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Deep Learning Machines

Implement an input-output mapping
y =fW(x)i
where the parameters w are to be estimated

based on the training data {(§#,0%)},=1 2 p to
perform a desired mapping.

We want to understand:
(i) Their generalization ability even with numerous parameters
(ii)) Nature of the internal representations




Macroscopic Analysis —
Typical Behavior of Single Layer Machines

 Mapped to disordered systems of infinite dimension

e Use replica analysis, cavity method (batch learning); dynamical methods
for on-line learning; exploit high dimensionality

e Typical behavior (in contrast to worse-case) of storage capacity and
generalization curves

* Technically quite involved (single or two-layer systems)

* Input data structure and internal representations are rarely addressed

A. Engle and C. Van den Broeck, 2001; D. Saad 1998 4



Teacher-student Scenario for DLM?

Teacher Student Difficulties:

e Constraints imposed by the
examples (input-output pairs) on
the hidden units are complex —
recursive nonlinear mapping.

* Permutation, reflection and other
symmetries/invariances of
hidden units, no simple relation
between teacher-student overlap
and generalization error.

{§40}1,{8% 0%} ... . {§*, 0¥}, .., {§7, 0P}

Especially interesting in the over-parametrized regime



Function Space, Error and Entropy

* We would like to approximate a reference/target function f3;, as closely as
possible from data.

e Given noisy data, sub-optimal training methods - more relevant to find
good approximations. How many such functions exist?

* The entropy (log-volume) of functions at distance-& away from f; indicates
how easy it is obtaining them.
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Exploring Function Space in DLM

Reference function f Perturbed function f,,

N

& ¢t
wt < w(t)

I -1

We map the DLM to disordered spin systems with Investigate the function
discrete dynamics, 8}, s! € {1, —1}, activation function is sensitivity under small
sign function sgn(x). perturbations

w! = Perturb(w!)
The framework can be generalized to real variables and other
activation functions.



Deep Learning Machines as Dynamical Systems

&t
wl < w(t)

Related work

* Poole et al., NIPS 2016 - Mean field theory to study input sensitivity and expressivity

e Lietal., arXiv:1710.09513, 2017 - Optimal control theory (Pontryagin's maximum principle) to

devise new training algorithms
8



DLM as a Stochastic Dynamical System

* The layer evolution of two coupled DLMs:
Allal Al— exp pS;h;(w',s

cosh p$!AL (Wl sl-1)’
fl%(ﬁ’l,ﬁ‘l_l) = Zj vT/l-lj 3~}—1/\/1V, f is the inverse-temperature quantifying the noise level;

P(Sl|wl,sl—1“8) _—

deterministic rule in the zero-noise limit § — oo,

* Any observable is given by

(0): = Z{Al |0 PE)50 l_LP(le, §1,8) - P(st|wh, 511, ),
S-S

summed over all the trajectories subject to the path measure.

* For discrete spins, the overlap between activities of the two systems is of interest

A @w, ) = (Sl



Generating Functional Analysis

* Generating functional (characteristic function)

139] = (o {0, st +vis].

moments such as magnetization (3}) and overlap (§l-lsl-l) can be obtained by
differentiating F[II}, 1/)]; angled brackets — average over all paths.

* Interested in the typical behavior of an ensemble of networks w ~ P(w),
overbar — quenched average

=), TP P

= [ T1, sznZg eN?1aQ] ~ N¥ldeQel in the limit N — oo,

Represented by macroscopic order parameters; the saddle point q,., Q, =
extrq'Q‘I’(q, Q) satisfies certain self-consistent mean-field equation.
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Function Error and Entropy

* Function error is defined as the expected Hamming distance of output
layers between f;; and f,,

sb-st)=-a-qb,

which provides a distance measure between f;; and f,,.

* Also interested in the entropy (log-volume) of f,, at distance-& away from
the reference function f, e.g.,
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Fully-connected Networks — Continuous/Binary weights

Consider fully-connected networks, with P(W}) = [1; P (W]

Binary weights:
P(uy};) = %5w§j,1 + %512);7.,—1

Continuous weights:

_® ng ~ N(0,0?) Perturbation tJ
w strength at layer [
e=01 ]
- V=it P(uly) = (19801 a1, o, o,
e=0.2
dwi; ~ N(0,02)
i . l 2 . -1 I _
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Entropy of Perturbed Functions

Consider fully-connected networks, with P(W%) = [I; P(W;;
Binary weights:

Continuous weights:

® ﬁ;gj ~ N(0,02?) Perturbation
W strength at layer [
e=0.1 l . l
N wh; = /T — ()%, @ng Pwi;) = (1=p")0u! ol ng,ﬂz)gj
dwi; ~ N(0,0°)
L 1 L
Entropy Of fW: con {7] } Z 0g TIZ Sbin({pl}) = Z Z _pl 1ngl o (1 _pl) 10g<1 _pl)

The distance-¢ surface of f,, with volume Q({n'}) = exp N, Scon ({n'3), is
exponentially dominated by the maximum-entropy solutions when N,, — oo:

n* = arg MaX Scon D, st q*({(n')=1-2¢ =



Earlier Layers Converge First When Decreasing &
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Approximated Generalization Curve
(dense DLM with continuous weights)
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Annealed theory of learning Relevant in small € (large a) limit.

A. Engle and C. Van den Broeck, 2001



Sparsely Connected Binary Networks

* Same architecture as before, except that each node is randomly
connected to k units in the previous layer and Wl-lj = 1.

Such layered networks can implement a large class of Boolean functions.
[A. Mozeika and D. Saad PRL 2009]

* In addition to the overlap g' the magnetization m! :== 1/N ¥ (s}) order
parameter characterizes the macroscopic dynamics.

k

{sj} =1 j=1
k
= Z H 1+ g™t + s;ml (1 - 2p)
{s5,8;17=1
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Sparsely Connected Binary Networks

For the same for perturbation at every layer pl = p (weight flipping
probability) and at the infinite depth limit L — oo
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Reference function f; = sgn(28)) is
majority vote of input.

Phase transition of stationary states as
L—oo; k=3m°>0.
(m® < 0ifm° < 0)

Similar to the phase transition of
varying thermal noise [ in the noisy
computation setting.

[A. Mozeika and D. Saad PRL 2009]

17



Deep Layers For Reliable Computation in
Sparse Binary Deep Learning Machines

1.0—F——eeeeee 0.5 TTT—
0.8] 04 - p=0.15 ]
0.6} | — p=0__ i 0.3
041/ 0.2

02 ----- p=02 | 0_1:‘

..... p:0.3
0.0 10 20 3020 50 60 9% 10 20 30 40 50 60
[ [

&

5l.=1 1 — l
- 2( q°)

Internal error of activations
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Continuous Variables and Activation Functions

x x>0

We extended the framework for the ReLu function ¢p(x) = {O x <0
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Summary and Future Work

Summary:

* The generating functional analysis is a principle method for deriving the typical
behaviors of DLMs; it allows for non-trivial extensions.

* Layer-by-layer matching of weights is observed when getting closer to the
reference function in densely-connected networks.

* Sparsely connected networks favor deep layers for a reliable representation.

Future work:

* A model learned from data p(w|D) — Typically many redundant weights.

Exploring the function space for correlated inputs.

The role of over-parametrization in the function landscape, error and
generalization.

Other models? Optimizing variable hidden layer size.

Noisy training/computation for better generalization.



