Non-Aqueous Solvents and Supporting Salts – Improving Redox Flow Battery Electrolytes

Ben Silcox, Levi Thompson Workshop on Non-Aqueous Flow Batteries 2019 January 30

Non-aqueous Solvents

- High potential redox flow batteries through wide voltage window electrolytes
- Key properties for suitable solvents
 - Voltage window
 - Viscosity (conductivity)
 - Solvency

	-3.	-3.0 V			Propylene Carbonate (PC)							3	.6 V		
		-2.8 V				Acet	onitrile	e (MeCN)				3.3 V]	
	-3	.0 V		N,N	-dimetl	hylform	amide	(DMF)	1.	6 V					
							V	Vater							
3.5	-3.0	-2.5	-2.0	-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
						Pote	ential	(V) vs	SCE						

Supporting Salts

- Supporting salts are required for sufficient conductivity
 - Organic solvents have multiple order of magnitude lower conductivities than water²
- Key properties for suitable supporting salts
 - Voltage window
 - Ionic radii (limiting conductivity)
 - Solubility

	-3.1	V				N	∕le₄NBF	4					3.50	V C	
	-3.2	2 V				L	iBF ₄						3.6	5 V	
	-3.1	V				В	u ₄ PBF ₄							3.80 V]
	-3.	-3.0 V				Propylene Carbonate (PC)					3.6				
3.5	-3.0	-2.5	-2.0	-1.5	-1.0	-0.5 Pote	0.0 ential	0.5 (V) vs	1.0 5 SCE	1.5	2.0	2.5	3.0	3.5	4.0

Ue, M; et al. J. Electrochem Soc. 1994, 141 (11), 2989-2996
 Gong, K.; et al. Energy Environ. Sci. 2015, 8, 3515-3530
 Electrolyte: PC

Commonly used Electrolytes

- Key properties for suitable electrolytes
 - Voltage window
 - (Limiting) Conductivity
 - Solubility
 - Viscosity
 - Critical concentration
- Polar, aprotic solvents are most commonly used^{3,4}
 - Acetonitrile provides the best combination of key factors²
- Less standardization among supporting salts
 - Lithium and alkylammonium salts both see use
 - Anion choice among supporting salts is generally less impactful on electrolyte properties

2. Gong, K.; et al. Energy Environ. Sci. 2015, 8, 3515-3530

3. Zhang, J.; et al. J. Phys. Chem. C, 2018, 122, 8159-8172

^{4.} Sevov, C.; et al. J. Am. Chem. Soc., 2015, 137, 14465-14472

Supporting Salt choice for Acetonitrile

- Lithium vs Alkylammonium
 - Similar voltage windows¹
 - Similar range of conductivities and solubilities depending on anion choice
 - Alkylammonium salts generally have higher critical concentrat
- Lithium and other small cations are strong Lewis acids
 - Strong interactions with acetonitrile^{5,6}
 - Strong interactions with active material anions^{3,7}

Ue, M; et al. J. Electrochem Soc. 1994, 141 (11), 2989-2996
 Gong, K.; et al. Energy Environ. Sci. 2015, 8, 3515-3530
 Zhang, J.; et al. J. Phys. Chem. C, 2018, 122, 8159-8172

Current Electrolyte Limitations

- Key properties for suitable electrolytes
 - Voltage window (> 6.0 V for MeCN)¹
 - Conductivity (55.5 mS/cm for 1 M Et_4NBF_4 in MeCN)⁷
 - Solubility (4.2 M LiTFSi in MeCN)⁶
 - Viscosity (0.75 cP for 1 M LiTFSi in MeCN)⁶
 - Critical concentration (> 2.0 M for Et_4NBF_4 in PC)¹
- In the absence of active materials, non-aqueous electrolytes have the necessary performance for flow battery use

 Competing solubility of supporting salts and active materials leads to poor experimental performance

Ue, M; et al. J. Electrochem Soc. 1994, 141 (11), 2989-2996
 Zhang, J.; et al. J. Phys. Chem. C, 2018, 122, 8159-8172
 Yamada, Y.; et al. J. Am. Chem. Soc., 2014, 136 (13), 5039-5046

Current Electrolyte Limitations

- Key properties for suitable electrolytes
 - Voltage window (> 6.0 V for MeCN)¹
 - Conductivity (55.5 mS/cm for 1 M Et₄NBF)
 - Solubility (4.2 M LiTFSi in MeCN)⁶
 - σ, mS/cm Viscosity (0.75 cP for 1 M LiTFSi in MeCN
 - Critical concentration (> 2.0 M for Et_4NBF
- In the absence of active materials, non-ac ٠ performance for flow battery use

Competing solubility of supporting salts and active materials leads to poor experimental performance

1. Ue, M; et al. J. Electrochem Soc. 1994, 141 (11), 2989-2996 3. Zhang, J.; et al. J. Phys. Chem. C, 2018, 122, 8159-8172

6. Yamada, Y.; et al. J. Am. Chem. Soc., 2014, 136 (13), 5039-5046

Ionic Liquids as Electrolytes

- Avoids competing solubility between active materials and supporting salt
 - Poor conductivities (< 5 mS/cm)^{8,9}
 - High viscosities (> 100 cP)^{8,9}

8. Takechi, K.; et al. *Adv. Mater.*, 2015, 27, 2501-2506
9. Anderson, T. M.; et al. *Dalton Trans.*, 2010, 39, 8609-8612

