Mixed Integer Conic Optimization using Julia and JuMP

Juan Pablo Vielma

Massachusetts Institute of Technology

3rd Los Alamos National Laboratory Grid Science Winter School & Conference, Santa Fe, NM, January, 2019.

Mixed Integer Convex Optimization (MICONV)

An MICONV Example

- Step 1: discretize time into intervals $0 = T_1 < T_2 < \ldots < T_N = 1$ $\{p_i : [T_i, T_{i+1}] \rightarrow \mathbb{R}^2\}_{i=1}^N$ $(x(t), y(t)) = p_i(t)$ $t \in [T_i, T_{i+1}]$
- Step 2: split domain into "safe polyhedrons" $P^r = \{x \in \mathbb{R}^2 : A^r x \le b^r\}$ $\forall i \exists r \ s.t. \ p_i(t) \in P^r \quad \forall t \in [T_i, T_{i+1}]$

Optimization

$$\begin{array}{l} \overbrace{p_{i=1}^{N} \; \mathsf{Variables} = \mathsf{Polynomials} : \; \{p_i : [T_i, T_{i+1}] \to \mathbb{R}^2\}_{i=1}^N \\ \overbrace{p_1^{N}}^{N} \; \|p_i''(t)\|^2 \\ \text{s.t.} \; p_1(0) = X_0, \; p'(0) = X_0', \; p''(0) = X_0'' \qquad \text{Initial/Terminal} \\ p_N(1) = X_f, \; p_N'(1) = X_f', \; p_N''(1) = X_f'' \qquad \text{Conditions} \\ p_i(T_{i+1}) = p_{i+1}(T_{i+1}) \quad \forall i \in \{1, \dots, N-1\} \quad \text{Interstitial} \\ p_i'(T_{i+1}) = p_{i+1}'(T_{i+1}) \quad \forall i \in \{1, \dots, N-1\} \quad \text{Smoothing} \\ p_i''(T_{i+1}) = p_{i+1}'(T_{i+1}) \quad \forall i \in \{1, \dots, N-1\} \quad \text{Conditions} \\ \\ \bigvee_{r=1}^R [A^r p_i(t) \le b^r] \; \text{for} \; t \in [T_i, T_{i+1}] \quad \forall i \in \{1, \dots, N-1\} \quad \text{Remain in Safe Regions} \end{array}$$

Optimization

→ Variables = Polynomials :
$$\{p_i : [T_i, T_{i+1}] \rightarrow \mathbb{R}^2\}_{i=1}^N$$

$\min_{p} \quad \sum_{i=1}^{N} ||p_i'''(t)||^2$

s.t.
$$p_1(0) = X_0, p'(0) = X'_0, p''(0) = X''_0$$
 Initial/Terminal
 $p_N(1) = X_f, p'_N(1) = X'_f, p''_N(1) = X''_f$ Conditions
 $p_i(T_{i+1}) = p_{i+1}(T_{i+1}) \quad \forall i \in \{1, \dots, N-1\}$ Interstitial
 $p'_i(T_{i+1}) = p'_{i+1}(T_{i+1}) \quad \forall i \in \{1, \dots, N-1\}$ Smoothing
 $p''_i(T_{i+1}) = p''_{i+1}(T_{i+1}) \quad \forall i \in \{1, \dots, N-1\}$ Conditions

$$b_{j}^{r} + M_{j}^{r}(1 - z_{i,r}) - A_{j}^{r}p_{i}(t) \ge 0 \quad \text{for } t \in [T_{i}, T_{i+1}]$$
$$\sum_{r=1}^{R} z_{i,r} = 1 \quad z \in \{0, 1\}^{N \times R}$$
$$\forall i \in \{1, ..., N\}, r \in \{1, ..., R\}, j \in \{1, 2\}$$

