonstrate the
performance of the variational approach compared to results
based on ITE. Finally, we discuss and summarize our findings
in Sec. V. In addition, in the Appendix we explain how to
implement a two-site variational optimization which can be
used complementary to the one-site update discussed in the
main text.

II. INTRODUCTION TO iPEPS

A. iPEPS ansatz

An iPEPS is an efficient variational tensor network ansatz
for 2D ground states of local Hamiltonians in the thermo-
dynamic limit [5,7,8,11,36] which obey an area law of the
entanglement entropy [10]. It consists of a rectangular unit
cell of tensors with one tensor per lattice site A[x,y], where
[x,y] label the coordinates of a tensor relative to the unit
cell of size Lx × Ly = NT , shown in Fig. 1(a). Each tensor
has one physical index carrying the local Hilbert space of a
lattice site and four auxiliary indices which connect to the
nearest-neighbor tensors on a square lattice (more generally,
a PEPS has z auxiliary indices, where z is the coordination
number of the lattice). The accuracy of the ansatz can be
systematically controlled by the bond dimension D of the
auxiliary indices.

For a translationally invariant state an ansatz with a
single-tensor unit cell can be chosen. However, if translational
symmetry is spontaneously broken, a larger unit-cell size com-
patible with the periodicity of the ground state is required (for
example, for an antiferromagnetic state two different tensors
for the two sublattices are needed). Since the periodicity of
the ground state is typically not known in advance, one has to
perform simulations with different unit cell sizes to determine
which cell size leads to the lowest variational energy. Using
different unit cells also offers the possibility to find different
competing low-energy states (see, e.g., Ref. [21]).

B. Contraction of an iPEPS

In order to compute an expectation value of an observable Ô
with respect to an iPEPS wave function |!⟩, the corresponding
2D tensor network representing ⟨!|Ô|!⟩ has to be contracted
in a controlled, approximate way. In this work we use a
variant of the CTM renormalization group method [30–32]
for arbitrary unit-cell sizes [21,36], which is summarized in
the following.

Consider the problem of computing the norm of an iPEPS
⟨!|!⟩, which boils down to contracting the infinite 2D
square-lattice network of the reduced tensors a[x,y], shown in
Fig. 1(c), where each a[x,y] is obtained from contracting A[x,y]

with its conjugate tensor A†[x,y] [see Fig. 1(b)]. The goal of
the CTM approach is to compute the four corner tensors C1,
C2, C3, C4 and the four edge tensors T1, T2, T3, T4 for each
coordinate [x,y] in the unit cell, where each corner tensor
represents a quadrant and the edge tensors represent a half
row (or half column) of the infinite 2D network. All these
tensors together form the so-called environment, representing
the infinite system surrounding a bulk site (or several bulk
sites), as shown in Fig. 1(c). Once the environment has been

Ψ|Ψ =(c)
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y 1 2 3 1 23
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FIG. 1. (a) iPEPS ansatz with a 3 × 2 unit cell of tensors which
is periodically repeated in the lattice. (b) The reduced tensor a[x,y] is
obtained from contracting an iPEPS tensor A[x,y] with its conjugate
A†[x,y] along the physical leg. (c) The norm ⟨!|!⟩ is represented
as an infinite square-lattice network of reduced tensors. The CTM
approach yields the environment tensors surrounding a bulk tensor
a[x,y] where the corner tensors C1, C2, C3, C4 take into account a
quarter-infinite system and the edge tensors T1, T2, T3, T4 take into
account an infinite half row or half column of the system. (d) A left
move is done by inserting a new column of tensors, multiplying the
tensors to the left, and performing a renormalization step (this is done
for all coordinates y). (e) Diagrams to compute the updated corner
and edge tensors C ′

1, C ′
4, T ′

4 at coordinate x (for all y coordinates).
Note that the coordinates are always taken modulo the unit cell size.
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benchmark results for the 2D Heisenberg model, the Shastry-
Sutherland model, and the t-J model to demonstrate the
performance of the variational approach compared to results
based on ITE. Finally, we discuss and summarize our findings
in Sec. V. In addition, in the Appendix we explain how to
implement a two-site variational optimization which can be
used complementary to the one-site update discussed in the
main text.

