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• Deep	learning	machines	and	why	entropy	in	function-space	matters	

• Statistical	mechanics	of	learning	from	examples

• Mapping	multi-layer	networks	to	dynamical	systems	- Generating	functional	analysis

• Continuous	and	discrete	weights	– framework	and	results

• Summary	and	future	work

2
Bo	Li and	David	Saad,	arXiv:1708.01422,	2017.



Deep	Learning	Machines
Implement an input-output mapping

𝒚 = 𝑓𝒘 𝒙 ,
where the parameters 𝒘 are to be estimated
based on the training data 𝝃(, 𝜎( (*+,,,…. to
perform a desired mapping.
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“cat”
𝑓𝒘 𝒙

𝒚

We	want	to	understand:
(i) Their	generalization	ability even	with	numerous	parameters	
(ii) Nature	of	the	internal	representations



Macroscopic	Analysis	–
Typical	Behavior	of	Single	Layer	Machines
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• Mapped to disordered systems of infinite dimension

• Use replica analysis, cavity method (batch learning); dynamical methods
for on-line learning; exploit high dimensionality

• Typical behavior (in contrast to worse-case) of storage capacity and
generalization curves

• Technically quite involved (single or two-layer systems)

• Input data structure and internal representations are rarely addressed

A.	Engle	and	C.	Van	den	Broeck,	2001;	D.	Saad 1998



Teacher-student	Scenario	for	DLM?

5

𝝃+, 𝜎+ , 𝝃,, 𝜎, … , 𝝃(, 𝜎( , … , 𝝃/, 𝜎/

Difficulties:

• Constraints	imposed	by	the	
examples	(input-output	pairs)	on	
the	hidden	units	are	complex	–
recursive	nonlinear	mapping.

• Permutation,	reflection	and	other	
symmetries/invariances	of	
hidden	units,	no	simple	relation	
between	teacher-student	overlap	
and	generalization	error.

Especially	interesting	in	the	over-parametrized regime

Teacher Student



Function	Space,	Error	and	Entropy	
• We	would	like	to	approximate	a	reference/target	function	𝑓𝒘0 ,	as	closely	as	
possible	from	data.
• Given	noisy	data,	sub-optimal	training	methods	- more	relevant	to	find	
good	approximations.	How	many	such	functions	exist?
• The	entropy	(log-volume)	of	functions	at	distance-𝜀 away	from	𝑓𝒘0 indicates	
how	easy	it	is	obtaining	them.
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We	map	the	DLM	to	disordered spin systems with	
discrete	dynamics,	𝑠̂45 , 𝑠45 ∈ {1, −1},	activation	function	is	
sign	function	𝑠𝑔𝑛(𝑥).

𝑙 ⟺ 		𝑡
𝒘5 		⟺ 𝒘(𝑡)

Reference	function	𝑓𝒘0 Perturbed	function	𝑓𝒘

Investigate	the	function	
sensitivity	under	small	
perturbations

𝒘5 = Perturb(𝒘05)
The	framework	can	be	generalized	to	real	variables	and	other	
activation	functions.

?

=

Exploring	Function	Space	in	DLM



Deep	Learning	Machines	as	Dynamical	Systems
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𝑙 ⟺ 		𝑡
𝒘5 		⟺ 𝒘(𝑡)

• Poole et al., NIPS 2016 - Mean field theory to study input sensitivity and expressivity

• Li et al., arXiv:1710.09513, 2017 - Optimal control theory (Pontryagin's maximum principle) to
devise new training algorithms

Related	work



DLM	as	a	Stochastic	Dynamical	System
• The layer evolution of two coupled DLMs:

𝑃 𝒔M5 𝒘05, 𝒔M5N+, 𝛽 = ∏ QRS TÛV
WXYV
W(𝒘0W,𝒔MWZ[)

, \]^_ TÛV
WXYV
W(𝒘0W,𝒔MWZ[)

�
4 , 𝑃 𝒔5 𝒘5, 𝒔5N+, 𝛽 = ⋯,

ℎc45 𝒘05, 𝒔M5N+ = ∑ 𝑤04f5 	𝑠̂f5N+/ 𝑁��
f , 𝛽 is the inverse-temperature quantifying the noise level;

deterministic rule in the zero-noise limit 𝛽 → ∞.

• Any observable is given by

𝑂 :=m 𝑂 ⋅ 𝑃 𝒔Mo 𝛿𝒔Mq,𝒔qr 𝑃 𝒔M5 𝒘05, 𝒔M5N+, 𝛽 ⋅ 𝑃(𝒔5|𝒘5, 𝒔5N+, 𝛽)
�
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�

{𝒔MW,𝒔W}
,

summed	over	all	the	trajectories subject	to	the	path	measure.

• For discrete spins, the overlap between activities of the two systems is of interest

𝑞5 𝒘0,𝒘, 𝛽 =
1
𝑁m〈𝑠̂45𝑠45〉

�
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Generating	Functional	Analysis

• Generating functional (characteristic function)

Γ 𝝍Y,𝝍 ≔ exp −𝑖m 𝜓c45𝑠̂45 + 𝜓45𝑠45
�

5,4
,

moments	such	as	magnetization	 𝑠̂45 and	overlap	 𝑠̂45𝑠45 can	be	obtained	by	
differentiating	Γ 𝝍Y,𝝍 ; angled brackets	– average	over	all	paths.