Mixed-Integer Disjunctive Polynomial Conic (SDP) Optimization

- Variables = Polynomials :
$$\{p_i : [T_i, T_{i+1}] \rightarrow \mathbb{R}^2\}_{i=1}^N$$

$\min_{p} \sum_{i=1}^{N} ||p_i'''(t)||^2$

s.t.
$$p_1(0) = X_0, p'(0) = X'_0, p''(0) = X''_0$$
 Initial/Terminal
 $p_N(1) = X_f, p'_N(1) = X'_f, p''_N(1) = X''_f$ Conditions
 $p_i(T_{i+1}) = p_{i+1}(T_{i+1}) \quad \forall i \in \{1, \dots, N-1\}$ Interstitial
 $p'_i(T_{i+1}) = p'_{i+1}(T_{i+1}) \quad \forall i \in \{1, \dots, N-1\}$ Smoothing
 $p''_i(T_{i+1}) = p''_{i+1}(T_{i+1}) \quad \forall i \in \{1, \dots, N-1\}$ Conditions

$$b_j^r + M_j^r (1 - z_{i,r}) - A_j^r p_i(t)$$
 is SOS for $t \in [T_i, T_{i+1}]$
 $\sum_{r=1}^R z_{i,r} = 1$ $z \in \{0, 1\}^{N \times R}$
 $\forall i \in \{1, ..., N\}$ $r \in \{1, ..., R\}$ $i \in \{1, ..., 2\}$

Sum of Squares (SOS)

- $p(t) = \sum_k g_k^2(t)$
- $(d-1) \times (d-1)$ SDP for degree $\leq d$ polynomials

JUMP


```
model = SOSModel(solver=PajaritoSolver())
                                                                       function eval_poly(r)
@polyvar(t)
                                                                           for i in 1:N
Z = monomials([t], 0:r)
                                                                              if T[i] <= r <= T[i+1]
                                                                                  return PP[(:x,i)]([r], [t]), PP[(:y,i)]([r], [t])
@variable(model, H[1:N,boxes], Bin)
                                                                                  break
p = Dict()
for j in 1:N
   @constraint(model, sum(H[j,box] for box in boxes) == 1)
   p[(:x,j)] = @polyvariable(model, _, Z)
   p[(:y,j)] = @polyvariable(model, _, Z)
   for box in boxes
       xl, xu, yl, yu = box.xl, box.xu, box.yl, box.yu
       @polyconstraint(model, p[(:x,j)] >= Mxl + (xl-Mxl)*H[j,box], domain = (t >= T[j] && t <= T[j+1]))</pre>
       @polyconstraint(model, p[(:x,j)] <= Mxu + (xu-Mxu)*H[j,box], domain = (t >= T[j] && t <= T[j+1]))</pre>
       @polyconstraint(model, p[(:y,j)] >= Myl + (yl-Myl)*H[j,box], domain = (t >= T[j] && t <= T[j+1]))</pre>
       @polyconstraint(model, p[(:y,j)] <= Myu + (yu-Myu)*H[j,box], domain = (t >= T[j] && t <= T[j+1]))</pre>
for ax in (:x,:y)
                                    p[(ax,1)
   @constraint(model,
                                                    ]([0], [t]) == X_{\theta}[ax])
   @constraint(model, differentiate(p[(ax,1)], t )([0], [t]) == Xe'[ax])
   @constraint(model, differentiate(p[(ax,1)], t, 2)([0], [t]) == Xe''[ax])
   for j in 1:N-1
                                         p[(ax,j)
                                                      ]([T[j+1]],[t]) ==
                                                                                        p[(ax, j+1)
                                                                                                       ]([T[j+1]],[t]))
       @constraint(model,
       @constraint(model, differentiate(p[(ax,j)],t )([T[j+1]],[t]) == differentiate(p[(ax,j+1)],t )([T[j+1]],[t]))
       @constraint(model, differentiate(p[(ax,j)],t,2)([T[j+1]],[t]) == differentiate(p[(ax,j+1)],t,2)([T[j+1]],[t]))
   @constraint(model,
                                                    ]([1], [t]) == X_1[ax])
                                    p[(ax,N)
   @constraint(model, differentiate(p[(ax,N)], t )([1], [t]) == X<sub>1</sub>'[ax])
   @constraint(model, differentiate(p[(ax,N)], t, 2)([1], [t]) == X1''[ax])
(variable(model, \gamma[keys(p)] \ge 0))
for (key,val) in p
   @constraint(model, v[key] ≥ norm(differentiate(val, t, 3)))
@objective(model, Min, sum(y))
```

