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Mixed Integer Convex Optimization (MICONV)

min f(x)

s.t.

x 2 C

xi 2 Z i 2 I

Mostly convex f and C.

http://www.gurobi.com/company/example-customers



An MICONV Example
• Position described by polynomials:

• Step 1: discretize time into intervals

• Step 2: split domain into “safe polyhedrons”  !" = $ ∈ ℝ': )"$ ≤ +"
{pi : [Ti, Ti+1] ! R2}Ni=1

0 = T1 < T2 < . . . < TN = 1
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Mixed-Integer Disjunctive Polynomial Conic (SDP) Optimization 

Initial/Terminal 
Conditions

Interstitial 
Smoothing 
Conditions

Variables = Polynomials : {pi : [Ti, Ti+1] ! R2}Ni=1

min

p

XN

i=1
||p000i (t)||2

s.t. p1(0) = X0, p
0
(0) = X 0

0, p
00
(0) = X 00

0

pN (1) = Xf , p
0
N (1) = X 0

f , p
00
N (1) = X 00

f

pi(Ti+1) = pi+1(Ti+1) 8i 2 {1, . . . , N � 1}
p0i(Ti+1) = p0i+1(Ti+1) 8i 2 {1, . . . , N � 1}
p00i (Ti+1) = p00i+1(Ti+1) 8i 2 {1, . . . , N � 1}
_R

r=1
[Arpi(t)  br] for t 2 [Ti, Ti+1] 8i 2 {1, . . . , N � 1} Remain in Safe Regions
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� 0

∀" ∈{1, …,N}, r∈{1, …,R}, j∈{1, 2}
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Sum of Squares (SOS) 

• p t = ∑( )(*(,)
• . − 1 ×(. − 1) SDP for 

degree ≤ . polynomials



+



Results for 9 Regions and 8 time steps

First Feasible Solution:
58 seconds

Optimal Solution:
651 seconds



Helicopter Game / Flappy Bird

• 60 horizontal segments, obstacle every 5 = 80 sec. to opt.



Solving Mixed Integer Convex/Conic Optimization Problems 



How hard is MICONV: Traveling Salesman Problem ?

“A computer would have to 
check all these possible 
routes to find the shortest 
one.” 

Quantum computers may be more of an imminent 
threat than AI, 

Vivek Wadhwa, February 5, 2018

“As the number of cities increases, the problem 
becomes exponentially complex. It would take a 
laptop computer 1,000 years to compute the most 
efficient route between 22 cities, for example.”



MIP = Avoid Enumeration

• Number of tours for 49 cities 48!/2 ≈ '()(
• Fastest supercomputer ≈ '('* flops 
• Assuming one floating point operation per tour:
–more than '(+, times the age of the universe! 

• How long does it take on an iphone?
– Less than a second!
–4 iterations of cutting plane method!
–Dantzig, Fulkerson and Johnson 1954 did it by hand!
–Cutting planes are the key for effectively solving (even NP-

hard) MIP problems in practice.



50+ Years of MIP = Significant Solver Speedups 

• Algorithmic Improvements (Machine Independent):

–
• v1.2 (1991) – v11 (2007): 29,000 x speedup

–
• v1 (2009) – v6.5 (2015): 48.7 x speedup 

• Also convex nonlinear:

–
• v6.0 (2014) – v6.5 (2015) quadratic: 4.43 x

(V., Dunning, Huchette, Lubin, 2015)

ILOG CPLEX 11.2

CPLEX
CPLEX

Gurobi 7.0 Performance Benchmarks

Gurobi 7.0 Performance Benchmarks

≈ 1.9 x / year



State of MIP Solvers

• Mature: Linear and Quadratic (Conic Quadratic/SOCP)
–Commercial:

– “Open Source”

• Emerging: Convex Nonlinear  
–

CPLEX

Gurobi 7.0 Performance Benchmarks

SCIP CBC GLPK

Bonmin



MICONV B&B Algorithms

• NLP (QCP) Based B&B 
• (Dynamic) LP Based B&B 
– Few cuts = high speed.
– Possible slow convergence.

