Learning Relevant Features of Data Using
Multi-Scale Tensor Networks

Z 2\ Z 2\ Z 2\ Z 2\
2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\
A YA A YA PAY A AP AYANY AP AP AP ANY AJ AN A
] ilE b o e &

i- FLATIRON
N\

E.M. Stoudenmire Jan 23, 2018 - Santa Fe
SIMONS FOUNDATION



Flatiron Institute

N\~ FLATIRON
\ INSTITUTE

SIMONS FOUNDATION

The mission of the Flatiron Institute
IS to advance scientific research
through computational methods,
including data analysis, modeling
and simulation.

CCA: Center for Computational Astrophysics
CCB: Center for Computational Biology
CCQ: Center for Computational Quantum Physics

Plus fourth center to be decided



Exciting time for machine learning

Language Processing
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Machine learning has physics in its DNA
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Boltzmann Disordered
Machines Ising Model
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The "Renormalization
Group”

Deep Belief Networks

P. Mehta and D.J. Schwab, arxiv:1410.3831
S. Bradde and W. Bialek, arxiv:1610.09733



Convolutional neural network

"MERA" tensor network
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Are tensor networks useful for
machine learning? AAAAAAA

This Talk

Tensor networks can represent weights of
useful and interesting machine learning models

Flexibility of tensor network algorithms leads
to creativity in devising new approaches



What are Tensor Networks?



Original setting is quantum mechanics

Spin model (transverse field Ising model):
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Wavefunction just a rule to
map spin configurations to numbers \Jy51525354555635758
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Simplest rule: store every amplitude separately



Let's make a different rule

Introduce matrices, one for each spin
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Ostlund, Rommer, Phys. Rev. Lett. 75, 3537 (1995)



Compute amplitude by multiplying matrices together
(with boundary vectors vy, and vgr )
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Ostlund, Rommer, Phys. Rev. Lett. 75, 3537 (1995)



This rule is called a matrix product state (MPS)
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e Size of matrices called m (the "bond dimension")
e For m = 2V/2 can represent any state of N spins

* Really just a way of compressing a big tensor

Represents 2N amplitudes using only
(2 N m?) parameters



Tensor Diagrams



Helpful to draw N-index tensor as blob with
N lines
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No symmetries, transformation properties assumed



Diagrams for simple tensors



Joining lines implies contraction, can omit names




Matrix product state in diagram notation
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Can suppress index names, very convenient



Matrix product state in diagram notation
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Can suppress index names, very convenient



Besides MPS, other successful tensor are

PEPS and MERA
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PEPS
(2D systems)
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MERA

(critical systems)

Evenbly, Vidal, PRB 79, 144108 (2009)
Verstraete, Cirac, cond-mat/0407066 (2004)
Orus, Ann. Phys. 349, 117 (2014)



PEPS Tensor Network

Most straightforward extension of matrix product states
to two-dimensional lattices
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PEPS Tensor Network

Most straightforward extension of matrix product states
to two-dimensional lattices




PEPS Tensor Network

Powerful algorithms to address
infinite 2D systems

Figure from: Corboz, PRB 94, 035133 (2016)



MERA Tensor Network

The MERA tensor network generalizes matrix
product state to a layered structure

Similar to dilated conv net in machine learning



MERA Tensor Network

Matrix product state captures only
exponential correlations
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MERA Tensor Network

Matrix product state captures only
exponential correlations
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MERA Tensor Network

Matrix product state captures only
exponential correlations
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MERA Tensor Network

Matrix product state captures only
exponential correlations
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MERA Tensor Network

MERA layered architecture captures
power-law correlations




MERA Tensor Network

MERA layered architecture captures
power-law correlations
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MERA Tensor Network

MERA layered architecture captures
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MERA Tensor Network

MERA layered architecture captures
power-law correlations
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Tensor Network Machine Learning



Raw data vectors
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Example: grayscale images,
components of x are pixels



Propose following model

f(x) = W - d(x)
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Weights are N-index tensor
Like N-site wavefunction

Cohen et al. arxiv:1509.05009
Novikov, Trofimov, Oseledets, arxiv:1605.03795
Stoudenmire, Schwab, arxiv:1605.05775



N=3 example:
fx) =W @(x) = ) Wiss, a7 25°25

= Wooo + Wigo x1 + Woio 22 + Woo1 3
+ Wiito 129 + Wio1 z123 + Wo11 2223

+ Wi z1x223

Contains linear classifier, and various poly. kernels



More generally, apply local "feature maps" ¢% (z;)

Highly expressive

Could put additional parameters into maps ¢



X = input

For example, following local feature map

(s s

d(x;) = {COS (51;]-),8113 (551;])} z; € (0,1]

Picturesque idea of pixels as "spins”

Stoudenmire, Schwab, arxiv:1605.05775



Total feature map ®(x)

Tensor diagram notation

X = input

@ = local feature map

raw inputs

feature
vector



Construct decision function f(x) =W . ®(x)
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Construct decision function

F(x) = W - &(x)




Construct decision function

F(x) = W - &(x)




Construct decision function

F(x) = W - &(x)




