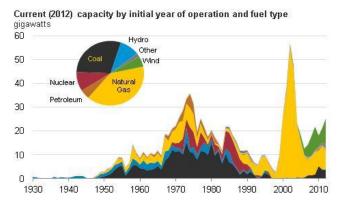
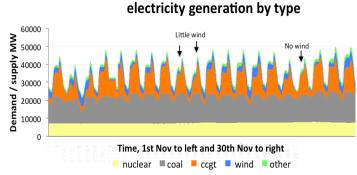
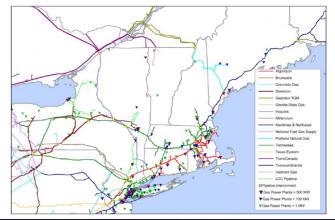
Shadow Price-Based Coordination of Natural Gas and Electric Power Systems

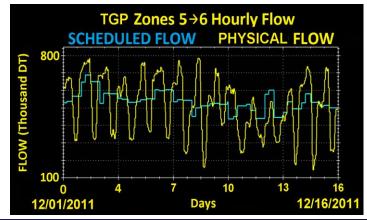
Grid Science Winter School and Conference 2019

Anatoly Zlotnik


with Bining Zhao, Antonio Conejo, Ramteen Sioshansi, Alex Rudkevich


January 11, 2019


Motivation

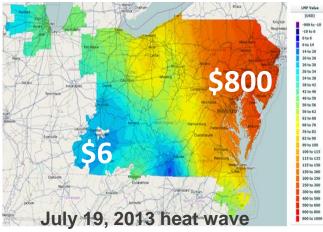

Expanding use of natural gas as fuel for power generation, significantly to fill the demand curve

Challenges: gas pipelines are fragmented, intra-day markets & operations do not use optimization

Motivation

Gas-Electric System Issues:

- Flexible gas-fired generation lacks fuel supply flexibility
- <u>Flexibility is crucial in power systems</u>: supply must match demand continuously and instantaneously (there is no equivalent to "line pack")
- Variability and unpredictability of gas-fired generation challenges pipeline operations
- Anticipated continued growth of the gas-fired generating fleet


• Planning/Long-Term Challenges:

- Gas-fired power plants rarely procure firm gas transportation (i.e. supply guarantees)
- Under extreme conditions, there have been severe gas pipeline constraints that limited supply to gas-fired generation
- Addressing growth of gas-fired generation
 - New optimization and control technology
 - Engineering economic methods

This Study

- Motivation
 - Pricing of natural gas using concepts that are standard in electricity markets
 - In electricity markets, shadow prices are posted as real-time prices
 - Locational Marginal Prices (LMPs) for electricity
 - Methods for coordinating gas and electricity networks with limited exchange of proprietary information
- Locational Trade Values (LTVs) for natural gas
 - Nodal pricing of natural gas delivery over a pipeline network
 - Obtained by single price two-sided auction mechanism (objective function that maximizes economic welfare of pipeline users)
- Time-dependent optimization formulation
 - What problem corresponds to Unit Commitment for gas pipelines?
 - Account for pipeline structure, physics and engineering
 - Provide operational and economic solution (flow and compressor schedule, hourly prices)

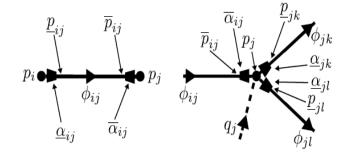
PJM Interconnection price per MWh

This Study

Optimization model for power system

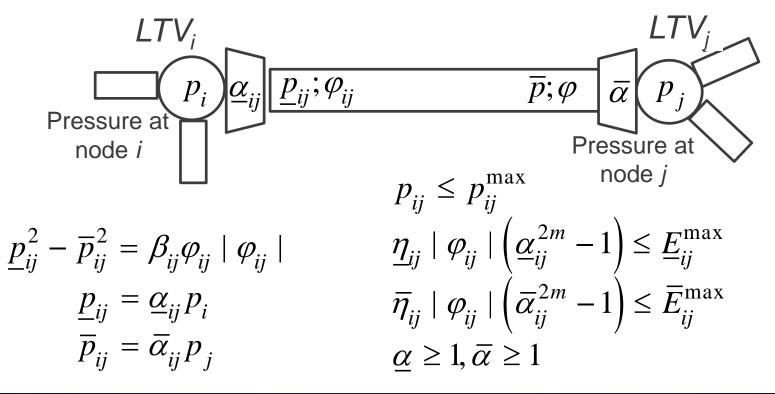
- Standard Unit Commitment (UC)
- Mixed Integer Linear Program, control variables are generator production
- Objective function is minimum production cost
- Constraints on power system and generators

Optimization model for gas system


- Optimal control of flows on a network, control variables are compressors and demands
- Objective function is maximizing economic welfare for system users
- Dynamic constraints are PDEs on network edges, Kirchoff's law on nodes
- Inequality constraints on states and controls
- Iterative coordination mechanism between two models
 - Limited to exchange of generation/flow and price time-series (not network models)

