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JCSER techno-economic analysis on RFB electrolytes

This work expanded upon JCSER’s 2014 TEA modelmg of RFBs

= Electrolyte-centric approach is used to
develop explicit Design Maps for both

NAQRFB and AgRFB that show paths to RFB

System cost of < $100/kWh

Key viable parameters for:

= NAQRFB chemistries:
Much larger Design Space than Aq
OCV 2 3.0V (prefer = 4.0V)

ASR =5 Q-cm? (10X higher than Aq)
Redox-active concentration 2-4 mol/kg

Active-molecule MW <100 g/mol

OCV 2 1.0V (prefer = 1.5V)
ASR =£0.5 Q-cm?

Active species: < $5/kg
Active MW < 100 g/mol
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Example of high performance NonAqueous RFB™*

= Symmetrical cell with “Fc1N112” redox
» N-(ferrocenylmethyl)-N,N-dimethyl-N-ethylammonium
bis(trifluoromethane)sulfonimide ([Fc1N112*][TFSI]) and
its oxidized form ([Fc1N1122+][TFSI],) in tetraethyl-
ammonium bis(trifluromethane)sulfonamide (TEATFSI)
and acetonitrile (MeCN)

= At 50% SOC:
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= Demonstrates that electrode losses 1 Current Density (mA cm™)
can be low with NonAq RFBs T (o
= However, key challenges: %0_5
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Needs to enable acceptable OCV (= 3.0V) SOL 25, 0.5 M TEATESI/ MO, 10 mL it > 50 2500

J. Milshtein, F. Brushett (MIT), R. M. Darling (UTRC), et.al. JES, 164 (2017) A2487
** Results obtained as part of JCESR  JCESR &S sromct reseanc
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Examples of high performance Aqueous RFBs™**

With hydrocarbon membranes (not ion-exchange membranes)
= These electrolyte-imbibed membranes

may potentially be good for NonAq N

FB871 VI curves
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= Complete VRFB cell
= At 80% SOC.:

= ASR =0.35 Q-cm?
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= Symmetrical DBEAQ cell
= 0.5 M DBEAQ, 1M KCI, pH 12

Potential (V)
o

0.2 = At 50% SOC:
= ASR = 0.49 Q-cm?
04¢}
** Results obtained as part of UTRC’s
Current (A) ARPA-E “IONICS” project
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High OCV is critical

Should fully exploit electrolyte stability window with Engineered RFB Actives

= Energy Density = Power Density
E (kWh/L) a V P (W/m?) a (V,)?

= Stability Window is significantly larger than thermodynamic limits

= Most successful aqueous batteries have cell voltages that are > 1.23 V
Pb-acid batteries have nominal OCV of 2.15V; charge up to 2.7 V
VRFBs have an OCV of > 1.5 V; charge up to 1.55to 1.6 V per cell

= One should determine the stability window for the intended electrolyte

Neutral-pH Aqueous RFB example: on e A
CV indicates Potential Window = 2.7 V N h
OCV = 0.82 V (30%) 2 /& i)

z 01 '
Figure from: S °1! </ <]
T. Leo Liu, et.al. “Unprecedented Storage o
Capacity and Cycling Stability of Ammonium 45 40 -05 00 05 10 15
Ferrocyanide Catholyte Material in pH Neutral Potential (V vs NHE)

Aq ueous Redox Flow Battel"ies,” Joule (201 8) Figure S13. CV curves of (NH,),[Fe(CN) ] (red trace) and (SPr),V (blue trace). Gray curve Is the CV curve
of 0.5 M NH,CI, labeled with the onset potentials for hydrogen evolution reaction (HER, -1.43 V) and oxygen

evolution reaction (OER, 1.30 V).
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“Breakthrough Flow-Battery Stack” developed by UTRC *
UTRC’s VRFB cells use same material set as other VRFB cells
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Techno-Economic Modeling of EES Options
DOE’s Battery Hub analysis on High Energy EES

= Recent analysis provides insights into = :Eequ-":? s-o :;b;;;ty a*R ($ mQ) 0 ]

paths to low-cost, high energy batteries & 20[ 033 250 A ]
Modeled 5-hr discharge capacity f 50

