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For Grid Scale Systems

Performance: power density high, energy
density high (less critical)

High efficiency operation (~90% RT)

Cost: stack cost plus chemicals

— S100/kW installed (may be a red herring)

Safety: flammability, toxicity, intrinsic
instability at high energy density
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VRB Results : Basis for Analysis
We have reached an ohmic limit
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Electrode is Mixed Conductor

Membrane Electrode VO?#*
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This leads us to ask the question...

Can Non-aqueous Flow Batteries
ever Meet these Requirements?



Part 1:
Performance



Properties of Non-aqueous Solvents
A Few Salient Properties for Our Analysis

1. High voltage window
2. Relatively low electrolyte conductivity
3. Transference numbers not guaranteed to be high

Also
More expensive than water!

Flammability is a big issue



A Word or Two About Our Analysis

* This is desighed to show UPPER LIMITS
 Based on REAL DATA

* NARFBs get credit for perfect kinetics and
other advantages

* Performance is the only consideration

IN SHORT: THIS IS THE BEST ONE CAN DO!!!!
Not just my contrary opinion, but facts

We can only downgrade from this position!!!




Base Case:

Ohmic limited, electrolyte only, typical lit value of conductivity
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Effect of Changing Electrolyte Conductivity

Ohmic limited, electrolyte only, typica

conductivity values
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Effect of changing OCV from Base Case

Ohmic limited, electrolyte only, typical lit value of conductivity
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Electrode is Mixed Conductor

Membrane Electrode VO?#*

iR-free voltage

cell voltage
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Voltage (V)

Power Density
(mW/cmZ)

Adding in Ohmic Loss in Electrodes
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Room for Some Optimism

Recent Electrolyte Work in my Group

Kun Lou: based on understanding of molecular
interactions between solvent, cations and
membrane fixed sites....

Acetonitrile + membranes + certain cations give
adequate conductivity and greatly reduced cross-
over.



Design Possibility: What if we make the
electrode 1/10t the thickness?
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Design Possibility: What if we make the
electrode 1/10% the thickness?

VRFB NARFB
5\'5%:22‘: Operating Current density Power density  Current density  Power density

(mm) efficiency (mA/cm?) (mW/cm?) (mA/cm?) (mW/cm?)

90% 332 495 22 69
1.6

80% 688 908 44 123
90% 490 730 103 324

0.16
80% 1010 1334 240 645

And remember:
the VRFB numbers are ~ half our current SOTA



Conductivity, Solvent Uptake of Different Membranes

. lonic Conductivity
m (S/cm)

H H20 1.06x10-1
Li Acetonitrile 1.10x10-3
TMA Acetonitrile 2.43x10-3
XXX Acetonitrile 7.83x10-3
TEA Acetonitrile 1.14x10-2
TBA Acetonitrile 1.81x10-2
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Crossover measurement

Compare crossover of various membrane forms...

Modest cross-over during the course of a week!
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Part 2:
Some Economic Considerations



Basis

DAYS LCOS calculation

Include stacks, tanks, peripherals—assumed equivalent
for agueous, non-aqueous

Stacks are essentially PEM stack-like with cheaper
catalysts (none!) and membranes

Pumping costs included
Cost of money included (10% discount rate)
Lifetime variable

Very complicated pile of parameters: some ratios
presented here based on cost, operational parameters



Operating Voltage Effects

Assumed that NARFB operates at 2 V discharge,
3 volts charge per cell

— For base case stack with aq: LCOS,,
— For base case stack with non-aq: LCOS,

LCOS,, =0.22 S/kWhr (1 hr)
LCOS, = 0.08 $/kWhr (1 hr)

Advantage non-aqueous



Operating Current Density Effect

Assumed that NARFB operates at 2 V discharge, 3
volts charge per cell

Assume the aq. RFB operates at 2x current
density

LCOS,, =0.152 S/kWhr (1 hr)
LCOS,, = 0.08 S/kWhr (1 hr)

Advantage non-aqueous



Including Cost of Electrolyte (Solvent)

* Assumed that NARFB operates at 2 V

discharge, 3 volts charge per cell

Assume the aqg. RFB operates at 2x current
density

LCOS,, =0.22 S/kWhr (1 hr)
LCOS = 0.10 S/kWhr (1 hr) 1M V(acac)

Advantage non-aqueous



Including Cost of Electrolyte (Complex)

* Assumed that NARFB operates at 2 V
discharge, 3 volts charge per cell

 Assume the ag. RFB operates at 2x current
density

* LCOS,, =0.22 S/kWhr (1 hr)

* LCOS,=0.21 S/kWhr (1 hr) for 4x V(acac)/V
1M V(acac)

 Advantage wash (no solvent cost)



Scenarios

* LCOS,, =0.22 S/kWhr (1 hr)

* Scenario: double current density-- 0.11
S/kWhr (1 hr) for NA

* Scenario: dilute complex, 0.1 M--- 0.385
S/kWhr (1 hr) for NA



Some Calculation Details

* Solvent: aqueous acid is free; non-agqueous
solvent is not

e Solute: looked up typical multiples between
metal complex (e.g. VOSO,) and OM
equivalent (e.g V(acac);) for several metals.

— Assumed vanadium costs ~“same as stack for a
typical VRB; complex costs ~(OM/aq)*SVstack

— Also played with solubility limits; this affects
mostly tank costs in calculation but probably
affects performance as well.




Conclusions from LCOS Estimates

* |If we look at stack costs, non-agueous systems
look pretty good.

* When we include the cost of solvents and
solutes (based on today’s prices), NA can be
pricey
— Scenario of boosting performance shows that this

can be overcome with performance increase even
with significant extra cost of solute.

— High solubility is critical
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