II. INTRODUCTION TO iPEPS

A. iPEPS ansatz

An iPEPS is an efficient variational tensor network ansatz
for 2D ground states of local Hamiltonians in the thermo-
dynamic limit [5,7,8,11,36] which obey an area law of the
entanglement entropy [10]. It consists of a rectangular unit
cell of tensors with one tensor per lattice site A[x,y], where
[x,y] label the coordinates of a tensor relative to the unit
cell of size Lx × Ly = NT , shown in Fig. 1(a). Each tensor
has one physical index carrying the local Hilbert space of a
lattice site and four auxiliary indices which connect to the
nearest-neighbor tensors on a square lattice (more generally,
a PEPS has z auxiliary indices, where z is the coordination
number of the lattice). The accuracy of the ansatz can be
systematically controlled by the bond dimension D of the
auxiliary indices.

For a translationally invariant state an ansatz with a
single-tensor unit cell can be chosen. However, if translational
symmetry is spontaneously broken, a larger unit-cell size com-
patible with the periodicity of the ground state is required (for
example, for an antiferromagnetic state two different tensors
for the two sublattices are needed). Since the periodicity of
the ground state is typically not known in advance, one has to
perform simulations with different unit cell sizes to determine
which cell size leads to the lowest variational energy. Using
different unit cells also offers the possibility to find different
competing low-energy states (see, e.g., Ref. [21]).

B. Contraction of an iPEPS

In order to compute an expectation value of an observable Ô
with respect to an iPEPS wave function |!⟩, the corresponding
2D tensor network representing ⟨!|Ô|!⟩ has to be contracted
in a controlled, approximate way. In this work we use a
variant of the CTM renormalization group method [30–32]
for arbitrary unit-cell sizes [21,36], which is summarized in
the following.

Consider the problem of computing the norm of an iPEPS
⟨!|!⟩, which boils down to contracting the infinite 2D
square-lattice network of the reduced tensors a[x,y], shown in
Fig. 1(c), where each a[x,y] is obtained from contracting A[x,y]

with its conjugate tensor A†[x,y] [see Fig. 1(b)]. The goal of
the CTM approach is to compute the four corner tensors C1,
C2, C3, C4 and the four edge tensors T1, T2, T3, T4 for each
coordinate [x,y] in the unit cell, where each corner tensor
represents a quadrant and the edge tensors represent a half
row (or half column) of the infinite 2D network. All these
tensors together form the so-called environment, representing
the infinite system surrounding a bulk site (or several bulk
sites), as shown in Fig. 1(c). Once the environment has been
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FIG. 1. (a) iPEPS ansatz with a 3 × 2 unit cell of tensors which
is periodically repeated in the lattice. (b) The reduced tensor a[x,y] is
obtained from contracting an iPEPS tensor A[x,y] with its conjugate
A†[x,y] along the physical leg. (c) The norm ⟨!|!⟩ is represented
as an infinite square-lattice network of reduced tensors. The CTM
approach yields the environment tensors surrounding a bulk tensor
a[x,y] where the corner tensors C1, C2, C3, C4 take into account a
quarter-infinite system and the edge tensors T1, T2, T3, T4 take into
account an infinite half row or half column of the system. (d) A left
move is done by inserting a new column of tensors, multiplying the
tensors to the left, and performing a renormalization step (this is done
for all coordinates y). (e) Diagrams to compute the updated corner
and edge tensors C ′

1, C ′
4, T ′

4 at coordinate x (for all y coordinates).
Note that the coordinates are always taken modulo the unit cell size.
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MERA Tensor Network

The MERA tensor network generalizes matrix 
product state to a layered structure

Similar to dilated conv net in machine learning
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Tensor Network Machine Learning



Raw data vectors

x = (x1, x2, x3, . . . , xN )

Example: grayscale images, 
components of      are pixels

x

xj 2 [0, 1]