• Lifted LP B&B 
– Extended or Lifted relaxation.
– Static relaxation
• Mimic NLP B&B. 

– Dynamic relaxation
• Standard LP B&B



Lifted or Extended Approximations
• Projection = multiply constraints.
• V., Ahmed. and Nemhauser 2008:
– Extremely accurate, but static and 

complex approximation by Ben-Tal and 
Nemirovski

• V., Dunning, Huchette and Lubin 2015: 
Simple, dynamic and good approximation:
– First talks: May ‘14 (SIOPT), Dec ‘14 IBM
– Paper in arxive, May ’15
– Adopted in CPLEX v12.6.2, Jun 15’
– Gurobi (Oct ‘15), Xpress (May ‘16), SCIP (Mar’ 17)

y2i  zi · y0 8i 2 [n]
Xn

i=1
zi  y0

Image from Lipton and Regan, https://rjlipton.wordpress.com

kyk2  y0



Not MICONV but, Mixed Integer Conic Programming (MICP)

• closed convex cones
– Linear, SOCP, rotated SOCP, SDP
– Exponential cone, power cone, …
– Spectral norm, relative entropy, 

sum-of-squares, …

Mixed-integer conic form

min
2RN

h , i : (M)

k � k 2 Ck 8k 2 [M]

xi 2 Z 8i 2 [I ]

CK+1, . . . , CM are polyhedral cones, e.g. R+, R�, {0}
C1, . . . , CK are closed convex nonpolyhedral cones, e.g.

L second-order cone (epi k·k2)
E exponential cone (epi cl per exp)

P positive semidefinite cone (S+ on S)

Assume that if M is feasible then its optimal value is attained

Chris Coey (MIT ORC) Conic OA for MICP SIAM Opt. 2017 6 / 19
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• Fast and stable interior point algorithms for continuous relaxation
• Geometrically intuitive conic duality guides linear inequality selection
• Conic formulation techniques usually lead to extended formulations 
– MINLPLIB2 instances unsolved since 2001 solved by re-write to MISOCP



Pajarito: A Julia-based MICP Solver

MI-convex model:

CBF, Convex.jl, CVXPY, JuMP

MI-conic solver:

Pajarito

Continuous solver:

CSDP, ECOS,
MOSEK, SCS, SDPA

MILP solver:

CBC, CPLEX, GLPK,
Gurobi, MOSEK, SCIP

conic interface

conic interface
linear/quadratic interface

(through JuMP)

Figure 1: Pajarito’s integration with MathProgBase.

coefficient vectors, variable and constraint cones expressed as lists of standard
primitive cones (1-dimensional vector sets) with corresponding ordered row in-
dices, and a vector of variable types (each continuous, binary, or general integer).
In addition to the basic linear cones (nonnegative, nonpositive, zero, and free
cones), Pajarito recognizes three standard primitive nonpolyhedral cones intro-
duced in section 1.2: exponential cones (see appendix A.1), second-order cones
(see appendix A.2), and positive semidefinite cones (see appendix A.3).19

Friberg [2016] designed the Conic Benchmark Format (CBF) as a file for-
mat originally to support mixed-integer second-order cone (SOCP) and positive
semidefinite cone (SDP) instances. In collaboration with Henrik Friberg, we
extended the format to support exponential cones in Version 2, and developed
a Julia interface ConicBenchmarkUtilities.jl to provide utilities for translating
between CBF and MathProgBase conic format.20 One may use Pajarito to
solve any instance in the Conic Benchmark Library (CBLIB), which contains
thousands of benchmark problems from a wide variety of sources.