Design of Metal Coordination Complexes for Solubility

Metal and ligand substitutions (A) (M) - Active material solubility can be greatly improved or hindered 0.404 ± 0.002 Polyethylene glycol addition greatly improves solubility –Br 0.00212 ± 0.00002 Solubility = $\alpha (\Delta G_{sol})^{1.8} + \beta \mu^{2.5}$ 0.0547±0.0003 2.0 0.43 ± 0.02 R (\mathbf{M}) 1.92 ± 0.04 **v** 1.5 Fe Ru Calculated Solubility, FCN 0.86 ± 0.05 \cap Mn 1.0 1.13 ± 0.01 = 0.790.5 1.25 ± 0.01 0.0 1.8 ± 0.04 0.5 1.0 1.5 2.0 0.0 >1.8 Measured Solubility, S (M) R

10. Suttil, J. A.; et al. J. Mater. Chem. A, 2015, 3, 7929-7938 11. Kucharyson, J. F.; et al. J. Mater. Chem A, 2017, 5, 13700-13709 12. Milshtein, J. D.; et al. ChemSusChem, 2017, 10, 2080-2088

٠

Functional Group

Solubility

Design of Metal Coordination Complexes for Solubility

- Metal and ligand substitutions
 - Active material solubility can be greatly improved or hindered
 - Polyethylene glycol addition greatly improves solubility
- Using ionic active species
 - Removes the need for a supporting salt

• Maximum solubilities ~ 2 M in acetonitrile

10. Suttil, J. A.; et al. J. Mater. Chem. A, 2015, 3, 7929-7938
11. Kucharyson, J. F.; et al. J. Mater. Chem A, 2017, 5, 13700-13709
12. Milshtein, J. D.; et al. ChemSusChem, 2017, 10, 2080-2088

Design of Redox Active Organics for Solubility

 Functional group modification - Polyethylene glycol addition - Subtractive modification DBBB DB **MDB 26DDB 23DDB 25DDB** ANL-8 DBBB EMICAL WNER WNER ANL-9 ANL-10

4. Sevov, C. S.; et al. *J. Am. Chem. Soc.*, 2015, 137, 14465-14472
14. Milshtein, J. D.; et al. *Energy Environ. Sci.*, 2016, 9, 3531-3543
15. Huang, J.; et al. *Adv. Energy Mater.*, 2014, 5 (6), 1401782

16. Huang, J.; et al. *J. Mater. Chem. A*, 2015, *3*, 14971-14976
17. Wei, X.; et a. *Adv. Mater.*, 2014, *26*, 7649-7653

Design of Redox Active Organics for Solubility

- Functional group modification
 - Polyethylene glycol addition
 - Subtractive modification
- Ionic active species

- Maximum solubilities ~ 2.5 M in acetonitrile
 - TEMPO has > 2 M solubility in Li⁺ electrolytes¹⁸

4. Sevov, C. S.; et al. *J. Am. Chem. Soc.*, 2015, *137*, 14465-14472
14. Milshtein, J. D.; et al. *Energy Environ. Sci.*, 2016, *9*, 3531-3543
15. Huang, J.; et al. *Adv. Energy Mater.*, 2014, *5* (6), 1401782

Electrolyte effects on Stability

- Lithium/MeCN electrolytes exhibit negative impacts on anion stability¹⁸
 - Acetonitrile protonates anolyte radicals^{18,19}
 - Lithium has strong interactions with anolyte radicals^{3,7}

Zhang, J.; et al. J. Phys. Chem. C, 2018, 122, 8159-8172
 Izutsu, K.; *Electrochemistry in Nonaqueous Solutions*, 2nd ed.; Wiley-VCH, 2009
 Zhang, J.; et al. J. Power Sources, 2018, 397, 214-222

19. Wei, X.; et al. Angew. Chem. Int. Ed., 2015, 54, 8684-8687

Electrolyte effects on Stability

- Lithium/MeCN electrolytes exhibit negative impacts on anion stability¹⁸ ٠
 - Acetonitrile protonates anolyte radicals^{18,19}
 - Lithium has strong interactions with anolyte radicals^{3,7}
- Anolytes are more strongly affected by electrolyte choice^{19,20} •
 - Effects are chemistry dependent

a)

100

Electrolyte effects on Cyclability

• Lithium ions also coordinate to catholytes, but provide improved cyclability²⁰

Electrolyte effects on Cyclability

- Lithium ions also coordinate to catholytes, but provide improved cyclability²⁰
 - Greatly improved efficiencies
- Electrolyte choice significantly impacts cycling performance

Conclusions

- Modern non-aqueous flow battery electrolytes have the necessary properties for high concentration use
 - Acetonitrile provides the best balance of key properties
 - No de-facto standardization of supporting salts
- Solubility in these electrolytes is the largest challenge for high concentration non-aqueous flow batteries
- Strategies for improving solubility in active material design are well established and have been set aside in favor of improving stability and cyclability
- Interactions between supporting salts and active materials play a strong role in flow battery performance

Further Electrolyte Development Areas

- Organic solvents with increased solvency
 - Limited number of solvents with suitable solvencies and dissociation constants for electrolyte use
- Mixed solvents and electrolytes
 - Successfully applied in lithium ion and aqueous flow battery applications
 - Finer tuning of desired properties