Results for 9 Regions and 8 time steps

First Feasible Solution: 58 seconds

Optimal Solution: 651 seconds

Helicopter Game / Flappy Bird

• 60 horizontal segments, obstacle every 5 = 80 sec. to opt.

Solving Mixed Integer Convex/Conic Optimization Problems

How hard is MICONV: Traveling Salesman Problem ?

The Washington Post

this page Terrain

Quantum computers may be more of an imminent threat than AI,

Vivek Wadhwa, February 5, 2018

"As the number of cities increases, the problem becomes exponentially complex. It would take a laptop computer 1,000 years to compute the most efficient route between 22 cities, for example."

MIP = Avoid Enumeration

- Number of tours for 49 cities $48!/2 \approx 10^{60}$
- Fastest supercomputer $\approx 10^{17}$ flops
- Assuming one floating point operation per tour:
 more than 10²⁵ times the age of the universe!
- How long does it take on an **iphone**?
 - -Less than a second!
 - -4 iterations of cutting plane method!
 - Dantzig, Fulkerson and Johnson 1954 did it by hand!
 - Cutting planes are the key for effectively solving (even NPhard) MIP problems in practice.

50+ Years of MIP = Significant Solver Speedups

• Algorithmic Improvements (Machine Independent):

• Also convex nonlinear:

• v6.0 (2014) – v6.5 (2015) quadratic: 4.43 x (V., Dunning, Huchette, Lubin, 2015)

State of MIP Solvers

 Mature: Linear and Quadratic (Conic Quadratic/SOCP) —Commercial:

• Emerging: Convex Nonlinear

MICONV B&B Algorithms

- NLP (QCP) Based B&B
- (Dynamic) LP Based B&B
 - Few cuts = high speed.
 - Possible slow convergence.
- Lifted LP B&B
 - Extended or Lifted relaxation.
 - Static relaxation
 - Mimic NLP B&B.
 - Dynamic relaxation
 - Standard LP B&B

Lifted or Extended Approximations

- Projection = multiply constraints.
- V., Ahmed. and Nemhauser 2008:
 - Extremely accurate, but static and complex approximation by Ben-Tal and Nemirovski
- V., Dunning, Huchette and Lubin 2015: Simple, dynamic and good approximation:
 - First talks: May '14 (SIOPT), Dec '14 IBM
 - Paper in arxive, May '15
 - Adopted in CPLEX v12.6.2, Jun 15'
 - Gurobi (Oct '15), Xpress (May '16), SCIP (Mar' 17)

Image from Lipton and Regan, https://rjlipton.wordpress.com

Not MICONV but, Mixed Integer Conic Programming (MICP)

$$egin{aligned} \min_{\in \mathbb{R}^N} & \langle m{c}, m{x}
angle & \colon \ m{b}_k - m{A}_k m{x} \in \mathcal{C}_k & orall k \in [M] \ & x_i \in \mathbb{Z} & orall i \in [I] \end{aligned}$$

X

- C_k closed convex cones
 - Linear, SOCP, rotated SOCP, SDP
 - Exponential cone, power cone, ...
 - Spectral norm, relative entropy, sum-of-squares, ...
- Fast and stable interior point algorithms for continuous relaxation
- Geometrically intuitive conic duality guides linear inequality selection
- Conic formulation techniques usually lead to extended formulations
 - MINLPLIB2 instances unsolved since 2001 solved by re-write to MISOCP

