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Matrix Functions in Machine Learning

Matrix functions have been utilized in many machine learning problems:
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(a) Regression with Gaussian process (b) Collaborative filtering for
recommendation

204

Labeled frames

(c) Image processing (d) Gene expression  (e) Speech recognition

Insu Han et al. (KAIST) Approximating and Optimizing Spectral-sums PIML Workshop, 2018 4/22



Definition of Spectral-sums

Given a symmetric matrix A € R%*¢ and a scalar function f : R — R,
spectral-sums is defined as

where A1, A\g, ..., Ag are eigen (or singular) values of A.
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Definition of Spectral-sums

Given a symmetric matrix A € R%*¢ and a scalar function f : R — R,
spectral-sums is defined as

=1
where A1, A\g, ..., Ag are eigen (or singular) values of A.
Examples
@ If f(z) = logx, it is the log-determinant
e If f(x) =27}, itis the trace of inverse
o If f(x) = 2P, it is the Schatten norm (the nuclear norm is the case p = 1)
o if f(x) = xlogw, it is the Von-Neumann entropy
@ If f(z) = exp(z), it is the Estrada index

0 otherwise’

1 if
If f(z)= { Tz<0 , it is testing positive definiteness

4
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Summary of Spectral-sums Problems and Contributions

Approximating spectral-sums Optimizing spectral-sums

tr(f(A) =2, f(N) =7 min tr (f(A))
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Summary of Spectral-sums Problems and Contributions

Problems
Approximating spectral-sums Optimizing spectral-sums
tr (f(A):=>, fh) =7 ming tr (f(A4)) J

Computational issue
@ Approximation: The exact computation requires matrix decomposition
methods with O(d®) operations for a d x d matrix.
@ Optimization: Gradient descent methods can be used. Computing

gradient of spectral-sums also requires decomposition methods with
O(d®) operations.
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Contributions

Approximating spectral-sums Optimizing spectral-sums

tr(f(A) =2, f(N) =7 min tr (f(A))

Computational issue
@ Approximation: The exact computation requires matrix decomposition
methods with O(d?) operations for a d x d matrix.

@ Optimization: Gradient descent methods can be used. Computing
gradient of spectral-sums also requires decomposition methods with
O(d®) operations.

Our contributions

@ We develop a fast algorithm for approximating spectral-sums of
large-scale matrices with rigorous provable guarantee.

@ We propose a fast (quadratic-time) unbiased gradient estimator for
optimizing spectral-sums that guarantees to converge to the optimal.
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Spectral-sums Approximation

Approximating spectral-sums

tr(f(A) =2 f(N) =7

Key ideas of approximation
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Spectral-sums Approximation

Approximating spectral-sums J

tr (f(A) =22 () =7

Key ideas of approximation
@ A function f can be approximated to n-th degree polynomial i.e.,
@)~ ag+arw + - + apa”
tr (f(A)) ~ tr (a0l + a1 A+ azA® + -+ + a, A")
=ao-tr(l)+ a1 -tr(A)+a2-tr(A2) +-tan-tr(A™).
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Spectral-sums Approximation

Approximating spectral-sums J

tr (f(A) =22 () =7

Key ideas of approximation
@ A function f can be approximated to n-th degree polynomial i.e.,
f(@) ~ap+ a1z + -+ apa”
tr (f(A)) ~ tr (a0l + a1 A+ azA® + -+ + a, A")
=ao-tr(l)+ a1 -tr(A)+a2-tr(A2) +-tan-tr(A™).
The bottleneck is A", i.e., n times of matrix-matrix multiplications O(d?*).
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Spectral-sums Approximation

Approximating spectral-sums J

tr (f(A) =22 () =7

Key ideas of approximation
@ A function f can be approximated to n-th degree polynomial i.e.,
flz)~ap+az+-- +apa”
tr (f(A)) ~ tr (a0l + a1 A+ azA® + -+ + a, A")
=ao-tr(l)+ a1 -tr(A)+a2-tr(A2) +-tan-tr(A™).
The bottleneck is A", i.e., n times of matrix-matrix multiplications O(d?*).
@ For some random vector v € R?, itis known tr (A*) = E [v' Akv].
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Spectral-sums Approximation

Approximating spectral-sums J

tr (f(A) =22 () =7

Algorithm description

@ A function f can be approximated to n-th degree polynomial i.e.,
flx)~ap+az+- +apa”

tr (f(A)) ~ tr (a0l + a1 A + azA® + -+ + a, A")
:ao-tr(I)+a1-tr(A)+a2~tr(A2)—|—~~~+an~tr(A").