Modeling for Gas Market Optimization

- Network nodes
 - Physical nodes and custodial meter stations
- Network edges
 - Pipes that physically connect nodes
- Objective: a single price double auction
 - Maximize profit of gas deliveries to buyers minus cost of procuring gas from suppliers and cost of operating compressors
- Conducted subject to engineering constraints on gas pipeline network
 - Physics of pressure and flow on each pipe
 - Flow balance at nodes
 - Constraints on compressor power


Participants

- Suppliers who provide node-specific Price/Quantity (P/Q) offers to sell gas
- Offtakers who provide node-specific P/Q bids to buy gas

Constraints on a pipe (steady-state)

Nodal balance equations: inflow + supply – outflow - offtake – compressor use = 0

max Social Welfare	e: $J_{MSW} \triangleq \sum_{k \in \mathcal{G}} c_k^o d_k - \sum_{k \in \mathcal{G}} c_k^s s_k$	Objective: Market surplus and Cost of compressor operation
	$-\sum_{j\in\mathcal{V}}\sum_{i\in\partial_+j}\lambda_j^e(1-\overline{\varepsilon}_{ij})\overline{\eta}_{ij}$	$\phi_{ij} ((\overline{\alpha}_{ij}^{2m})-1)-\sum_{j\in\mathscr{V}}\sum_{k\in\partial_{-}j}\lambda_{j}^{e}(1-\underline{\varepsilon}_{jk})\underline{\eta}_{jk} \phi_{jk} ((\underline{\alpha}_{jk}^{2m})-1)$
s.t. Flow balance:	$\sum_{k\in\partial_{-}j}\phi_{jk}-\sum_{i\in\partial_{+}j}\phi_{ij}=\sum_{k\in\partial_{g}j}(s_k-$	$d_k)$
	$-\sum_{i\in\partial_{+}j}\overline{\epsilon}_{ij}\overline{\eta}_{ij} \phi_{ij} \big((\overline{\alpha}_{ij}^{2m})-1\big)$	$-\sum_{k\in\partial_{-}j}\underline{\varepsilon}_{jk}\underline{\eta}_{jk} \phi_{jk} \Big((\underline{\alpha}_{jk}^{2m})-1\Big),\qquad\forall j\in\mathcal{V},\lambda_{j}$
Pressure balance:	$(\underline{\alpha}_{ij}p_i)^2 - (\overline{\alpha}_{ij}p_j)^2 = \beta_{ij}\phi_{ij} \phi_{ij} $	$\forall (i,j) \in \mathcal{E}, \mu_{ij}$
Pressure limits:	$\underline{\alpha}_{ij}p_i \leq p_{ij}^{\max}, \overline{\alpha}_{ij}p_j \leq p_{ij}^{\max},$	$\forall (i,j) \in \mathcal{E}, \underline{\xi}_{ij}^{\max}, \overline{\xi}_{ij}^{\max}$
	$p_j^{\min} \le p_j,$	$\forall j \in \mathcal{V}, \xi_j^{\min}$
Boost upper limits:	$\underline{\eta}_{ij} \phi_{ij} \left((\underline{\alpha}_{ij}^{2m}) - 1 \right) \le \underline{E}_{ij}^{\max}, \overline{\eta}$	$ \phi_{ij} ((\overline{\alpha}_{ij}^{2m}) - 1) \le \overline{E}_{ij}^{\max} \forall (i, j) \in \mathcal{E}, \underline{\gamma}_{ij}, \overline{\gamma}_{ij}$
Boost lower limits:	$\underline{\alpha}_{ij}, \overline{\alpha}_{ij} \ge 1$	$\forall (i,j) \in \mathcal{E}, \underline{\theta}_{ij}, \overline{\theta}_{ij}$
Supply limits:	$s_k^{\min} \le s_k \le s_k^{\max}$	$\forall k \in \mathcal{G}, \sigma_k^{\min}, \sigma_k^{\max}$
Demand limits:	$d_k^{\min} \le d_k \le d_k^{\max}$	$\forall k \in \mathcal{G}, \zeta_k^{\min}, \zeta_k^{\max}$