Lubin et al. [2016] demonstrate that all 333 known MI-convex instances in
MINLPLib2 [Vigerske, 2018] are representable with linear, second-order, expo-
nential, and power cones. Since a power cone constraint is representable with
linear and exponential cone constraints, Pajarito can be used to solve any of
the MI-convex instances in MINLPLib2. We translated 115 instances from the
MINLPLIB2 library to CBF and contributed them to CBLIB.21 Many of the

19As we note in appendix A.2, Pajarito also recognizes rotated second-order cones, but for
simplicity converts them to second-order cones during preprocessing.

20Pajarito’s extensive unit tests rely on small example instances loaded from CBF files.
21Lubin et al. [2016] first translated these instances from the MINLPLIB2 library into Con-

vex.jl models. We used ConicBenchmarkUtilities.jl to translate these to CBF. The instances,
available at github.com/mlubin/MICPExperiments, are 48 ‘rsyn’ instances, 48 ‘syn’ instances,
6 ‘tls’ instances, 12 ‘clay’ instances, and the challenging ‘gams01’ instance.

21

• Early version solved gams01, tls5 and tls6 (MINLPLIB2)
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Performance for MISOCP Instances (120 from CBLIB)



Stability of CONIC Interior Point Algorithms is KEY! 

• Why? Avoid non-differentiability issues? Stronger theory?

• Industry change in 2018:

– version 11.0 adds support for  SOCP constraints

– version 9.0 deprecates nonlinear formulations

and focuses on pure conic (linear, SOCP, rotated SOCP, SDP, exp & power)

Deprecated features

• Advanced sensitivity analysis.
• The traditional analysis based on the basis is still available.

• General convex optimization.

min f(x)
subject to g(x)  0,

except for explicit quadratic functions.
• Dropped the Fusion interface for MATLAB.

• Use a�ne conic constraints instead (Fusion light).

3 / 23



Hypatia: Pure Julia-based IPM Beyond “Standard” Cones 

• Extension of methods in CVXOPT and Alfonso

– A customizable homogeneous interior-point solver 

for nonsymmetric convex

– Skajaa and Ye ‘15, Papp and Yıldız ‘17, Andersen, 

Dahl, and Vandenberghe ‘04-18

• Cones: LP, dual Sum-of-Squares, SOCP, RSOCP, 

3-dim exponential cone, PSD, L∞, n-dim 

power cone (using AD), spectral norm, …

• Potential: 

– flexible number types and linear algebra

– BOB: bring your own barrier (in ∼50 lines of code)

– Alternative prediction steps (Runge–Kutta)

Chris Coey



Early Comparison with Alfonso for LP and SOS

Aug 23Aug 19

chriscoey / Hypatia.jl Private

No one—assign yourself

None yet

No milestone

2 participants

Alfonso matlab code comparison #23
 Open chriscoey opened this issue on Aug 5 · 3 comments

Edit New issue

Assignees

Labels

info

speed

tests

Projects

Milestone

Notifications

chriscoey commented on Aug 5 • 

running Alfonso 75cba5f  with default options against the following Alfonso.m Matlab code with (the
same) default options:

seed	=	2017;
tol	=	1e-06;
results	=	random_lp(500,	1000,	tol,	seed);
seed	=	2017;
tol	=	1e-06;
intParams	=	ChebInterval(5);	
results	=	polyEnv(intParams,	2,	5,	tol,	seed);
tol	=	1e-06;
intParams	=	FeketeCube(6,	2);	
results	=	polyOpt(intParams,	'butcher',	tol);
intParams	=	FeketeCube(4,	4);	
results	=	polyOpt(intParams,	'caprasse',	tol);
intParams	=	FeketeCube(4,	3);
results	=	polyOpt(intParams,	'lotka-volterra',	tol);
intParams	=	PaduaSquare(7);	
results	=	polyOpt(intParams,	'motzkin',	tol);
intParams	=	FeketeCube(3,	4);	
results	=	polyOpt(intParams,	'reaction-diffusion',	tol);
intParams	=	PaduaSquare(8);
results	=	polyOpt(intParams,	'robinson',	tol);