Main approximation

W — ﬁ) order-N tensor

matrix
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state (MPS)
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Main approximation

W — ﬁ) order-N tensor

matrix

product
state (MPS)

PEPS )
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Tensor diagrams of the approach
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Linear scaling
Can use algorithm similar to DMRG to optimize

N = size of input

Scalingis N - Np-m°

Nt = size of training set

m = MPS bond dimension
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Linear scaling
Can use algorithm similar to DMRG to optimize

N = size of input
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Experiment: handwriting classification (MNIST)

/

Train to 99.95% accuracy on 60,000 training images

Obtain 99.03% accuracy on 10,000 test images
(only 97 incorrect)

Stoudenmire, Schwab, arxiv:1605.05775



Papers using tensor network machine learning

Expressivity & priors of TN based models

e Levine et al., "Deep Learning and Quantum Entanglement: Fundamental Connections
with Implications to Network Design" arxiv:1704.01552

e Cohen, Shashua, "Inductive Bias of Deep Convolutional Networks through Pooling
Geometry" arxiv:1605.06743

e Cohen et al., "On the Expressive Power of Deep Learning: A Tensor Analysis" arxiv:
1509.05009

Generative Models

e Han et al., "Unsupervised Generative Modeling Using Matrix Product States" arxiv:
1709.01662

e Sharir et al., "Tractable Generative Convolutional Arithmetic Circuits" arxiv:
1610.04167

Supervised Learning

* Novikov et al., "Expressive power of recurrent neural networks", arxiv:1711.00811

e Liu et al., "Machine Learning by Two-Dimensional Hierarchical Tensor Networks: A
Quantum Information Theoretic Perspective on Deep Architectures”, arxiv:
1710.04833

e Stoudenmire, Schwab, "Supervised Learning with Quantum-Inspired Tensor
Networks", arxiv:1605.05775

* Novikov et al., "Exponential Machines", arxiv: 1605.03795



Learning Relevant Features of Data



For amodel f(x)=W - ®(x)
Given training data {x; }

Can show optimal W is of the form
W=> a;dx;)
J

Holds for wide variety of cost functions / tasks

"representer theorem”

Scholkopf, Smola, Miiller, Neural Comp. 10, 1299 (1998)
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Representer theorem says

) = C#S 03
WS Oéj

Really just says weights in the span of {®7}



Can choose any basis for span of {7}
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Can choose any basis for span of {7}
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Why switch to US basis?

Orthonormal basis

Can discard basis vectors corresponding to small s. vals.

Can compute U, fully or partially using tensor networks



Computing U? efficiently

Detfine feature space covariance matrix
(similar to density matrix)
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Strategy: compute U? iteratively as a layered (tree)
tensor network



For eftficiency, exploit product structure of ®



Compute tree tensors from reduced matrices
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Compute tree tensors from reduced matrices
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Having computed a tree layer, rescale data
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Can view as unsupervised learning of representation
of training data
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Computing all layers approximately diagonalizes
covariance matrix
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Use as starting point for supervised learning

Only train top tensor for supervised task

fi(x) = ——
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Experiment: handwriting classification (MNIST)
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Cutoff 6x104 gave top indices sizes 328 and 444
Training acc: 99.68% Test acc: 98.08%



Refinements and Extensions



No reason we must base tree around p

Could reweight based on importance of samples

i bbb
DA+ 14- 4



Another idea is to mix in a "lower level" model
trained on a given task (e.g. supervised learning)

pr =

Ly 0d00bb . bbbbbs

1

PPPPPP? PPPPP°?

It =1, tree provides basis for provided weights

If 0 < pu<1,treeis "enriched" by data set



Experiment: mixed correlation matrix for MNIST

Using p* = (1—p)p+py W)WY
14

with trial weights trained from a linear classifier
and u© = 0.5

Train acc: 99.798% Test acc: 98.110%
Top indices of size 279 and 393.

Comparable performance to unmixed case with
top index sizes 328 and 444



Also no reason to build entire tree
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Approximate top tensor by MPS



Experiment: "fashion MNIST" dataset
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60,000 training images
10,000 testing images



Experiment: "fashion MNIST" dataset
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*Used 4 tree tensor layers

e Dimension of top "site" indices e e
nm -u&“ﬂﬁh-a-fiuﬁul fa - fﬂﬂ
ranged from 11 to 30 it

* Top MPS bond dimension of 300
and 30 sweeps

Train acc: 95.38% Test acc: 88.97%

Comparable to XGBoost (89.8%), AlexNet (89.9%),
Keras Conv Net (87.6%)

Best (w/o preprocessing) is GooglLeNet at 93.7%



Much Room for Improvement

*Use MERA instead of tree layers
* Optimize all layers, not just top, for specific task

*[terate mixed approach: feed trained network into
new covariance/density matrix

» Stochastic gradient based training



Recap & Future Directions

* Trained layered tensor network on real-world data
in unsupervised fashion

*Specializing top layer gives very good results on
challenging supervised image recognition tasks

*Linear tensor network approach gives enormous
flexibility. Progress toward interpretability.
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