Pajarito: A Julia-based MICP Solver

			\mathbf{st}			
	solver	ok	limit	error	wrong	time (s)
open source	Bonmin-BB	34	44	11	31	463
	Bonmin-OA	25	53	29	13	726
	Bonmin-OA-D	30	48	29	13	610
	Pajarito-GLPK-ECOS	56	60	3	1	377
	Pajarito-CBC-ECOS	78	30	3	9	163
ricted	SCIP (4.0.0)	74	35	8	3	160
	CPLEX $(12.7.0)$	90	16	5	9	50
rest	Pajarito-CPLEX-MOSEK (9.0.0.29-alpha)	97	20	2	1	56

Stability of CONIC Interior Point Algorithms is KEY!

- Why? Avoid non-differentiability issues? Stronger theory?
- Industry change in 2018:
 - KNITRO version 11.0 adds support for SOCP constraints
 - MOSEK version 9.0 deprecates nonlinear formulations

$$\begin{array}{ll} \min & f(x) \\ \text{subject to} & g(x) & \leq & 0, \end{array}$$

and focuses on pure conic (linear, SOCP, rotated SOCP, SDP, exp & power)

Hypatia: Pure Julia-based IPM Beyond "Standard" Cones

- Extension of methods in CVXOPT and Alfonso
 - A customizable homogeneous interior-point solver for nonsymmetric convex
 - Skajaa and Ye '15, Papp and Yıldız '17, Andersen,
 Dahl, and Vandenberghe '04-18
- Cones: LP, dual Sum-of-Squares, SOCP, RSOCP, 3-dim exponential cone, PSD, L_∞, n-dim power cone (using AD), spectral norm, ...
- Potential:
 - flexible number types and linear algebra
 - BOB: bring your own barrier (in \sim 50 lines of code)
 - Alternative prediction steps (Runge–Kutta)

Chris Coey

results = polyOpt(intParams, 'robinson', tol);

Early Comparison with Alfonso for LP and SOS

First Hypatia commit : Jul 15	Aug 5	Aug 19	Aug 23			
	test	iters	Matlab	75cba5f	c9f1eb5	133b422
Linear Optimization	dense lp	65	5.8	4.1	2.03	1.25
Polynomial Envelope	envelope	30	0.085	0.043	0.020	x
(butcher	32/30	0.63	0.41	0.357	0.136
	caprasse	31/30	1.38	1.87	1.80	0.530
Polynomial	lotka-volt	31/30	0.47	0.38	0.37	0.104
Minimization	motzkin	41/42	0.35	0.24	х	0.054
	reac-diff	29/30	0.32	0.23	0.19	0.075
	robinson	29	0.34	0.23	0.17	0.034
Circt Databast Tasta an CD					L. 2 10	

 First Batch of Tests on CBLIB Instances (SDP/SOCP): Only 2 – 10K times slower than Mosek 8!

Modeling with Conic Optimization

How to get conic representation?

$$C_i = \left\{ x \in \mathbb{R}^d : \begin{array}{c} \exists u \in \mathbb{R}^{p_i} \text{ s.t.} \\ A^i x + D^i u - b \in K^i \end{array} \right\}$$

Using modeling tools like
 Disciplined Convex
 Programming (DCP)

• Using standard constructions for standard cones

• Relatively mechanical, but understanding details can help performance

MICP Example 1: MI - Second Order Cone (SOCP)

MICP Example 1a: Rotated Second Order Cone (RSOCP)

MICP Example 1a: Rotated Second Order Cone (RSOCP)

• Exp-Cone :

$$K_{\exp} = \{ (x_1, x_2, x_3) : x_1 \ge x_2 e^{x_3/x_2}, x_2 > 0 \} \cup \{ (x_1, 0, x_3) : x_1 \ge 0, x_3 \le 0 \}$$