primal and dual objectives for the Julia code and Matlab code match. the iteration counts (very similar)
and timings (in seconds) are:

test iters Matlab 75cba5f c9f1eb5 133b422

dense lp 65 5.8 4.1 2.03 1.25

envelope 30 0.085 0.043 0.020 x

butcher 32/30 0.63 0.41 0.357 0.136

caprasse 31/30 1.38 1.87 1.80 0.530

lotka-volt 31/30 0.47 0.38 0.37 0.104

motzkin 41/42 0.35 0.24 x 0.054

reac-diff 29/30 0.32 0.23 0.19 0.075

robinson 29 0.34 0.23 0.17 0.034

edited 

 chriscoey added speed  info  labels on Aug 5

 chriscoey changed the title from Matlab code comparison to [info] Matlab code comparison
on Aug 5

 chriscoey referenced this issue on Aug 6

Aug 5

Linear Optimization

Polynomial Envelope

Polynomial 

Minimization

First Hypatia commit : Jul 15

• First Batch of Tests on CBLIB Instances (SDP/SOCP): Only 2 – 10K times 

slower than Mosek 8!  



Modeling with Conic Optimization



How to get conic representation?

• Relatively mechanical, but understanding details can help performance 

MMC

Convex.jl in  

3/9/16, 12:08 PMAcademic Page of Juan Pablo Vielma

Page 3 of 3http://www.mit.edu/~jvielma/
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• Using modeling tools like 
Disciplined Convex 
Programming (DCP)

• Using standard constructions 
for standard cones



Mixed-integer conic form
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MICP Example 1: MI - Second Order Cone (SOCP)

feasible solutions and fathom nodes.
Quesada and Grossmann [1992] and Leyffer [1993] describe subproblem-based

B&B-OA algorithms that solve smooth NLP subproblems at a subset of the nodes.
The NLP subproblems provide feasible solutions at which gradient cuts can be
derived, however in the case of infeasibility, a second subproblem must be solved
in order to derive the cuts. Bonmin implements this algorithm using the NLP
solver Ipopt, and Bonami et al. [2008] found this B&B-OA method outperforms
Bonmin’s B&B-NL method. For the special case of MISOCP, Drewes and Ulbrich
[2012] propose a conic subproblem-based B&B-OA algorithm that derives cuts
from subgradients satisfying subproblem KKT optimality conditions, and hence
does not require smoothness assumptions.

Using the elegant theory of conic duality, it is possible to describe a simpler
and more efficient OA algorithm for generic MI-conic problems that uses conic
certificates returned by primal-dual conic solvers, with no need to examine KKT
conditions or solve a second modified subproblem in the case of infeasibility.
Lubin et al. [2016] propose this idea in an iterative OA algorithm. However
a B&B algorithm using a single search tree, instead of solving a sequence of
MILP instances each with their own search tree, is more flexible and likely to
be significantly faster in practice. We fill this gap with the first conic-certificate-
based B&B-OA algorithm, which we implement in our new MI-conic solver
Pajarito.2

1.2 Mixed-Integer Conic Form
We use the following general form for a mixed-integer conic (MI-conic) problem:

M

8
>><

>>:

inf

x2RN
c

T
x :

b�Ax 2 K ⇢ RM

xi 2 Z 8i 2 JIK,

(1a)

(1b)
(1c)

where K is a closed convex cone, i.e. a closed subset of RM that contains all
conic (nonnegative) combinations of its points [Ben-Tal and Nemirovski, 2001a]:

↵1y1 + ↵2y2 2 K 8↵1,↵2 � 0 8y1,y2 2 K. (2)