@ For some random vector v € R?, itis known tr (A*) = E [v' Akv].
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Spectral-sums Approximation

Approximating spectral-sums J

tr (f(A) =22 () =7

Algorithm description
@ A function f can be approximated to n-th degree polynomial i.e.,
flx)~ap+az+- +apa”
tr (f(A)) ~ tr (a0l + a1 A + azA® + -+ + a, A")
=ao-tr(l)+ a1 -tr(A)+a2-tr(A2) + - +an-tr(A™).
We choose a; as the i-th coefficient of the Chebyshev expansion to f(z)
@ For some random vector v € R?, itis known tr (A*) = E [v' Akv].
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Spectral-sums Approximation

Approximating spectral-sums J

tr (f(A) =22 () =7

Algorithm description
@ A function f can be approximated to n-th degree polynomial i.e.,
flx)~ap+az+- +apa”
tr (f(A)) ~ tr (a0l + a1 A + azA® + -+ + a, A")
=ao-tr(l)+ a1 -tr(A)+a2-tr(A2) + - +an-tr(A™).
We choose a; as the i-th coefficient of the Chebyshev expansion to f(z)
@ For some random vector v € R?, itis known tr (A*) = E [v' Akv].

We choose m Rademacher random vectors v1, ..., v, € {—1,1}% and
estimate the trace by L
r(A") - ; v; Av
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Complexity and Error Bound

Complexity
The overall running time is
O (Tn’ xXn X HAHmv) )

where m is the number of samples for trace, n is the degree of Chebyshev
expansion and || Al|,, is the complexity for multiplications A with a vector.
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Complexity and Error Bound

Complexity
The overall running time is
O (Tn’ xXn X HAHmv) )

where m is the number of samples for trace, n is the degree of Chebyshev
expansion and || Al|,, is the complexity for multiplications A with a vector.

Theorem (Han, Malioutov, Avron and Shin, 2016)

For symmetric matrix A € R¥? having eigenvalues in [Awin, Amax], the
algorithm returns

output € [(1 —e)tr (f(A4)), (1 +e)tr (f(A4))], with probability 1 — ¢,

if we choose m > ¢ 2log (%) andn > /3= log (%ifﬂi)

min min

Therefore, the algorithm runs in O*( Q—Xd) time for sparse matrix A !

Insu Han et al. (KAIST) Approximating and Optimizing Spectral-sums PIML Workshop, 2018 9/22



Polynomial Approximation

The most popular approach is Taylor series expansion. For example,
Taylor series expansion

loggm_zﬂ

= 7
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Polynomial Approximation

The most popular approach is Taylor series expansion. For example,

Taylor series expansion Chebyshev series expansion
logxz—Zﬂ logx%ijTj(x)
; J ;
Jj=0 Jj=0

Here, T;(x) is i-th Chebyshev polynomial with To(xz) = 1,71 (z) = = and
Tk+1(x) = QmTk(J:) — kal(m) and

- o () o (5222)

=0
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Why Chebyshev expansion?

The most popular approach is Taylor series expansion. For example,

Taylor series expansion Chebyshev series expansion
logmz—z(jx) logx%ijTj(x)
3=0 7=0

Advantage of Chebyshev series expansion
Chebyshev approximation has better convergence rate. For example,

IGIE%,&I)E&]‘ ogz —pn(z)| <O (R7")

for some constant R > 1.

| Taylor expansion | Chebyshev expansion
Convergence rate R H 1+0(9) ‘ 1+0 (\/5>
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Trace Estimator

Theorem (Hutchinson (1989))

Letz = [z1,22,...,24] € R be a random vector such that
E[z2;]=0fori#jandE [22] =1for1 <i<d.