max Social Welfare	Telfare: $J_{MSW} \triangleq \sum_{k \in \mathcal{G}} c_k^o d_k - \sum_{k \in \mathcal{G}} c_k^s s_k$ Lagrange multipliers			
	$\begin{split} &-\sum_{j\in\mathcal{V}}\sum_{i\in\partial_{+}j}\lambda_{j}^{e}(1-\overline{\epsilon}_{ij})\overline{\eta}_{ij} \phi_{ij} \left((\overline{\alpha}_{ij}^{2m})-1\right)-\sum_{j\in\mathcal{V}}\sum_{k\in\partial_{-}j}\lambda_{j}^{e}(1-\overline{\epsilon}_{ij})\overline{\eta}_{ij} \phi_{ij} \left((\overline{\alpha}_{ij}^{2m})-1\right)-\sum_{k\in\partial_{-}j}\overline{\epsilon}_{jk}\underline{\eta}_{jk} \phi_{jk} \left((\underline{\alpha}_{jk}^{2m})-1\right),\\ &-\sum_{i\in\partial_{+}j}\overline{\epsilon}_{ij}\overline{\eta}_{ij} \phi_{ij} \left((\overline{\alpha}_{ij}^{2m})-1\right)-\sum_{k\in\partial_{-}j}\underline{\epsilon}_{jk}\underline{\eta}_{jk} \phi_{jk} \left((\underline{\alpha}_{jk}^{2m})-1\right),\\ &(\underline{\alpha}_{ij}p_{i})^{2}-(\overline{\alpha}_{ij}p_{j})^{2}=\beta_{ij}\phi_{ij} \phi_{ij} ,\\ &\underline{\alpha}_{ij}p_{i}\leq p_{ij}^{\max}, \overline{\alpha}_{ij}p_{j}\leq p_{ij}^{\max},\\ &p_{j}^{\min}\leq p_{j},\\ &\underline{\eta}_{ij} \phi_{ij} \left((\underline{\alpha}_{ij}^{2m})-1\right)\leq \underline{E}_{ij}^{\max}, \overline{\eta}_{ij} \phi_{ij} \left((\overline{\alpha}_{ij}^{2m})-1\right)\leq \overline{E}_{ij}^{\max}\\ &\underline{\alpha}_{ij},\overline{\alpha}_{ij}\geq 1\\ &s_{k}^{\min}\leq s_{k}\leq s_{k}^{\max}\\ &d_{k}^{\min}\leq d_{k}\leq d_{k}^{\max} \end{split}$	$-\underline{\varepsilon}_{jk})\underline{\eta}_{jk} \phi_{jk} \Big(($	$(\underline{\alpha}_{jk}^{2m}) - 1$	
s.t. Flow balance:	$\sum_{k \in \partial_{-j}} \phi_{jk} - \sum_{i \in \partial_{+j}} \phi_{ij} = \sum_{k \in \partial_g j} (s_k - d_k)$			
	$-\sum_{i\in\partial_{+}j}\overline{\varepsilon}_{ij}\overline{\eta}_{ij} \phi_{ij} ((\overline{\alpha}_{ij}^{2m})-1)-\sum_{k\in\partial_{-}j}\underline{\varepsilon}_{jk}\underline{\eta}_{jk} \phi_{jk} ((\underline{\alpha}_{jk}^{2m})-1),$	$\forall j \in \mathcal{V},$	λ_j	
Pressure balance:	$(\underline{\alpha}_{ij}p_i)^2 - (\overline{\alpha}_{ij}p_j)^2 = \beta_{ij}\phi_{ij} \phi_{ij} ,$	$\forall (i,j) \in \mathcal{E},$	μ_{ij}	
Pressure limits:	$\underline{\alpha}_{ij}p_i \le p_{ij}^{\max}, \overline{\alpha}_{ij}p_j \le p_{ij}^{\max},$	$\forall (i,j) \in \mathcal{E},$	$\underline{\xi}_{ij}^{\max}, \overline{\xi}_{ij}^{\max}$	
	$p_j^{\min} \le p_j,$	$\forall j \in \mathcal{V},$	ξ_j^{\min}	
Boost upper limits:	$\underline{\eta}_{ij} \phi_{ij} ((\underline{\alpha}_{ij}^{2m})-1) \leq \underline{E}_{ij}^{\max}, \overline{\eta}_{ij} \phi_{ij} ((\overline{\alpha}_{ij}^{2m})-1) \leq \overline{E}_{ij}^{\max}$	$\forall (i,j) \in \mathcal{E},$	$\underline{\gamma}_{ij}, \overline{\gamma}_{ij}$	
Boost lower limits:	$\underline{\alpha}_{ij}, \overline{\alpha}_{ij} \ge 1$	$\forall (i,j) \in \mathcal{E},$	$\underline{\Theta}_{ij}, \overline{\Theta}_{ij}$	
Supply limits:	$s_k^{\min} \le s_k \le s_k^{\max}$	$\forall k \in \mathcal{G},$	$\sigma_k^{\min}, \sigma_k^{\max}$	
Demand limits:	$d_k^{\min} \le d_k \le d_k^{\max}$	$\forall k \in \mathcal{G},$	$\zeta_k^{\min}, \zeta_k^{\max}$	

