Redox Flow Batteries New Active Species & Electrolytes

Mike L. Perry United Technologies Research Center

Approved for Public Release

JCSER techno-economic analysis on RFB electrolytes

This work expanded upon JCSER's 2014 TEA modeling of RFBs

 Electrolyte-centric approach is used to develop explicit Design Maps for both NAqRFB and AqRFB that show paths to RFB System cost of < \$100/kWh

Key viable parameters for:

- NAqRFB chemistries:
 - Much larger Design Space than Aq
 - OCV ≥ 3.0V (prefer ≈ 4.0V)
 - ASR $\leq 5 \Omega$ -cm² (10X higher than Aq)
 - Redox-active concentration 2-4 mol/kg
 - Active-molecule MW ≤100 g/mol
- AqRFB chemistries:
 - OCV ≥ 1.0V (prefer ≈ 1.5V)
 - ASR $\leq 0.5 \Omega$ -cm²
 - Active species: < \$5/kg</p>
 - Active MW ≤ 100 g/mol

F. Brushett (**MIT**), K.C. Smith (**UIU-C**), *et.al. Journal Power Sources* (2016)

Example of high performance NonAqueous RFB**

Symmetrical cell with "Fc1N112" redox

- N-(ferrocenylmethyl)-N,N-dimethyl-N-ethylammonium bis(trifluoromethane)sulfonimide ([Fc1N112⁺][TFSI⁻]) and its oxidized form ([Fc1N112²⁺][TFSI⁻]₂) in tetraethylammonium bis(trifluromethane)sulfonamide (TEATFSI) and acetonitrile (MeCN)
- At 50% SOC:
 - Total cell ASR ≈ 2 Ω-cm² (at < 0.3 V)</p>
 - Done with 2.55- and 25-cm² cells
 - Demonstrates that electrode losses can be low with NonAq RFBs
 - However, key challenges:
 - Membrane
 - Porous Celguard is <u>not</u> selective
 - Positive Reactant
 - Needs to enable acceptable OCV (≥ 3.0V)

Figure 10. (a) Polarization and (b) Nyquist plot of the lowest ASR configuration tested in this work: 1 M Fc1N112^{+/2+} (50% SOC), Celgard 2500, 2x SGL 25AA, 0.5 M TEATFSI / MeCN, 10 mL min⁻¹.

J. Milshtein, F. Brushett (MIT), R. M. Darling (UTRC), et.al. JES, 164 (2017) A2487

** Results obtained as part of JCESR

3

Examples of high performance Aqueous RFBs**

With hydrocarbon membranes (not ion-exchange membranes)

Research Centei

High OCV is critical

Should fully exploit electrolyte stability window with Engineered RFB Actives

- Stability Window is significantly larger than thermodynamic limits
- Most successful aqueous batteries have cell voltages that are > 1.23 V
 - Pb-acid batteries have nominal OCV of 2.15V; charge up to 2.7 V
 - VRFBs have an OCV of > 1.5 V; charge up to 1.55 to 1.6 V per cell

One should determine the stability window for the intended electrolyte

```
Neutral-pH Aqueous RFB example:
CV indicates Potential Window ≈ 2.7 V
OCV ≈ 0.82 V (30%)
```

Figure from:

T. Leo Liu, *et.al.* "Unprecedented Storage Capacity and Cycling Stability of Ammonium Ferrocyanide Catholyte Material in pH Neutral Aqueous Redox Flow Batteries," *Joule* (2018).

APPENDIX

"Breakthrough Flow-Battery Stack" developed by UTRC *

UTRC's VRFB cells use same material set as other VRFB cells

* ARPA-E's title for UTRC's *GRIDS* Project

Techno-Economic Modeling of EES Options

DOE's Battery Hub analysis on High Energy EES

- Recent analysis provides insights into paths to low-cost, high energy batteries
 - Modeled 5-hr discharge capacity
- Key results:
 - Dashed lines yield RFB System
 cost of \$120/kWh (with 5-h system)
 - Aqueous Systems
 - Solvent cost, σ, OCV
 - Non-Aqueous Systems
 - OCV, Solvent cost, σ

Analysis Authors: Robert M. Darling (UTRC)

J. A. Kowlaski and F. R. Brushett (MIT) K. G. Gallagher and S. Ha (ANL)

"Pathways to low-cost electrochemical energy storage: a comparison of aqueous and non-aqueous flow batteries" *Energy & Environmental Science* (2014)

Techno-economic Results on High Energy EES

Advanced RFBs are best path to long-discharge applications (5-hr)

- Study assumes *10-GWh* production facilities
- "ADD" cost = factory depreciation, overhead, labor, margin, etc.
- Flow Batteries show lower manufacturing contributions to system price
- BOP costs are fairly similar for all battery types
- Aqueous RFBs have lowest Power sub-system costs
- Energy costs vary widely; depends on more than just the active material cost (\$/kg)

R. M. Darling, et.al., Energy & Environ. Science (2014)

Lifetime and learning-curve path will discriminate going forward

Path to Low Cost with Separators & RFB Reactants

Impact of charge carrier on Aqueous-RFB System costs

- TEA modeling shows that charge carrier does have a significant impact
 - Due to higher ionic conductivities → higher performance stacks
- Size-Selective Separators (SSS), *i.e.*, *not* ion-exchange membranes (IEMs), enable lower costs, *especially at low production volumes*
- In the near-term: SSS and charge carrier are key enablers to low cost
- Longer-term: OCV is key differentiator

Battery cost as a function of cell potential with (a) present-day and (b) future-state costs, for various working ion / membrane types and two extreme values of Re. This analysis assumes 5 h discharge time.

VNX 1000 SERIES 1,000 KW / 6-10 Hours

Modular Architecture

Independent scaling of power and energy

- Optimal system sizing for each application
- Flexibility to add power or energy as project needs change over time

Energy Component - - - - 2 Electrolyte Containers per MWh

Simplicity

Maximizes power density & minimizes footprint to reduce material and site costs

- Reduces container spacing & pipe runs
- Reduces wetted electrolyte surfaces, minimal propensity for leaks
- Minimizes moving components via centralization of all pumps, controls, etc. in stack container
- Electrolyte containers have no moving parts

Durable, Quality Components

Maximize system life and minimize operational expense

- Materials meet chemical industry standards
- Containers are marine grade for maximum climate resistance
- Electrolyte 100% double walled/contained

©Vionx Energy.

Grid-Scale Validation

160kW / 640 kWh System

- Micro-Grid Control Compatibility
- ✓ Time-of-Use Rate Reduction
- ✓ Demand Charge Reduction

500kW / 3,000 kWh System

- Wind Integration (600kW Wind)
- ✓ Time-of-Use Rate Reduction
- Demand Charge Reduction

500kW / 3,000 kWh System

- ✓ PV Integration (605kW Solar)
- ✓ Voltage Support
- ✓ Load Following

** These two demonstrations supported by DOE's OE Program

©Vionx Energy.