Then, for any matrix A € R¥4, jt holds thatE [z Az] = tr (A).

Examples of random vector

@ Gaussian distribution,
i.e.z~N(0,1)

@ Rademacher distribution,
i.e. Pr(+1) =Pr(-1) =1

@ Unit vector i.e.

z € {e1,€2,...,€4q}
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Approximating Spectral-sums Trace Estimator

Trace Estimator

Theorem (Hutchinson (1989))

Letz = [z1,29,. ..

,za]" € R? be a random vector such that

E[z2;]=0fori#jandE [22] =1for1 <i<d.

Then, for any matrix A € R¥4, jt holds thatE [z Az] = tr (A).

Examples of random vector

@ Gaussian distribution,
i.e.z~N(0,1)

@ Rademacher distribution,
i.e. Pr(+1) =Pr(-1) =1

@ Unit vector i.e.
z € {e1,€2,...,€4q}

Insu Han et al. (KAIST)

Approximating and Optimizing Spectral-sums

Bound on samples (Roosta et al., 2015)

Pr ( tr(A) — 1 E z! Az
m
i=0

<e~tr<A>|>>1<

Distribution | Bound on samples |

Gaussian 82 log %
Rademacher 62 log %

Unit vector | 2 (%)25_210g (%)

v
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Outline

e Optimizing Spectral-sums
@ Gradient Descent for Spectral-sums
@ Unbiased Gradient Estimation
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Gradient Descent for Spectral-sums
Optimizing Spectral-sums

Approximating spectral-sums Optimizing spectral-sums
tr (f(A) = v p,(A)v J miny tr (f(A4)) J
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Gradient Descent for Spectral-sums
Optimizing Spectral-sums

Approximating spectral-sums Optimizing spectral-sums
tr (f(A) = v p,(A)v J miny tr (f(A4))

Gradient descent methods
A<+ A—nVtr (f(A)) (n : step-size)
@ Computing Vtr (f(A)) = f'(A) needs matrix decompositions with O(d®)

y
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Gradient Descent for Spectral-sums
Optimizing Spectral-sums

Approximating spectral-sums Optimizing spectral-sums
tr (f(A) = v p,(A)v J miny tr (f(A4))

Gradient descent methods
A+ A- anTp,,,(A)v (n : step-size)

@ Computing Vtr (f(A)) = f'(A) needs matrix decompositions with O(d?).

@ One can use spectral-sums approximation by replacing the gradient with
derivative of Vv 'p,(A)v.

v
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Gradient Descent for Spectral-sums
Optimizing Spectral-sums

Approximating spectral-sums Optimizing spectral-sums
tr (f(A)) =~ v p,(A)v J miny tr (f(A4))

Gradient descent methods
A+ A- anTp,,,(A)V (n : step-size)

@ Computing Vtr (f(A)) = f'(A) needs matrix decompositions with O(d?).

@ One can use spectral-sums approximation by replacing the gradient with
derivative of Vv 'p,(A)v.

@ It is required matrix-vector multiplications and vector outer products:
viph(A)v=vT (Z?:o bjwj)
Vv Tpa(A)v =37, (Z?:j bi.Yz‘—j) Wi

where W = Tj (A)V and Yi+1 = 2Wj+1 —W;_1.
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Gradient Descent for Spectral-sums
Optimizing Spectral-sums

Approximating spectral-sums Optimizing spectral-sums
tr (f(A)) =~ v p,(A)v J miny tr (f(A4))

Gradient descent methods
A+ A- anTp,,,(A)V (n : step-size)

@ Computing Vtr (f(A)) = f'(A) needs matrix decompositions with O(d?).

@ One can use spectral-sums approximation by replacing the gradient with
derivative of Vv 'p,(A)v.