max Social Welfare	e: $J_{MSW} \triangleq \sum_{k \in \mathcal{G}} c_k^o d_k - \sum_{k \in \mathcal{G}} c_k^s s_k$ Mass flow balance gas consumed by	/ compress	
	$-\sum_{j\in\mathcal{V}}\sum_{i\in\partial_{+}j}\lambda_{j}^{e}(1-\overline{\varepsilon}_{ij})\overline{\eta}_{ij} \phi_{ij} ((\overline{\alpha}_{ij}^{2m})-1)-\sum_{j\in\mathcal{V}}\sum_{k\in\partial_{-}j}\lambda_{j}^{e}(1-\overline{\varepsilon}_{ij})\overline{\eta}_{ij} \phi_{ij} ((\overline{\alpha}_{ij}^{2m})-1)-\sum_{j\in\mathcal{V}}\sum_{k\in\partial_{+}j}\lambda_{j}^{e}(1-\overline{\varepsilon}_{ij})\overline{\eta}_{ij} \phi_{ij} ((\overline{\alpha}_{ij}^{2m})-1)-\sum_{j\in\mathcal{V}}\sum_{k\in\partial_{+}j}\lambda_{j} \phi_{ij} ((\overline{\alpha}_{ij}^{2m})-1)-\sum_{j\in\mathcal{V}}\sum_{k\in\partial_{+}j}\lambda_{j} \phi_{ij} ((\overline{\alpha}_{ij}^{2m})-1)-\sum_{j\in\mathcal{V}}\sum_{k\in\partial_{+}j}\lambda_{j} \phi_{ij} ((\overline{\alpha}_{ij}^{2m})-1)-\sum_{j\in\mathcal{V}}\sum_{k\in\partial_{+}j}\lambda_{j} \phi_{ij} ((\overline{\alpha}_{ij}^{2m})-1)-\sum_{j\in\mathcal{V}}\sum_{k\in\partial_{+}j}\lambda_{j} ((\overline{\alpha}_{ij}^{2m})-1)-\sum_{j\in\mathcal{V}}\sum_{k\in\partial_{+}j}\lambda_{j} ((\overline{\alpha}_{ij}^{2m})-1)-\sum_{j\in\mathcal{V}}\sum_{k\in\partial_{+}j}\lambda_{j} ((\overline{\alpha}_{ij}^{2m})-1)-\sum_{j\in\mathcal{V}}\sum_{k\in\partial_{+}j}\lambda_{j} (($	$\cdot \underline{\mathbf{e}}_{jk})\underline{\mathbf{\eta}}_{jk} \mathbf{\phi}_{jk} \Big((\underline{\mathbf{e}}_{jk})\Big)\Big $	$\underline{\alpha}_{jk}^{2m}$) – 1)
s.t. Flow balance:	$\begin{split} \sum_{k\in\partial_{-}j} \phi_{jk} &- \sum_{i\in\partial_{+}j} \phi_{ij} = \sum_{k\in\partial_{g}j} (s_k - d_k) \\ &- \sum_{i\in\partial_{+}j} \overline{\epsilon}_{ij} \overline{\eta}_{ij} \phi_{ij} \left((\overline{\alpha}_{ij}^{2m}) - 1 \right) - \sum_{k\in\partial_{-}j} \underline{\epsilon}_{jk} \underline{\eta}_{jk} \phi_{jk} \left((\underline{\alpha}_{jk}^{2m}) - 1 \right), \end{split}$		
	$-\sum_{i\in\partial_+j}\overline{\varepsilon}_{ij}\overline{\eta}_{ij} \phi_{ij} ((\overline{\alpha}_{ij}^{2m})-1)-\sum_{k\in\partialj}\underline{\varepsilon}_{jk}\underline{\eta}_{jk} \phi_{jk} \Big((\underline{\alpha}_{jk}^{2m})-1\Big),$	$\forall j \in \mathcal{V},$	λ_j
Pressure balance:	$(\underline{\alpha}_{ij}p_i)^2 - (\overline{\alpha}_{ij}p_j)^2 = \beta_{ij}\phi_{ij} \phi_{ij} ,$	$\forall (i,j) \in \mathcal{E},$	μ_{ij}
Pressure limits:	$\underline{\alpha}_{ij}p_i \le p_{ij}^{\max}, \overline{\alpha}_{ij}p_j \le p_{ij}^{\max},$	$\forall (i,j) \in \mathcal{E},$	$\underline{\xi}_{ij}^{\max}, \overline{\xi}_{ij}^{\max}$
	$p_j^{\min} \le p_j,$	$\forall j \in \mathcal{V},$	ξ_j^{\min}
Boost upper limits:	$\underline{\eta}_{ij} \phi_{ij} ((\underline{\alpha}_{ij}^{2m}) - 1) \leq \underline{E}_{ij}^{\max}, \overline{\eta}_{ij} \phi_{ij} ((\overline{\alpha}_{ij}^{2m}) - 1) \leq \overline{E}_{ij}^{\max}$	$\forall (i,j) \in \mathcal{E},$	$\underline{\gamma}_{ij}, \overline{\gamma}_{ij}$
Boost lower limits:	$\underline{\alpha}_{ij}, \overline{\alpha}_{ij} \ge 1$	$\forall (i,j) \in \mathcal{E},$	$\underline{\Theta}_{ij}, \overline{\Theta}_{ij}$
Supply limits:	$s_k^{\min} \le s_k \le s_k^{\max}$	$\forall k \in \mathcal{G},$	$\sigma_k^{\min}, \sigma_k^{\max}$
Demand limits:	$d_k^{\min} \le d_k \le d_k^{\max}$	$\forall k \in \mathcal{G},$	$\zeta_k^{\min}, \zeta_k^{\max}$

max Social Welfare:
$$J_{MSW} \triangleq \sum_{k \in G_{i}} c_{k}^{\alpha} d_{k} - \sum_{k \in G_{i}} c_{k}^{\alpha} s_{k}$$

$$= \sum_{j \in \mathcal{V}' i \in \partial_{+j}} \lambda_{j}^{\alpha} (1 - \overline{\epsilon}_{ij}) \overline{\eta}_{ij} |\phi_{ij}| ((\overline{\alpha}_{ij}^{2m}) - 1) - \sum_{j \in \mathcal{V}' k \in \partial_{-j}} \lambda_{j}^{\alpha} (1 - \underline{\epsilon}_{jk}) \underline{\eta}_{jk} |\phi_{jk}| ((\underline{\alpha}_{jk}^{2m}) - 1)$$
s.t. Flow balance:
$$\sum_{k \in \partial_{-j}} \phi_{jk} - \sum_{i \in \partial_{+j}} \phi_{ij} = \sum_{k \in \partial_{k}j} (s_{k} - d_{k})$$