• Can be used to model log-sum-exp

$$t \ge \log(e^{x_1} + \dots + e^{x_n})$$

$$\sum_{i \in U_i} u_i \leq 1,$$

$$(u_i, 1, x_i - t) \in K_{exp}, i = 1, \dots, n.$$

MICP Example 2: MI – Semidefinite Programming (+ Exp Cone)

• Find minimum volume ellipsoid that contains 90% of data points

MICP Example 2: MI – Semidefinite Programming (+ Exp Cone)

- Semidefinite constraints:
 - $-\mathcal{S}^n$: set of symmetric matrices
 - Set of positive semidefinite symmetric matrices:

$$\mathcal{S}^{n}_{+} = \{ X \in \mathcal{S}^{n} \mid z^{T} X z \ge 0, \forall z \in \mathbb{R}^{n} \}$$
$$X \succeq Y \quad \Longleftrightarrow \quad (X - Y) \in \mathcal{S}^{n}_{+}$$

$$A(x, y, z) = \begin{bmatrix} 1 & x & y \\ x & 1 & z \\ y & z & 1 \end{bmatrix} \succeq 0$$

MICP Example 2: SDP representation of ellipsoid take 1

$$E = \{x \in \mathbb{R}^n : (x - c)^T A (x - c) \le 1\}, \quad A \in S^n_+$$

 $Vol(E) \propto Det(A)^{-1/2}$

$$(v - c)^{T} A(v - c) \leq 1$$

$$\Leftrightarrow v^{T} A v - 2v^{T} A c + c^{T} A c \leq 1$$

$$\Leftrightarrow v^{T} A v - 2v^{T} A c + s \leq 1$$

$$c^{T} A c \leq s$$

$$\Leftrightarrow v^{T} A v - 2v^{T} A c + s \leq 1$$

$$\begin{pmatrix} s & c^{T} \\ c & A^{-1} \end{pmatrix} \geq 0$$

MICP Example 2: SDP representation of ellipsoid take 2

$$E = \{x \in \mathbb{R}^{n} : (x - c)^{T} A(x - c) \leq 1\}, A \in S^{n}_{+}$$

$$Vol(E) \propto Det(A)^{-1/2}$$

$$(v - c)^{T} A(v - c) \leq 1$$

$$\Leftrightarrow v^{T} Av - 2v^{T} Ac + c^{T} Ac \leq 1$$

$$\Leftrightarrow v^{T} Av - 2v^{T} Ac + s \leq 1$$

$$c^{T} Ac \leq s \qquad z = Ac$$

$$\Leftrightarrow v^{T} Av - 2v^{T} z + s \leq 1$$

$$z^{T} A^{-1} z \leq s$$

$$\Leftrightarrow v^{T} Av - 2v^{T} z + s \leq 1$$

$$\left(\sum_{z = A^{T}}^{S} Az \leq z^{T}\right) \geq 0$$

$$D - CB^{-1}C^{T} \geq 0$$

MICP Example 2: SDP representation of determinant part 1

$$E = \{x \in \mathbb{R}^n \colon (x - c)^T A (x - c) \le 1\}, \qquad A \in S^n_+$$

 $\operatorname{Vol}(E) \propto \operatorname{Det}(A)^{-1/2}$

 $\begin{pmatrix} D & U \\ U^T & A \end{pmatrix} \ge 0,$ diag(U) = diag(D) U is upper triangular D is diagonal

0,0

MICP Example 2: SDP representation of determinant part 2a

$$E = \{x \in \mathbb{R}^n \colon (x - c)^T A (x - c) \le 1\}, \quad A \in S^n_+$$
$$\operatorname{Vol}(E) \propto \operatorname{Det}(A)^{-1/2} \qquad \prod_{i=1}^n D_{i,i} \le \operatorname{Det}(A)$$

$$= \left(\prod_{i=1}^{n} D_{i,i}\right)^{1/n} \Leftrightarrow \begin{bmatrix} u_{1,1}^{2} \leq D_{1,1} \cdot D_{2,2} \\ u_{1,2}^{2} \leq D_{3,3} \cdot D_{4,4} \\ \vdots \\ u_{1,n/2}^{2} \leq D_{(n-1,n-1)} \cdot D_{n,n} \end{bmatrix} \cdots t^{2} \leq u_{k-1,1} \cdot u_{k-1,2} \quad (\textcircled{w})$$