@ It is required matrix-vector multiplications and vector outer products:
viph(A)v=vT (Z?:o bjwj)
Vv Tpa(A)v =37, (Z?:j bi.Yz‘—j) Wi

where W = Tj (A)V and Yi+1 = 2Wj+1 —W;_1.
@ Both spectral-sums and its derivative can be approximated with O(d?).

v
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Gradient Descent for Spectral-sums
Optimizing Spectral-sums

Approximating spectral-sums Optimizing spectral-sums
tr (f(A) = v p,(A)v J miny tr (f(A4))

Biased gradient estimator

A A—nVv p,(Av (n : step-size)
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Gradient Descent for Spectral-sums
Optimizing Spectral-sums

Approximating spectral-sums Optimizing spectral-sums
tr (f(A) = v p,(A)v J miny tr (f(A4))

Biased gradient estimator
A A—nVv p,(Av (n : step-size)

@ Even if the gradient estimate,i.e., Vv p,(A)v, is fast and accurate itself,
there always exists a biased error:

E [VVv pu(A)v] = Vir (pa(A)) # Ver (f(4))

f(@) —pn(x) = Z;iwrl b;Tj(x) # 0.
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Gradient Descent for Spectral-sums
Optimizing Spectral-sums

Approximating spectral-sums Optimizing spectral-sums
tr (f(A)) =~ v p,(A)v J miny tr (f(A4))

Biased gradient estimator
A A—nVv p,(Av (n : step-size)

@ Even if the gradient estimate,i.e., Vv p,(A)v, is fast and accurate itself,
there always exists a biased error:

B [Vv pu(A)v] = Ver (pa(4)) # Ver (7(4))
f@) = pn(x) = 372,41 0;T5(2) #0.

@ The biased error might be accumulated over iterations of the gradient
descent scheme (it is not an issue for approximating spectral-sums).
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Gradient Descent for Spectral-sums
Optimizing Spectral-sums

Approximating spectral-sums Optimizing spectral-sums
tr (f(A)) =~ v p,(A)v J miny tr (f(A4))

Biased gradient estimator
A A—nVv p,(Av (n : step-size)

@ Even if the gradient estimate,i.e., Vv p,(A)v, is fast and accurate itself,
there always exists a biased error:

E [VVv pu(A)v] = Vir (pa(A)) # Ver (f(4))

f(@) = pulx) = 3272, 11 b;Tj(x) # 0.
@ The biased error might be accumulated over iterations of the gradient
descent scheme (it is not an issue for approximating spectral-sums).
@ How can we design an unbiased estimator?
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Unbiased Gradient Estimation
Randomized Chebyshev Expansion for Unbiasedness

The original Chebyshev expansion uses deterministic polynomial degree:

f(z) = ijTj(l‘)a pn(z) = Zby‘Tj(I)-
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Optimizing Spectral-sums Unbiased Gradient Estimation

Randomized Chebyshev Expansion for Unbiasedness

The original Chebyshev expansion uses deterministic polynomial degree:

r) = ijTj(l‘)a pn(z) = ijTj(I)

Unbiased polynomial approximation
We now randomly sample degree n with probability ¢,, and define

n

Dn(z) = ZOl_Zb:' OqlT(fL’)-
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Optimizing Spectral-sums Unbiased Gradient Estimation

Randomized Chebyshev Expansion for Unbiasedness

The original Chebyshev expansion uses deterministic polynomial degree:

r) = ijTj(l‘)a pn(z) = ijTj(I)

Unbiased polynomial approximation
We now randomly sample degree n with probability ¢,, and define

n

Bula) = 201_;:- = @)

E [pn(z Z%pn =Z<Z%>1ZO% Tj(x) = f(x)

E[Vpn(2)] = VE [pn(2)] = Vf(2)
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Unbiased Gradient Estimation
Randomized Chebyshev Expansion for Unbiasedness

The original Chebyshev expansion uses deterministic polynomial degree:

r) = ijTj(l‘)a pn(z) = ijTj(I)

Unbiased polynomial approximation
We now randomly sample degree n with probability ¢,, and define

n

Bula) = 201_;:- = @)

@ This becomes an unbiased estimator: E [p,(z)] = f(z), E [Vin(z)] = f'(z).
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Unbiased Gradient Estimation
Randomized Chebyshev Expansion for Unbiasedness

The original Chebyshev expansion uses deterministic polynomial degree:

r) = ijTj(l‘)a pn(z) = ijTj(I)