The variables in M are represented by the column vector x 2 RN , so the objective
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2An early implementation of Pajarito was introduced in Lubin et al. [2016], but this was a
simple NLP-based iterative algorithm built to assess the value of MINLP extended formulations
by counting iterations. The new version of Pajarito that we implement for this paper uses
conic certificates returned by conic solvers.
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max āx

s.t.
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Q

1/2
x

��
2
 �

Xn

j=1
xj = 1, x 2 Rn

+

xj  zj 8j 2 [n]

Xn

j=1
zj  K, z 2 {0, 1}n

Portfolio Optimization Problems:

A.1.2 Extreme Ray Disaggregation

Suppose we have the E⇤ point (u, v, w). If w = 0, the point is already a non-
negative combination of the initial fixed E⇤ points from appendix A.1.1, so we
discard it. If w < 0, we use the E⇤ extreme ray (u,w � w log(

�w
/u), w), which

when added to some nonnegative multiple of (0, 1, 0), gives (u, v, w).49

A.1.3 Separation Of An Infeasible Point

Suppose we want to separate a point (r, s, t) /2 E that satisfies the initial fixed
cuts. Then r, s � 0 and if r = s = 0 then t  0. If s = 0, then t > 0 and
r > 0, and we use the E⇤ extreme ray (

t
/r,�2 + 2 log(

2r
/t),�2). If s > 0, then

r < s exp(

t
/s), and we use the E⇤ extreme ray (1, (

t
/s � 1) exp(

t
/s),� exp(

t
/s)).

A.2 Second-Order Cone
For n � 2, the second-order cone is the epigraph of the homogeneous convex
`2-norm:

L1+n
= {(r, t) 2 R1+n

: r � ktk2}. (31)

We sometimes drop the dimension 1 + n when implied by context. This cone is
self-dual (L⇤

= L). We also define the (self-dual) rotated second-order cone:

V2+n
= {(r, s, t) 2 R2+n

: r, s � 0, 2rs � ktk22}. (32)

However, V is an invertible linear transformation of L, since (r, s, t) 2 V2+n if
and only if (r + s, r � s,

p
2t1, . . . ,

p
2tn) 2 L2+n, so for simplicity we restrict

attention to L.50

A.2.1 Initial Fixed Polyhedral Relaxation

Suppose we have a primitive cone constraint (r, t) 2 L1+n. Ben-Tal and Ne-
mirovski [2001b] describe fixed polyhedral OAs of L. First, we note that the
`1-norm lower-bounds the `2-norm, since for any t 2 Rn we have:

ktk1 = max

i2JnK
|ti|  ktk2. (33)

Let e(i) 2 Rn be the ith unit vector in n dimensions. We use the 2n L⇤ extreme
rays (1,±e(i)), 8i 2 JnK, which imply the conditions r � |ti|, 8i 2 JnK, equivalent
to the homogenized box relaxation r � ktk1. Second, we note that the `1-norm
also provides a lower bound for the `2-norm, since for any t 2 Rn we have:

ktk1 =

X

i2JnK
|ti| 

p
nktk2. (34)

49This also projects (u, v, w) /2 E⇤ with u > 0, w < 0 onto E⇤.
50As noted in section 5.2, Pajarito transforms any V constraints to equivalent L constraints

during preprocessing.
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3.1.2 Rotated quadratic cones
An n�dimensional rotated quadratic cone is defined as
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As the name indicates, there is a simple relationship between quadratic and rotated quadratic
cones. Define an orthogonal transformation

Tn :=
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Then it is easy to verify that
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Thus, one could argue that we only need quadratic cones Qn, but there are many examples
where using an explicit rotated quadratic cone Qn

r is more natural, as we will see next.
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Chapter 3

Conic quadratic optimization

This chapter extends the notion of linear optimization with quadratic cones. Conic quadratic
optimization, also known as second-order cone optimization, is a straightforward generaliza-
tion of linear optimization, in the sense that we optimize a linear function under linear
(in)equalities with some variables belonging to one or more (rotated) quadratic cones. We
discuss the basic concept of quadratic cones, and demonstrate the surprisingly large flexibility
of conic quadratic modeling.