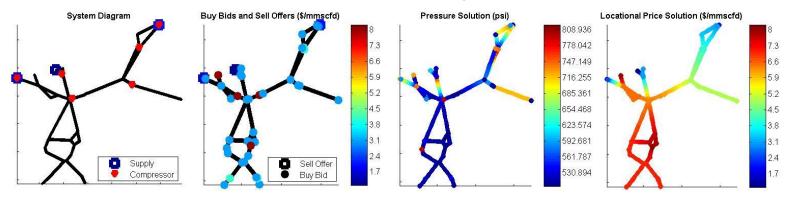
$$= \sum_{i \in \partial_{+j}} \overline{\epsilon}_{ij} \overline{\eta}_{ij} |\phi_{ij}| ((\overline{\alpha}_{ij}^{2m}) - 1) - \sum_{k \in \partial_{-j}} \underline{\epsilon}_{jk} \underline{\eta}_{jk} |\phi_{jk}| ((\underline{\alpha}_{jk}^{2m}) - 1), \quad \forall j \in \mathcal{V}, \quad \lambda_{j}$$
Pressure balance:
$$(\underline{\alpha}_{ij}p_{i})^{2} - (\overline{\alpha}_{ij}p_{j})^{2} = \beta_{ij}\phi_{ij} |\phi_{ij}|, \quad \forall (i, j) \in \mathcal{E}, \quad \mu_{ij}$$
Pressure limits:
$$\underline{\alpha}_{ij}p_{i} \leq p_{ij}, \quad \overline{\alpha}_{ij}p_{j} \leq p_{ij}^{\max}, \quad \overline{\eta}_{ij}p_{j} \leq p_{ij}^{\max}, \quad \overline{\eta}_{ij} |\phi_{ij}| ((\overline{\alpha}_{ij}^{2m}) - 1) \leq \overline{E}_{ij}^{\max}, \quad \forall (i, j) \in \mathcal{E}, \quad \underline{\gamma}_{ij}, \overline{\gamma}_{ij}$$
Boost upper limits:
$$\underline{\alpha}_{ij}, \overline{\alpha}_{ij} \geq 1$$
Supply limits:
$$s_{k}^{\min} \leq s_{k} \leq s_{k}^{\max}$$
Demand limits:
$$d_{k}^{\min} \leq d_{k} \leq d_{k}^{\max}$$

$$\sum_{j \in \mathcal{V}, i \in \mathcal$$

Locational Trade Values (LTVs) of gas

- A binding constraint may not lead to price separation in the network
- To cause price separation, the pipe must be constrained at both ends
 - Minimum pressure constraint must bind at the receiving node
 - At the sending end of the pipe, either pressure constraint must bind at maximum or compressor must bind at maximum power

 $\lambda_j - \lambda_i = Compression_{ij} + Congestion_{ij}^c + Congestion_{ij}^p$


- Proof that prices cannot decrease in the direction of the flow
 - The compression and congestion components are non-negative in the direction of flow
 - Optimal LTVs assure revenue adequacy: offtakers' payments are greater or equal suppliers' receipts
 - The auctioneer's net position equals $R = \sum_{ij \in \mathcal{E}} \left[\varphi_{ij} (\lambda_j \lambda_i) C_{ij}^{Comp} \right]$

- Price difference over each pipe is sufficient to recover the cost of compression

Usage and model outputs

Obtaining system properties

- Pressure bounded between 500 and 800 psi, respectively.
- Supply at nodes 1, 2, and 3 at \$1, \$1.5, and \$2 per mmscfd.
- Bids at \$3 per mmscfd with higher bids of \$4 at nodes 22, 24, 25, and 34, and bids of \$8 at nodes 16, 18, 20, and 31.
- Maximum offtakes are 800 mmscfd, and this constraint was binding at nodes 16, 18, 22, and 39; nodes 6, 20, 26, 31, 34, and 36 had lesser nonzero offtakes.
- Maximum power for the compressors on edges 43 and 44 were limited to 3000 and 2000 horsepower, respectively, and were binding.