Unbiased polynomial approximation
We now randomly sample degree n with probability ¢,, and define

n

Bula) = 201_;:- = @)

@ This becomes an unbiased estimator: E [p,(z)] = f(z), E [Vin(z)] = f'(z).
@ For optimizing spectral-sums, we canuse A+ A—n Vv Ton(A)v.
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Unbiased Gradient Estimation
Randomized Chebyshev Expansion for Unbiasedness

The original Chebyshev expansion uses deterministic polynomial degree:

r) = ijTj(l‘% pn(z) = ijTj(I)

Unbiased polynomial approximation
We now randomly sample degree n with probability ¢,, and define

n

Bula) = 201_;:- = @)

@ This becomes an unbiased estimator: E [p,(z)] = f(z), E [Vin(z)] = f'(z).
@ For optimizing spectral-sums, we canuse A+ A—n Vv Dn(A)v.

@ The unbiasedness holds for any distribution, but for optimization, an
estimator with small variance guarantees fast convergence to the optimal.
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Unbiased Gradient Estimation
Randomized Chebyshev Expansion for Unbiasedness

The original Chebyshev expansion uses deterministic polynomial degree:

r) = ijTj(l‘)a pn(z) = ijTj(I)

Unbiased polynomial approximation
We now randomly sample degree n with probability ¢,, and define

n

Bula) = 201_;:- = @)

@ This becomes an unbiased estimator: E [p,(z)] = f(z), E [Vin(z)] = f'(z).
@ For optimizing spectral-sums, we canuse A+ A—n Vv Dn(A)v.

@ The unbiasedness holds for any distribution, but for optimization, an
estimator with small variance guarantees fast convergence to the optimal.

@ How can we obtain a distribution with small variance?
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Unbiased Gradient Estimation
Optimal Degree Distribution for Unbiasedness

We define the Chebyshev weighted variance of our estimator as

/1 (Pu(2) — f(2))’ dx] . 1)

Var [p,,] == E i
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Unbiased Gradient Estimation
Optimal Degree Distribution for Unbiasedness

We define the Chebyshev weighted variance of our estimator as

U (5 () — ()2
varfp,] = | [ L) dx]. (1)

Problem

For optimizing spectral-sums, we aim to minimize the variance of unbiased
gradient estimator when the expected degree is given by N:

min _Var [p,,] s.t. Enl=N

{Qn:nzo}
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Unbiased Gradient Estimation
Optimal Degree Distribution for Unbiasedness

We define the Chebyshev weighted variance of our estimator as

1/~ 2

(Pn(2) — f(2))
[1 —*1—1‘2 d:c] . (1)
Theorem (Han, Avron and Shin, 2018)

Suppose analytic function f is | f(z)| < U and bounded by ellipse with foci +1, —1 and
sum of major and minor semi-axis lengths equals to p > 1. Let k = min{N, {ﬁJ |
then the distribution that minimizes the variance (1) is:

Var [p,,] == E

0 for n< N —k N
@ = 1—M for n=N—k
_ 2 *ReZ
M for n >N —k
Pt

v
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Unbiased Gradient Estimation
Optimal Degree Distribution for Unbiasedness

We define the Chebyshev weighted variance of our estimator as

1 /~ 2
~ (pn(x) - f(l‘))
Var [pn] =K ———dx (1)
—1 vV 1-— x2
Synthetic evaluation

10° 10° 10°
§ 10° § 10° § 10°

8 8 st
§ 10710 § 1010 § 10710

el el o
£ 10 £ 10w L0

=y p= i=y

[ [ Q
2 10? 2 10% 2 10%

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
expected degree N expected degree N expected degree N

(@) f(z) =logz,z € [0.05,0.95] (b) f(z) =2"> 2 €[0.05,0.95] (C) f(z) = exp(z),z € [~1,1]
Figure: Chebyshev weighted variance with negative binomial (neg), Poisson (pois) and
our distribution (opt) with the mean 10

The optimal distribution has the smallest variance among all distributions.

4
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Experiments for Approximation

Approximation of log-determinant for random sparse matrices

@ Methods: Cholesky decomposition, Schur complement, Shogun machine
learning library ', Taylor expansion and Chebyshev expansion (our method)

@ Cholesky and Schur methods compute log-determinant exactly.

