

T. Leo Liu, leo.liu@usu.edu

2019 DOE OE Workshop Santa Fe, NM

www.tianbiaoliu.org, Utah State University

Opportunities and Challenges of Organic RFBs

Mining redox active organic molecules

- Low cost and sustainable (C, H, O, N)
- High performance (synthetic tunability)
- Mechanistic understandings
- Coupled with inorganics

	Energy	Power	Membrane	Safety	Stability
AORFB	< 84 Wh/L (1.25 V, 4 M)	High (> 100 mW/cm ²)	Selective and porous	High	Good
NAORFB	> 100 Wh/L (3 V, 2.5 M)	Low (< 30 mW/cm ²)	Porous only (crossover)	Low (organic solvents)	Poor (radicals)

Maybe ok for hours storage

Size exclusion? new IEM?

Reduce organic solvent; additives

Lower voltage? molecular design?

Evaluation of RFBs

Electrolyte materials:

- Full spectroscopic and E-chem characterization
- Single electrolyte half-cell RFB tests
- Post-cell analysis

Nano Energy **2017**, *42*, 215-221. Joule **2019**, *3*, 1-15.

Full RFBs

- Rate performance (> 10 mA/cm²)
- Energy efficiency > 80%
- Power density
- Energy density (> 0.5 M)
- Capacity retention (vs cycles number and time)
- Operando and post-cell analysis
- Standard flow cell??