Intra-day Gas Balancing Market

max Social Welfare:	$\sum_{m \in \mathcal{G}} \int_0^T c_m^d(t) \hat{d}_m(t) \mathrm{d}t - \sum_{m \in \mathcal{G}} \int_0^T c_p^d$	$\hat{s}_m(t)\hat{s}_m(t)\mathrm{d}t$	$\frac{p}{i^{j}}$	\overline{p}_{ij} $\overline{p}_{ij} \setminus \overline{p}_{ij} \setminus p_j /$
s.t. Mass conservation:	$\begin{split} \partial_t p_{ij} &+ \frac{a^2}{A_{ij}} \partial_x \phi_{ij} = 0, \\ \partial_x \left(\frac{1}{2} p_{ij}^2 \right) &+ a^2 r_{ij} \phi_{ij} \phi_{ij} = 0, \end{split}$	$\forall (i,j) \in \mathcal{E},$	$\mu_{ij}(t,x) \qquad \qquad$	$p_j \qquad p_j \qquad \phi_{ij}$
Momentum conservation:	$\partial_x \left(\frac{1}{2} p_{ij}^2\right) + a^2 r_{ij} \phi_{ij} \phi_{ij} = 0,$	$\forall (i,j) \in \mathcal{E},$	$\eta_{ij}(t,x) \qquad \frac{\dot{\alpha}_{ij}}{2}$	\overline{lpha}_{ij} q_j
Nodal flow balance:	$\sum_{k\in\partial_{-j}} \underline{\phi}_{-jk}(t) - \sum_{i\in\partial_{+j}} \overline{\phi}_{ij}(t) - \overline{q}_j(t)$			
	$-\sum_{m\in\partial_g j} (\hat{s}_m(t) - \hat{d}_m(t)) = 0,$	$\forall j \in \mathcal{V},$	$\lambda_j(t)$	
Pressure compatibility:	$\underline{p}_{ij}(t) = \underline{\alpha}_{ij}(t)p_i(t),$	$\forall (i,j) \in \mathcal{E},$	$\underline{\Delta}_{ij}(t),$	
Pressure limits:	$\begin{split} \overline{p}_{ij}(t) &= \overline{\alpha}_{ij}(t)p_j(t), \\ p_{ij}^{\min} &\leq p_{ij}(t,0) \leq p_{ij}^{\max}, \\ p_{ij}^{\min} &\leq p_{ij}(t,L_{ij}) \leq p_{ij}^{\max}, \end{split}$		$\underline{\beta}_{ij}^{\min}(t), \underline{\beta}_{ij}^{\max}(t)$	
Boost upper limits:	$\frac{\underline{\varepsilon}_{ij} \underline{\phi}_{ij}(t) \left((\underline{\alpha}_{ij}(t))^{h}-1\right) \leq \underline{E}_{ij}^{\max},\\ \overline{\varepsilon}_{ij} \overline{\phi}_{ij}(t) \left((\overline{\alpha}_{ij}(t))^{h}-1\right) \leq \overline{E}_{ij}^{\max},$			• A two-sid
Boost lower limits:	$\underline{\alpha}_{ij}(t) \ge 1, \overline{\alpha}_{ij}(t) \ge 1$	$\forall (i,j) \in \mathcal{E},$	$\underline{\theta}_{ij}(t), \ \overline{\theta}_{ij}(t)$	Shadow
			$\sigma_m^{\min}(t), \sigma_m^{\max}(t)$	– On ma
			$\zeta_m^{\min}(t), \ \zeta_m^{\max}(t)$	(conge
Time periodicity:	$p_{ij}(0, x) = p_{ij}(T, x),$ $\phi_{ij}(0, x) = \phi_{ij}(T, x),$	$\forall (i, j) \in \mathcal{E},$ $\forall (i, j) \in \mathcal{E},$	•	– On pre (capad