@ Our proposed method runs much faster than other methods except Taylor’s one.
E.g., It takes about 130 seconds for matrix with dimension 107.

@ Chebyshev is superior in accuracy compared to both Taylor and Shogun.
E.g., Approximation error is less than 0.1% for m = 50 and n = 25.

10* 10"
-¥-Chebyshev
o 1] -@-Taylor
@ 10? © -%-Shogun
2, ¥ g 102
E y = A
= 10° o
o —4-Cholesky 2
s ~#-Schur £ 10° %
% 10 ~¥-Chebyshev| )
= -8-Taylor =
—¥-Shogun
10 = 10
0 2 4 6 8 10 10% 10° 10* 10°
matrix dimension  x10° matrix dimension

'Shogun (http://shogun-toolbox.org) provides highly optimized log-determinant:
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Experiments for Optimization: Matrix Completion

Schatten norm minimization for matrix completion under MovieLens 1M/10M dataset

(min, ot v (VETI) + X 1P(0) - PRI |

@ Methods: exact gradient descent (GD), deterministic Chebyshev expansion
(SGD-DET), randomized Chebyshev expansion (SGD-RND, our method)

@ SGD-RND has even less biased error than that with SGD-DET.
@ SGD-RND shows the best peformance with up to 5 times of speedup.

@ Comparing with other distributions, the optimal one shows stable convergence.

-=—GD
—A-SGD-DET

—8-SGD-RND
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(c) Varying degree distributions
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Experiments for Optimization: Learning Gaussian Process

Log-determinant optimization for Gaussian process under natural sound modeling

[min.g —logdet K(X,0) + tr (yTK(X, 9)71y)J

@ The goal is to find hyperparameter 6 given training data (X, y) contains
d = 35,000 and test 391 points. K € R**? is RBF kernel matrix of # and X.

@ Methods: deterministic Chebyshev expansion (SGD-DET), randomized
approximation (SGD-RND) and Lanczos method (LANCZOS, Dong et al. (2017))

@ SGD-RND converges even faster than LANCZOS up to 8 times because LANCZ
is also biased estimator. )

0.037

—A-ANCZOS
~¥-SGD-DET
—8-SGD-RND

0.036

0.035

test RMSE

Intensity
o
o n
°
8
S

S
N

1 2 0 100 200 300 400
Time (s) running time [sec]

=)
w

Insu Han et al. (KAIST) Approximating and Optimizing Spectral-sums PIML Workshop, 2018 20/22



.
Conclusion

@ We develop a fast algorithm for approximating spectral-sums with
Chebyshev expansion and trace estimator via matrix-vector multiplication.

@ We develop an unbiased gradient estimator for optimizing spectral-sums
which is applicable to stochastic gradient descent. We find the optimal
degree distribution whose variance achieves the minimum.

@ Our algorithm takes 130 seconds with < 0.1% error for approximating
spectral-sums of matrices with dimension 107. For optimization, ours runs
up-to 8 times faster than the state-of-the-art method in Gaussian process.

© Our method for approximating and optimizing spectral-sums can be used
in many scientific and practical applications.
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Conclusion

@ We develop a fast algorithm for approximating spectral-sums with
Chebyshev expansion and trace estimator via matrix-vector multiplication.

@ We develop an unbiased gradient estimator for optimizing spectral-sums
which is applicable to stochastic gradient descent. We find the optimal
degree distribution whose variance achieves the minimum.

@ Our algorithm takes 130 seconds with < 0.1% error for approximating
spectral-sums of matrices with dimension 107. For optimization, ours runs
up-to 8 times faster than the state-of-the-art method in Gaussian process.

© Our method for approximating and optimizing spectral-sums can be used
in many scientific and practical applications.

Thank you for your attention !
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Experimantal Results Optimizing Spectral-sums

Dong, K., Eriksson, D., Nickisch, H., Bindel, D., and Wilson, A. G. (2017).
Scalable log determinants for gaussian process kernel learning. In
Advances in Neural Information Processing Systems, pages 6330-6340.
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