Molecular Redox Carriers:

LESSONS LEARNED IN ROUTE TO NEW STRATEGIES

CHRISTO S. SEVOV THE OHIO STATE UNIVERSITY

30 JANUARY, 2019 *WORKSHOP ON NON-AQUEOUS FLOW BATTERIES*

APPROACH TO ENERGY STORAGE

Batteries are required to store the collected energy, and discharge upon demand.

Unconventional Battery – Unconventional Approach

Develop battery materials by utilizing principles from physical and synthetic organic chemistry.

ELECTROCHEMICAL ENERGY STORAGE

ELECTROLYTE STABILITY VS PERSISTENCE

Chemist's Goal: Maximize $E_{1/2}$ and ΔG^{\ddagger} .

A LOOK BACK: 1ST-GEN METAL COMPLEXES

Liu, Q.; Sleightholme, A. E. S.; Shinkle, A. A.; Li, Y.; Thompson, L. T. Electrochem. Commun. 2009, 11, 2312

A LOOK BACK: REDOX-ACTIVE LIGANDS

3rd-GEN COORDINATION COMPLEXES

$N = Mg^{2+}, Mn^{2+}, Fe^{2+}, Co^{2+}, Ni^{2+}, Zn^{2+}$

Sevov, C. S.; Fisher, S. L.; Thompson, L. T.; Sanford, M. S. JACS 2016, 138, 15378.

CYCLABLE COMPLEXES - NOT ALL

PERSISTENCE OF M²⁺ COMPLEXES

Lesson #1: Ligand shedding and its mechanism should be carefully considered.

 $Ni(MeCN)_6^{2+}$ $Mn(MeCN)_6^{2+}$

 $k_{\rm rel \ exchange} = 1$ $k_{\rm rel \ exchange} = 10,000$

NON-INNOCENT LIGANDS

Lesson #2: Polydentate ligands decrease solubility.

Liquid NiL₂ 0.75 M maximum

> Sevov, C. S.; Brooner, R. E. M.; Chénard, E.; Assary, R. S.; Moore, J. S.; Rodríguez-López, J.; Sanford, M. S. *JACS* **2015**, *137*, 14465.

Sevov, C. S.; Hickey, D. P.; Cook, M. E.; Robinson, S. G.; Barnett, S.; Minteer, S. D.; Sigman, M. S.; Sanford, M. S. *JACS* **2017**, *139*, 2924

PYRIDINIUM ANOLYTES

Sevov, C. S.; Hickey, D. P.; Cook, M. E.; Robinson, S. G.; Barnett, S.; Minteer, S. D.; Sigman, M. S.; Sanford, M. S. *JACS* **2017**, *139*, 2924

QUANTIFYING ANOLYTE PERSISTENCE (ΔG^{\ddagger})

Anolyte can be isolated in all 3 redox states to characterize solubility and persistence.

The rate of decomposition fits a second-order plot, consistent with radical dimerization. Persistence (ΔG^{\ddagger}) is the measured rate constant.

PHYSICAL PROPERTIES VS. DEGRADATION O_{\sim} Ph O_{\sim} Ph O_{\sim} Ph Ph 1000 high energy low energy high persistence high persistence half-life at 70 °C (h, 0.5 M) 100 0 .Ph 10 1 high energy low energy low persistence low persistence 0 -1.25 -1.20 -1.15 -1.10 -1.05 -1.00 -0.95 -0.90 -0.85 OCH₃ redox potential (V vs. Fc/Fc+) Sevov, C. S.; Hickey, D. P.; Cook, M. E.; Robinson, S. G.; Barnett, S.; Minteer, S.

D.; Sigman, M. S.; Sanford, M. S. JACS 2017, 139, 2924

SOLID-STATE ANALYSIS

Lesson #3: Persistence can be controlled independently of E_{1/2} by tuning steric properties.

STERIC HINDRANCE - CATHOLYTES

Persistent radical cations: derivatives of Wurster's blue.

Can this architecture be exploited to identify persistent, high potential catholytes?

CHARGED, ISOLABLE CYCLOPROPENIUM

The radical dication is isolable as a pure solid.

FULL-CELL RFB TESTING

with Dr. Koen Hendriks

Membrane selection in combination with molecular design is key for long-term cycling.

PIM SEPARATORS FOR OLIGOMERIC ANALOGS

Lesson #4: Crossover is a critical limitation, especially at high concentration.

Doris, S. E.; Ward, A. L.; Baskin, A.; Frischmann, P. D.; Gavvalapalli, N.; Chénard, E.; Sevov, C. S.; Prendergast, D.; Moore, J. S.; Helms, B. A. *ACIE* **2017**, *56*, 1595

Pair a microporous separator with a redox-active oligomer to prevent crossover

Hendriks, K. H.; Robinson, S. G.; Braten, M. N.; Sevov, C. S.; Helms, B. A.; Sigman, M. S.; Minteer, S. D.; Sanford, M. S. *ACS Central Science* **2018**, *4*, 189

ELECTRON EXCHANGE

Lesson #5: Electron transfer between redox states of multielectron species leads to low voltaic efficiency.

Multielectron electrolytes can reduce MW/e– of electrolytes (target ≤150).

Py(-) is behaving as a <u>redox carrier</u> to charge the Py(+).

Hendriks, K. H.; Sevov, C. S.; Cook, M. E.; Sanford, M. S. ACS Energy Letters 2017, 2, 2430

ELECTROLYTE INTERACTIONS

Potassium salts support more negative anolyte potentials than lithium salts.

Hendriks, K. H.; Sevov, C. S.; Cook, M. E.; Sanford, M. S. ACS Energy Letters 2017, 2, 2430

1. Ligand shedding and its mechanism should be carefully considered. The metal, its oxidation state, and the ligands should be carefully considered.

2. Polydentate ligands generally decrease solubility.

Breaking symmetry and polar functional groups increase solubility in polar aprotic solvents.

3. Persistence can be controlled independently of E_{1/2} by tuning steric properties. Electronic tuning increases lifetime, but generally reduces cell voltage. Tuning of steric parameters decouples these two features.

4. Crossover is a critical limitation, especially at high concentration. Macromolecules or oligomers paired with inexpensive separators are potential solutions.

5. Multielectron electrolytes often suffer from comproportionation events that reduce voltaic efficiency.

Simultaneous multielectron transfer is preferred over two, single-electron transfer events.

6. The electrolyte can dramatically impact redox potentials because stabilizing interactions. Potassium salts are preferable over lithium salts for anolyte chemistries.