Parameter		Set	Doma	in	Units (SI)				
	$c_m^s(t), c_m^d(t)$		$m \in G$	[0, T]	\$·kg ^{−1}			
jk .	$s_m^{\min}(t), s_m^{\max}(t), d_m^{\min}(t), d_m^{\max}(t)$			$m \in G$	[0, T	[0,T] kg·s ⁻¹			
$\mathbf{I}_{\phi_{jk}}$	$\bar{q}_j(t)$	$j \in \mathcal{V}_F$	[0, T	1	kg·s ^{−1}				
	$p_j(t)$			$j \in \mathcal{V}_P$	[0, T	1	kg· m ^{−1} · s ^{−2}	(Pa)	
0	- <u>Ajk</u> Table 1: Market Parameters								
$\underline{\underline{n}}_{jl}^{\underline{\alpha}_{jl}}$	Variables		Set	Doma	uin		Units (SI)	
\sum_{jl}	$\hat{s}_m(t), \hat{d}_m(t)$	1	$n \in G$	[0, T]]		kg∙ s ^{−1}		
ϕ_{jl}	$p_j(t)$	j	$\in \mathcal{V}_F$	[0, T]]	k	$sg \cdot m^{-1} \cdot s^{-2}$	(Pa)	
φ_{JI}	$p_{ij}(t,x)$	(i,	$(j) \in \mathcal{E}$	$[0,T] \times [0,T]$	0, <i>L</i> _{ij}]	k	$sg \cdot m^{-1} \cdot s^{-2}$	(Pa)	
	$\phi_{ij}(t,x)$	(i,	$(j) \in \mathcal{E}$	$[0,T] \times [0,T]$	0, <i>L</i> _{ij}]		kg∙ s ^{−1}		
	$\underline{\alpha}_{ij}(t), \overline{\alpha}_{ij}(t)$	(i,	$(j) \in \mathcal{E}$	[0, T]]		-		
			Table 2:	Primal V	ariab	les			
Variable			Set	Domai	n	Units (SI)			
$\lambda_j(t)$			$j \in \mathcal{V}$	[0, T]					
	$\chi_n^{\max}(t), \zeta_m^{\min}(t), \zeta_m^{\max}(t)$	(t)	$m \in G$	L / J			\$ kg ⁻¹		
$\mu_{ij}(t,x)$			$(i, j) \in \mathcal{E}$				2 1.		
$\eta_{ij}(t,x)$			$(i, j) \in \mathcal{E}$	$[0,T] \times [0]$					
$\underline{\Delta}_{ij}(t), \overline{\Delta}_{ij}(t)$		$(i, j) \in \mathcal{E}$	[0, T]		\$.s.m.kg ⁻¹ (\$.Pa ⁻¹ .		$\cdot s^{-1}$)		
$\underline{\beta}_{ij}^{\min}(t), \underline{\beta}_{ij}^{\max}(t), \overline{\beta}_{ij}^{\min}(t), \overline{\beta}_{ij}^{\max}(t)$		$(i,j)\in \mathcal{E}$	[0,T]	\$.s.m.kg ⁻¹ (\$.Pa ⁻¹ .		$\cdot s^{-1}$)			
$\underline{\gamma}_{ii}(t), \overline{\gamma}_{ij}(t)$		$(i, j) \in \mathcal{E}$	[0, T]		$\cdot W^{-1} \cdot s^{-1}$				
$\underline{\theta}_{ij}(t), \overline{\theta}_{ij}(t)$		$(i,j)\in \mathcal{E}$	[0, T]		-				
$\tau^{\hat{p}}_{ij}(x), \tau^{\phi}_{ij}(x)$	r)		$(i,j)\in \mathcal{E}$	[0, T]			\$- s-kg ^{−1}		
Table 3: Dual Variables									

A two-sided auction over pipeline network

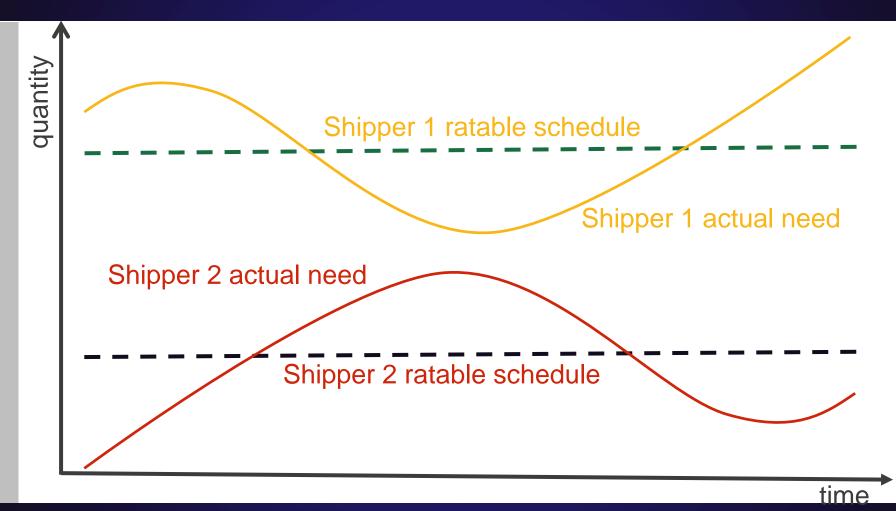
Shadow prices (dual variables)

- On mass flow withdrawal at nodes (congestion price)
- On pressure and compressor limits (capacity price)

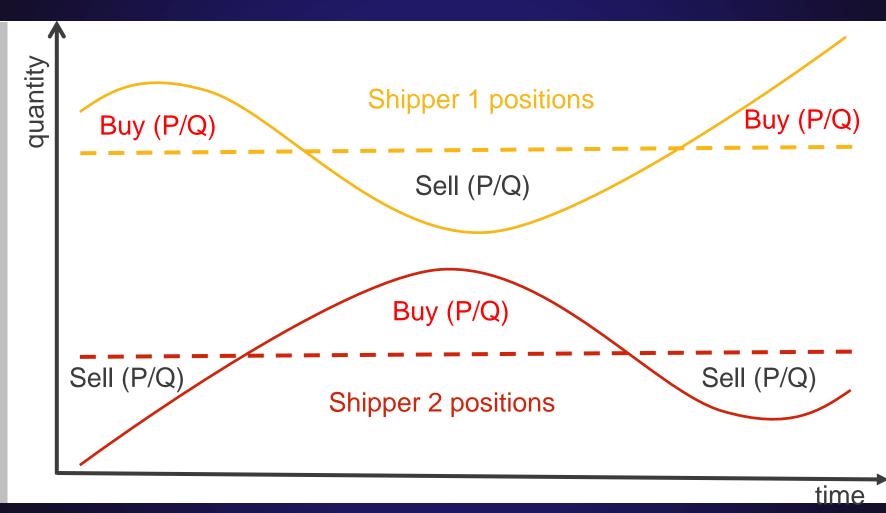
Intra-Day Gas Balancing Market

Single price double auction market

- For Shippers and other Buyers and Sellers
- Trade deviations from steady-state flows purchased in existing markets