MICP Example 2: SDP representation of determinant part 2a

$$E = \{x \in \mathbb{R}^n \colon (x - c)^T A (x - c) \le 1\}, \quad A \in S^n_+$$
$$\operatorname{Vol}(E) \propto \operatorname{Det}(A)^{-1/2} \qquad \prod_{i=1}^n D_{i,i} \le \operatorname{Det}(A)$$

MICP Example 2: SDP representation of determinant part 2b

$$E = \{x \in \mathbb{R}^n \colon (x - c)^T A(x - c) \le 1\}, \quad A \in S^n_+$$

$$Vol(E) \propto Det(A)^{-1/2} \qquad \prod_{i=1}^n \delta_{i,i} \le Det(A)$$

$$t \le \sum_{i=1}^n Log(D_{i,i}) \le Log(Det(A))$$

$$t \leq \sum_{i=1}^{n} \text{Log}\left(D_{i,i}\right) \quad \Leftrightarrow \quad$$

$$t \leq \sum_{i=1}^{n} t_{i} \qquad (\&)$$
$$(D_{i,i}, 1, t_{i}) \in K_{\exp}$$

MICP Example 2: SDP representation of determinant part 2b

$$E = \{x \in \mathbb{R}^n \colon (x - c)^T A (x - c) \le 1\}, \quad A \in S^n_+$$
$$\operatorname{Vol}(E) \propto \operatorname{Det}(A)^{-1/2} \qquad \prod_{i=1}^n D_{i,i} \le \operatorname{Det}(A)$$

MICP Example 2: MI part = choose points

$$E = \{x \in \mathbb{R}^n \colon (x - c)^T A (x - c) \le 1\}, \qquad A \in S^n_+$$

 $Vol(E) \propto Det(A)^{-1/2}$

$$\begin{array}{ccc} \boldsymbol{v}^{T}A\boldsymbol{v} - \boldsymbol{2}\boldsymbol{v}^{T}\boldsymbol{z} + \boldsymbol{s} \leq 1 & \forall \, \boldsymbol{v} \, \in \boldsymbol{V} \\ \begin{pmatrix} \boldsymbol{s} & \boldsymbol{z}^{T} \\ \boldsymbol{z} & \boldsymbol{A} \end{pmatrix} \geqslant 0 \end{array}$$

$$\begin{array}{l} \boldsymbol{v}^{T}A\boldsymbol{v} - 2\boldsymbol{v}^{T}\boldsymbol{z} + \boldsymbol{s} \leq 1 + M(1 - y_{v}) \quad \forall \, \boldsymbol{v} \in V \\ \sum_{v \in V} y_{v} \geq 0.9 |V| \\ y_{v} \in \{0,1\} \quad \forall \, \boldsymbol{v} \in V \quad (\swarrow) \\ \begin{pmatrix} \boldsymbol{s} & \boldsymbol{z}^{T} \\ \boldsymbol{z} & \boldsymbol{A} \end{pmatrix} \geqslant 0
\end{array}$$

References:

- Conic Optimization:
 - <u>http://www2.isye.gatech.edu/~nemirovs/LMCO_LN.pdf</u>
 - <u>https://web.stanford.edu/~boyd/cvxbook/</u>
 - <u>https://themosekblog.blogspot.com/2018/05/new-modeling-cookbook.html</u>
- MI-Conic Optimization:
 - <u>https://arxiv.org/abs/1808.05290</u>