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bang-bang             classical
  protocol                spin state

infidelity             energy

control phase transitions: classical (?), non-equilibrium

H(t) = �S
z � hx(t)S

x

effective classical energy function governs control phase transitions

j : sites on time lattice
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Outlook

web: mgbukov.github.io
arXiv: 1705.00565 (2017)
arXiv: 1711.09109 (2017)

one can teach a reinforcement learning agent to prepare  
quantum states at short times with high fidelity

finding optimal driving protocol as hard as searching for  
absolute GS of a spin glass (even if system is disorder-free)

quantum control problems have extremely rich phase diagrams with 
overconstrained, controllable,  
correlated and glassy phases —> POSTER (Alex Day) 
exhibit symmetry breaking —> POSTER (MB)

control phase transitions: classical & nonequilibrium, generic?



Outlook

web: mgbukov.github.io
arXiv: 1705.00565 (2017)
arXiv: 1711.09109 (2017)

open-source Python package for ED and quantum dynamics of 
arbitrary boson, fermion and spin many-body systems, supporting 
various (user-defined) symmetries and time evolution.

QuSpin: weinbe58.github.io/QuSpin/

SciPost Phys. 2, 003 (2017)