% 151 05071333 ' 100 ]

= Key results: g | ‘./' f

Dashed lines yield RFB System s f ]

cost of $120/kWh (with 5-h system) 5 [ sofes ",,"f9"a°“e°/‘ff 250

Aqueous Systems ° 7 I /

Solvent cost, g, OCV N A A/ A

Non-Aqueous SyStemS : O1pen circuii voltage (:;’I) ‘

OCV, Solvent cost, 0 Analysis Authors:

Robert M. Darling (UTRC)

JCE%R JOINT CENTER FOR J. A. Kowlaski and F. R. Brushett (MIT)
' ENERGY STORAGE RESEARCH K. G. Gallagher and S. Ha (ANL)

“Pathways to low-cost electrochemical energy storage: a comparison of aqueous and
non-aqueous flow batteries” Energy & Environmental Science (2014)
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Techno-economic Results on High Energy EES
Advanced RFBs are best path to long-discharge applications (5-hr)

= Study assumes 10-GWh production
facilities
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= “ADD” cost = factory depreciation,
overhead, labor, margin, etc.

= Flow Batteries show lower
manufacturing contributions to
system price

" costs are fairly similar for all
battery types

= Aqueous RFBs have lowest Power
sub-system costs

= Energy costs vary widely; depends
on more than just the active
material cost ($/kg)
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Future State Price for useable energy ($ kWh™)

R. M. Darling, et.al., Energy & Environ. Science (2014)

Lifetime and learning-curve path will discriminate going forward
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Path to Low Cost with Separators & RFB Reactants

Impact of charge carrier on AqQueous-RFB System costs

TEA modeling shows that charge carrier does have a significant impact

Due to higher ionic conductivities — higher performance stacks

enable lower costs, especially at low production volumes
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In the near-term: SSS and charge carrier are key enablers to low cost
Longer-term: OCV is key differentiator

“The Critical Role of Supporting
Electrolyte Selection on Flow
Battery Cost”

J. D. Milshtein, R. M. Darling, Javit

Drake, M. L. Perry, & F. R. Brushett;

J. of the Electrochemical Society,
V164, A3883 (2017).
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Battery cost as a function of cell potential with (a) present-day and (b) future-state costs, for various
working ion / membrane types and two extreme values of Re. This analysis assumes 5 h discharge time.
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VIONX  VNX1000 SERIES
ENERGY 1,000 KW / 6-10 HOURS

Power Component

Modular Architecture o -/ 2 skCatanesper

Independent scaling of power and energy

= Optimal system sizing for each application

=  Flexibility to add power or energy as project
needs change over time

Energy Component = = =
2 Electrolyte Containers per MWh

Shown: 1 MW/ 8 MWh DC System

Simplicity

Maximizes power density & minimizes
footprint to reduce material and site costs

= Reduces container spacing & pipe runs D ura bley Q ua I Ity CO m pO ne ntS
= Reduces wetted electrolyte surfaces, minimal L . . )
propensity for leaks Maximize system life and minimize operational expense
=  Minimizes moving components via centralization = Materials meet chemical industry standards
of all pumps, controls, etc. in stack container = Containers are marine grade for maximum climate resistance
=  Electrolyte containers have no moving parts =  Electrolyte 100% double walled/contained
©Vionx Energy. \ VIONX
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Grid-Scale Validation

ary & B | 160kW / 640 kWh System
OQric I 'y v v Micro-Grid Control Compatibility
| ”W “,“J v Time-of-Use Rate Reduction

v" Demand Charge Reduction

|

Wind 500kW / 3,000 kWh System
Integration* il _ﬁ - v Wind Integration (00kW Wind)

nationalgrid
v" Time-of-Use Rate Reduction 9

v" Demand Charge Reduction

500kW / 3,000 kWh System
v PV Integration (605kW Solar)
v" Voltage Support

Q1
2019

nationalgrid

Installation

— - :—~ - v Load Following

** These two demonstrations supported by DOE’s OE Program
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