Propose following model

=
X

s

Ws1s2s3···sN x

s1
1 x

s2
2 x

s3
3 · · ·xsN

N

f(x) = W · �(x)

sj = 0, 1

Weights are N-index tensor 
Like N-site wavefunction

Novikov, Trofimov, Oseledets, arxiv:1605.03795
Stoudenmire, Schwab, arxiv:1605.05775

Cohen et al. arxiv:1509.05009



f(x) = W · �(x)

N=3 example:

=
X

s

Ws1s2s3 x

s1
1 x

s2
2 x

s3
3

= W000 +W100 x1 +W010 x2 +W001 x3

+W111 x1x2x3

+W110 x1x2 +W101 x1x3 +W011 x2x3

Contains linear classifier, and various poly. kernels



More generally, apply local "feature maps" 

f(x) = W · �(x)
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Ws1s2s3···sN�

s1(x1)�
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s3(x3) · · ·�sN (xN )

Highly expressive

Could put additional parameters into maps �



For example, following local feature map

�(xj) =

h
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⇣
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2
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⌘
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⇣
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xj

⌘i
xj 2 [0, 1]

x = input

Picturesque idea of pixels as "spins"

Stoudenmire, Schwab, arxiv:1605.05775



Total feature map
� = local feature map

x = input

raw inputsx = [x1, x2, x3, . . . , xN ]

feature 
vector 

Tensor diagram notation

s1 s2 s3 s4 s5 s6
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f(x) = W · �(x)Construct decision function
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f(x) = W · �(x)Construct decision function
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f(x) = W · �(x)Construct decision function
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Main approximation

W = order-N tensor

⇡
matrix 
product 
state (MPS)
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Tensor diagrams of the approach

�(x)

W=

⇡

⇡
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Linear scaling

=
�(x)

Wf(x)

Can use algorithm similar to DMRG to optimize

Scaling is N ·NT ·m3
N = size of input

NT = size of training set
m = MPS bond dimension
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Linear scaling

=
�(x)

Wf(x)

Can use algorithm similar to DMRG to optimize

Scaling is N ·NT ·m3
N = size of input

NT = size of training set
m = MPS bond dimension



Experiment: handwriting classification (MNIST)

Train to 99.95% accuracy on 60,000 training images

Obtain 99.03% accuracy on 10,000 test images         
(only 97 incorrect)

Stoudenmire, Schwab, arxiv:1605.05775



Papers using tensor network machine learning

Expressivity & priors of TN based models
• Levine et al., "Deep Learning and Quantum Entanglement: Fundamental Connections 

with Implications to Network Design" arxiv:1704.01552 
• Cohen, Shashua, "Inductive Bias of Deep Convolutional Networks through Pooling 

Geometry" arxiv:1605.06743 
• Cohen et al., "On the Expressive Power of Deep Learning: A Tensor Analysis" arxiv:

1509.05009

Generative Models

Supervised Learning

• Han et al., "Unsupervised Generative Modeling Using Matrix Product States" arxiv:
1709.01662 

• Sharir et al., "Tractable Generative Convolutional Arithmetic Circuits" arxiv:
1610.04167 

• Novikov et al., "Expressive power of recurrent neural networks", arxiv:1711.00811 
• Liu et al., "Machine Learning by Two-Dimensional Hierarchical Tensor Networks: A 

Quantum Information Theoretic Perspective on Deep Architectures", arxiv:
1710.04833 

• Stoudenmire, Schwab, "Supervised Learning with Quantum-Inspired Tensor 
Networks", arxiv:1605.05775 

• Novikov et al., "Exponential Machines", arxiv: 1605.03795



Learning Relevant Features of Data



For a model f(x) = W · �(x)

Given training data {xj}

Can show optimal        is of the formW

W =
X

j

↵j �(xj)

Holds for wide variety of cost functions / tasks

"representer theorem"

Schölkopf, Smola, Müller, Neural Comp. 10, 1299 (1998)



View                        as a tensor�s(xj) = �s
j

�s(xj)

j

�s
j



Representer theorem says

=
↵j

�s
j

W s

Really just says weights in the span of {�s
j}



Can choose any basis for span of

= �s
j

W s

{�s
j}

↵j
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Can choose any basis for span of

= �s
j

W s

{�s
j}

↵j

U s
⌫

�⌫==
U s
⌫

S⌫
⌫0

V ⌫0

j

↵j

(SVD)



Why switch to         basis?