Opportunistic buyers and sellers

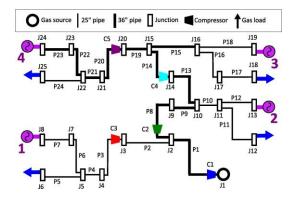
- may have no reserved capacity rights but are allowed to participate to increase liquidity
- No capacity rights = no congestion hedging


Offers and bids are node-specific

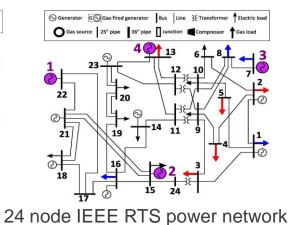
- submitted with hourly time step for the optimization horizon (e.g., 36 hours)
- Auctioneer's objective function is to maximize market surplus
 - over the optimization horizon
 - accounting for accepted bids & offers less pipeline operating costs

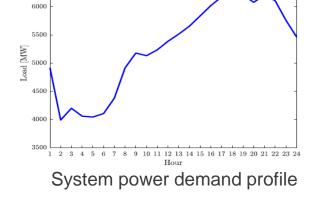
Ratable schedules vs. non-ratable needs

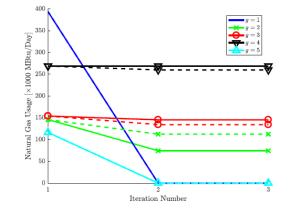
Need more - schedule buy; Need less - schedule sell



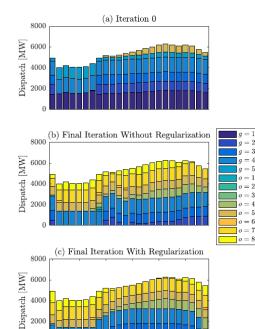
Coordination Mechanism

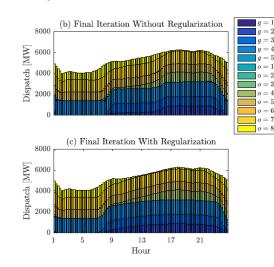

• At each iteration:


	Optimal Production Schedule $p_i(t)$	$d_i^{\max} = h_1(p_i)$	$d_i^{\max}(t)$: Maximum gas demand of generators	
Power System (Unit	Locational Marginal Prices $\lambda_i^p(t)$	$c_i^g = h_2(\lambda_i^p)$ Generator (Heat Rate	Bid (buy) price $c_i^g(t)$ for gas	Gas System (Gas
Commitment)	$p_i^{\max}(t)$: Maximum Production Schedule $c_i^p(t)$: Marginal price of generation (of fuel)	Curve) $p_i = h_1^{-1}(d_i^{\max})$ $c_i^p = h_2^{-1}(\lambda_i^g)$	Optimal gas delivery to power generators $d_i(t) \le d_i^{\max}(t)$ Locational Trade Values of gas $\lambda_i^g(t)$	Balancing Market)


Computational Example

24 pipe gas test network



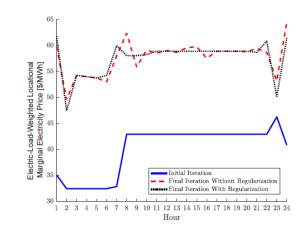

Procedure converges after 1 iteration!

6500

Computational Example

(a) Iteration 0 8000 (b) Iteration 0 (c) Iteration 0

Generation Schedule: 1 hour increments


Hour

9 13

21

17

Generation Schedule: 15 minute increments

Hourly electricity price Initial Iteration Final iteration

0

Conclusion

Gas-electric coordination using optimization-based markets

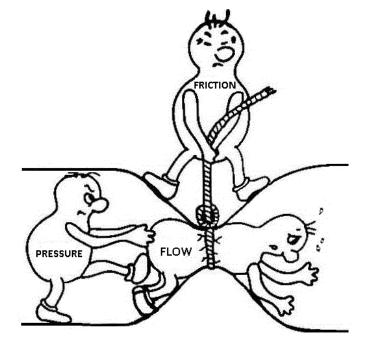
- Time-dependent locational marginal pricing (electricity LMPs and natural gas LTVs)
- Requires only limited exchange of information to produce price/quantity (P/Q) bids and production/demand constraints

Properties

- Revenue adequacy for the administrators of both markets
- Operation of systems is not altered if all demands can be met
- Convergence after only one iteration of the procedure (by ~linearity of UC)

Acknowledgement

Los Alamos National Laboratory


- Misha Chertkov, Scott Backhaus, Russell Bent
- Sidhant Misra, Marc Vuffray, Harsha Nagarajan, Conrado Borraz-Sanchez,
- Michael Fisher, Line Roald, Terrence Mak, Fei Wu
- Ohio State University, NSF grant 1548015

- ARPA-e grant DE-AR0000673
 - Richard Tabors, Michael Caramanis, Pablo Ruiz
- Industry partners Kinder Morgan, PJM, DNV-GL

Questions?

