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Motivation

Industrial Engineering Shape Design Procedure
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How hard is it to tell which shape induces greater drag?
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Motivation

Limitations with current surrogate modeling
techniques

I Surrogate model is sensitive to shape parameterization schemes

I Shape parameterization is hand engineered and arbitrary

I Data and model cannot be transferred across different
parameterization schemes

I Models are blindly doing pure input to output mapping, without
incorporating any physical knowledge

A way of parameterizing the airfoil [3]
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Motivation

Objective of this Study

Develop a deep learning based framework that:

I Does not require hand-crafted shape parameterization.

I Is able to generate novel shapes.

I Is able to enforce shape constraints.

I Is able to provide surrogate model for optimization.

Case Study:

I Constrained Optimization of an Airfoil
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Models

Overview of this study
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Models

Overview of models
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Models

Source of Data: Airfoils

Sample of airfoil dataset in airfoil database consisting of 1636 airfoils. Each airfoil
is normalized to cord length of 1. Each airfoil is randomly rotated with an angle
of attack θ ∈ [0, 15] deg. For each sample, the recorded shape attributes are max
thickness (%), max camber (%), angle of attack θ and cross-sectional area.
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Models

Source of Data: Aerodynamics Simulation

The figure above shows one simulated shape sample. The flow channels are two
components of velocity, pressure, density and temperature. Flow simulation is
performed under Mach 0.15 using Open Source simulator OpenFOAM. The
simulation results are resampled onto a 256× 512 grid
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Models

Semi-supervised Variational Autoencoder (VAE)

I Consists of convolutional, up-convolutional, and fully connected layer.

I Bottleneck of size 100 forces the extraction of a feature vector of
length 100.

I loss = ||x − Dec(Enc(x))||2 + DKL(z ||ẑ) where ẑ ∼ N (0, 1)

I DKL(z ||ẑ) = −Σiz(i) log z(i)
ẑ(i) We use KL Divergence to measure how

closely the latent vector resembles a unit Gaussian
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Models

Latent Space Learning: Adversarial Training

I Train two separate networks against each
other, namely an actor (a.k.a. Generator G)
and a critic (a.k.a. Discriminator D).
Equilibrium of the 2-player game allows D
to efficiently distinguish real and fake data
distributions.

I LD = Ez∼p(z)(−log(1− D(z))) +
Ez∼G(p(z))(−log(1− D(z))) +
Ez∼q(z)(−log(D(z)))

I LG = Ez∼G(p(z))(−log(D(z)))
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Models

Latent Space Learning: Regression

I Use Multilayer Perceptron (MLP) as
nonlinear regressor for attributes (Ra) and
objectives (Ro).

I LRa =
∑N

i=1(Ra(zi )− ai )
2

I LRo =
∑N

i=1(Ro(zi )− oi )
2
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Models

Constrained Optimization of Shapes

Use Ro(z), Ra(z) as function approximators for objectives and attributes.
Denote the portion of Ra subject to equality constraints as Req

a . Denote
the portion of Ra subject to inequality constraints as R ieq

a .
Relax the constrained optimization problem as follows. Given m attribute
equality constraints c ∈ Rm and n inequality bounds d ∈ Rn, minimize the
objective function Ro(z):

minimize
z

Ro(z)

subject to Req
a (z) = c, equality constraints

R ieq
a (z) ≥ d, inequality constraints

Chiyu ‘Max’ Jiang PIML 2018 Presentation Jan 24, 2017 15 / 24



Models

Convert to Unconstrained Optimization

Further relax the constrained optimization problem into unconstrained
optimization problem by utilizing penalty weights.

minimize
z

Lopt(z)

where

Lopt(z) :=Ro(z) + λeq||Req
a (z)− c||2 + λieqI(R ieq

a (z) ≤ d)

+ λr (−log(D(z)))

where λeq, λieq, λr represent the penalty constant for equality, inequality
and realism constraints. I is the indictor function that returns number of
logical True entries.
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Results

Results: Reconstruction Performance

A random held-out test sample. Reconstructed shapes and flow fields closely
resembles the original shapes, indicating that flow-related shape information is
well preserved in the bottleneck feature vector.

Chiyu ‘Max’ Jiang PIML 2018 Presentation Jan 24, 2017 18 / 24



Results

Results: Predictive Performance on
Objectives (Lift) R2 = 87.6% (Drag) R2 = 75.2%

Plot of True (abscissa) vs Predicted (ordinate) values. Left shows a plot of lift
predictions, Right shows a plot of drag predictions. Drag performance is more
difficult due to nonhomogeneous distribution of training data.
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Results

Results: Predictive Performance on Attributes

True vs prediction plot. Left to right: max thickness, max camber, angle of
attack, area

Prediction Accuracies

Attributes Max Thickness Max Camber Angle of Attack Area

Test R2 0.9794 0.9386 0.9902 0.9841
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Results

Latent Space Shape Manipulation

Morphing by linear interpolation of latent vectors
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Conclusion

Conclusion and Continual Work

So Far:

I We have formulated a deep learning based model for constrained
shape optimization.

I Our surrogate model takes in raw shape information and does not
require any hand-engineered shape parameterization, allowing for
more efficient feature selections.

I The latent space of VAE has nice properties allowing continuous
shape manipulations. Attribute and objective information can be
effectively recovered in the latent space.

Work to be continued:

I Constrained shape generation

I Shape optimization
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Conclusion
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Conclusion

Thank you. Questions?

Chiyu ‘Max’ Jiang PIML 2018 Presentation Jan 24, 2017 25 / 24


	Motivation
	Models
	Results
	Conclusion

	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	0.20: 
	0.21: 
	0.22: 
	0.23: 
	0.24: 
	0.25: 
	0.26: 
	0.27: 
	0.28: 
	0.29: 
	0.30: 
	0.31: 
	anm0: 
	0.EndLeft: 
	0.StepLeft: 
	0.PauseLeft: 
	0.PlayLeft: 
	0.PlayPauseLeft: 
	0.PauseRight: 
	0.PlayRight: 
	0.PlayPauseRight: 
	0.StepRight: 
	0.EndRight: 
	0.Minus: 
	0.Reset: 
	0.Plus: 