�s
j =

U s
⌫

S⌫
⌫0

V ⌫0

j

(SVD)

U s
⌫

Orthonormal basis

Can compute         fully or partially using tensor networksU s
⌫

Can discard basis vectors corresponding to small s. vals.



Computing        efficiently

�s
j

U s
⌫

Define feature space covariance matrix 
(similar to density matrix)

�† j
s

=

U s
⌫

U † ⌫
s

(S⌫)
2

Strategy: compute       iteratively as a layered (tree) 
tensor network

U s
⌫

⇢ =
1

NT



For efficiency, exploit product structure of �

⇢ = ��† =
1

NT

�(xj)

�†(xj)
=

1

NT

NTX

j=1



=

s1 s2

s01 s02

s1 s2

s01 s02

⇢12 =

s1 s2

s01 s02

s1 s2

s01 s02

= P12

U12

U †
12

Compute tree tensors from reduced matrices

Truncate small  
eigenvalues

⇢12 =
X

j2 training



P34

U †
34

U34

s03

=

=

s04

s3 s4

⇢34 =

s03 s04

s03 s04

s3 s4

s3 s4

Compute tree tensors from reduced matrices

Truncate small  
eigenvalues

⇢34 =
X

j2 training



�(x)

= �1(x)

Having computed a tree layer, rescale data



Can view as unsupervised learning of representation 
of training data



Computing all layers approximately diagonalizes 
covariance matrix

U

U †

P⇢ '



Use as starting point for supervised learning

`

Only train top tensor for supervised task

f `(x) =



Experiment: handwriting classification (MNIST)

`

Cutoff 6x10-4 gave top indices sizes 328 and 444 
Training acc: 99.68%    Test acc: 98.08% 



Refinements and Extensions



No reason we must base tree around 

�(xj)

�†(xj)
=

1

NT

NTX

j=1

⇢

Could reweight based on importance of samples

⇢̃ wj



Another idea is to mix in a "lower level" model  
trained on a given task (e.g. supervised learning)

+ µ
X

j

(1� µ)

If           , tree provides basis for provided weightsµ = 1

If                   , tree is "enriched" by data set0 < µ < 1

⇢µ =



Using  

with trial weights trained from a linear classifier 
and                   

Experiment: mixed correlation matrix for MNIST

⇢µ = (1� µ)⇢+ µ
X

`

|W `ihW `|

Train acc: 99.798%   Test acc: 98.110% 
Top indices of size 279 and 393.

µ = 0.5

Comparable performance to unmixed case with 
top index sizes 328 and 444



Also no reason to build entire tree

Approximate top tensor by MPS



Experiment: "fashion MNIST" dataset

28x28 grayscale

60,000 training images

10,000 testing images



Experiment: "fashion MNIST" dataset

•Used 4 tree tensor layers 

•Dimension of top "site" indices 
ranged from 11 to 30 

•Top MPS bond dimension of 300   
and 30 sweeps

Train acc: 95.38%   Test acc: 88.97%

Comparable to XGBoost (89.8%), AlexNet (89.9%), 
Keras Conv Net (87.6%)

Best (w/o preprocessing) is GoogLeNet at 93.7%



Much Room for Improvement

•Use MERA instead of tree layers 

•Optimize all layers, not just top, for specific task 

•Iterate mixed approach: feed trained network into 
new covariance/density matrix 

•Stochastic gradient based training 



Recap & Future Directions

•Trained layered tensor network on real-world data 
in unsupervised fashion 

•Specializing top layer gives very good results on 
challenging supervised image recognition tasks 

•Linear tensor network approach gives enormous 
flexibility. Progress toward interpretability.