• Interested in the typical behavior of an ensemble of networks	𝒘0 ∼ 𝑃 𝒘0 ,
overbar – quenched average

Γ 𝝍Y,𝝍 ≔m Γ 𝝍Y,𝝍 𝑃 𝒘0 	𝑃 𝒘
�

𝒘0W,𝒘W	

= ∫∏ ��W��W

,�/�
�
5 𝑒��[𝒒,𝑸]�

� ≈ 𝑒�� 𝒒�,𝑸� , in	the	limit	𝑁 → ∞,

Represented	by	macroscopic	order	parameters;	the	saddle	point	𝒒�, 𝑸� =
extr𝒒,𝑸𝜳 𝒒,𝑸 satisfies	certain	self-consistent	mean-field equation.

10

…

𝑠45

𝑤4f5

𝑠f5N+

𝑠5

𝑚5N+, 𝑞5N+



Function	Error	and	Entropy	
• Function error is defined as the expected Hamming distance of output
layers between 𝑓𝒘0 and 𝑓𝒘

𝜀 ≔ +
,�
∑ 𝑠̂4� − 𝑠4�
�
4*+ = +

, 1 − 𝑞� ,
which	provides	a	distance	measure	between	𝑓𝒘0 and	𝑓𝒘.

• Also	interested	in	the	entropy	(log-volume)	of	𝑓𝒘 at	distance-𝜀 away	from	
the	reference	function	𝑓𝒘0 ,	e.g.,
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Fully-connected	Networks	– Continuous/Binary	weights

12

Continuous	weights:

Typical	overlaps:

Binary	weights:

Consider	fully-connected	networks,	with	𝑃 𝒘045 = ∏ 𝑃(𝑤04f5 )�
f

Perturbation	
strength	at	layer	𝑙

𝜀 = 0.2

𝜀 = 0.1

𝒘0

[B.	Poole	et	al.,NIPS 2016]



Entropy	of	Perturbed	Functions
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Continuous	weights:

Entropy	of	𝑓𝒘:

Binary	weights:

Consider	fully-connected	networks,	with	𝑃 𝒘045 = ∏ 𝑃(𝑤04f5 )�
f

The	distance-𝜀 surface	of	𝑓𝒘 with	volume	Ω 𝜂5 = exp𝑁/ 𝑆\]£	 𝜂5 ,	is	
exponentially dominated	by	the	maximum-entropy	solutions	when	𝑁/ → ∞:

𝜂∗5 = argmax
¦W

𝑆\]£	({𝜂5}) , 	s. t. 		𝑞� 𝜂5 = 1 − 2𝜀

Perturbation	
strength	at	layer	𝑙

𝜀 = 0.2

𝜀 = 0.1

𝒘0



Earlier	Layers	Converge	First	When	Decreasing	𝜺

14M.	Raghu	et	al,	ICML 2017

Continuous	
weights

Binary	
weights

𝒘+
𝒘,
𝒘¨



Approximated	Generalization	Curve
(dense	DLM	with	continuous	weights)

Annealed	theory	of	learning

A.	Engle	and	C.	Van	den	Broeck,	2001

Relevant	in	small	𝜀 (large	𝛼)	limit.



Sparsely	Connected	Binary	Networks
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• Same	architecture	as	before,	except	that	each	node	is	randomly
connected	to	𝑘 units	in	the	previous	layer	and	𝑤04f5 = 1.
Such	layered	networks	can	implement	a	large	class	of	Boolean	functions.
[A.	Mozeika and	D.	Saad	PRL	2009]

• In	addition	to	the	overlap	𝑞5 the	magnetization	𝑚5 ≔ 1/𝑁∑ 〈𝑠45〉�
4 order	

parameter	characterizes	the	macroscopic	dynamics.



Sparsely	Connected	Binary	Networks
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For	the	same	for	perturbation	at	every	layer	𝑝5 = 𝑝 (weight	flipping	
probability)	and	at	the	infinite	depth	limit	𝐿 → ∞

Reference	function	𝑓𝒘0 = 𝑠𝑔𝑛(∑𝑠̂4o) is	
majority	vote	of	input.

Phase	transition	of	stationary states as	
𝐿 → ∞;	 𝑘 = 3,𝑚o > 0.
(𝑚¯ < 0 if	𝑚o < 0)

Similar	to	the	phase	transition	of	
varying	thermal	noise	𝛽 in	the	noisy	
computation	setting.

[A.	Mozeika and	D.	Saad PRL	2009]



Deep	Layers	For	Reliable	Computation	in	
Sparse	Binary	Deep	Learning	Machines
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𝛿5 ≔
1
2 (1 − 𝑞

5)
Internal	error	of	activations



Continuous	Variables	and	Activation	Functions
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We	extended	the	framework	for	the	ReLu function	𝜙 𝑥 = 	²𝑥				𝑥 > 0
0				𝑥 ≤ 0



Summary	and	Future	Work
Summary:
• The generating functional analysis is a principle method for deriving the typical
behaviors of DLMs; it allows for non-trivial extensions.

• Layer-by-layer matching of weights is observed when getting closer to the
reference function in densely-connected networks.

• Sparsely connected networks favor deep layers for a reliable representation.

Future work:
• A model learned from data 𝑝 𝒘 𝐷 − Typically many redundant weights.
• Exploring the function space for correlated inputs.
• The role of over-parametrization in the function landscape, error and
generalization.

• Other models? Optimizing variable hidden layer size.
• Noisy training/computation for better generalization.
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