3.1 Cones

Since this is the first place where we introduce a non-linear cone, it seems suitable to make
our most important definition:

A set K ✓ Rn is called a convex cone if

• for every x, y 2 K we have x+ y 2 K,

• for every x 2 K and ↵ � 0 we have ↵x 2 K.

For example a linear subspace of Rn, the positive orthant Rn
�0

or any ray (half-line)
starting at the origin are examples of convex cones. We leave it for the reader to check
that the intersection of convex cones is a convex cone; this property enables us to assemble
complicated optimization models from individual conic bricks.

3.1.1 Quadratic cones
We define the n-dimensional quadratic cone as

Qn =

⇢

x 2 Rn | x
1

�
q

x2

2

+ x2

3

+ · · · + x2

n

�

. (3.1)

The geometric interpretation of a quadratic (or second-order) cone is shown in Fig. 3.1 for
a cone with three variables, and illustrates how the boundary of the cone resembles an
ice-cream cone. The 1-dimensional quadratic cone simply states nonnegativity x

1

� 0.

20

Lorentz cone or 
Second Order Cone

MMC

Mixed-integer conic form

min
2RN

h , i : (M)

k � k 2 Ck 8k 2 [M]

xi 2 Z 8i 2 [I ]

CK+1, . . . , CM are polyhedral cones, e.g. R+, R�, {0}
C1, . . . , CK are closed convex nonpolyhedral cones, e.g.

L second-order cone (epi k·k2)
E exponential cone (epi cl per exp)

P positive semidefinite cone (S+ on S)

Assume that if M is feasible then its optimal value is attained
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MICP Example 1a: Rotated Second Order Cone (RSOCP)

• RSOCP :
• Can be used to model geometric mean
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MICP Example 1a: Rotated Second Order Cone (RSOCP)

• Exp-Cone :

• Can be used to model log-sum-exp

Fig. 5.1: The boundary of the exponential cone K
exp

. The red isolines are graphs of x
2

!
x
2

log(x
1

/x
2

) for fixed x
1

, see (5.3).

5.2 Modeling with the exponential cone

Extending the conic optimization toolbox with the exponential cone leads to new types of
constraint building blocks and new types of representable sets. In this section we list the
basic operations available using the exponential cone.

5.2.1 Exponential
The epigraph t � ex is a section of K

exp

:

t � ex () (t, 1, x) 2 K
exp

. (5.4)

5.2.2 Logarithm
Similarly, we can express the hypograph t  log x, x � 0:

t  log x () (x, 1, t) 2 K
exp

. (5.5)

5.2.3 Entropy
The entropy function H(x) = �x log x can be maximized using the following representation
which follows directly from (5.3):

t  �x log x () t  x log(1/x) () (1, x, t) 2 K
exp

. (5.6)
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Chapter 5

Exponential cone optimization

So far we discussed optimization problems involving the major “polynomial” families of cones:
linear, quadratic and power cones. In this chapter we introduce a single new object, namely
the three-dimensional exponential cone, together with examples and applications. The ex-
ponential cone can be used to model a variety of constraints involving exponentials and
logarithms.

5.1 Exponential cone

The exponential cone is a convex subset of R3 defined as

K
exp

=
�

(x
1

, x
2

, x
3

) : x
1

� x
2

ex3/x2 , x
2

> 0
 [

{(x
1

, 0, x
3

) : x
1

� 0, x
3

 0} . (5.1)

Thus the exponential cone is the closure in R3 of the set of points which satisfy

x
1

� x
2

ex3/x2 , x
1

, x
2

> 0. (5.2)

When working with logarithms, a convenient reformulation of (5.2) is

x
3

 x
2

log(x
1

/x
2

), x
1

, x
2

> 0. (5.3)

Alternatively, one can write the same condition as

x
1

/x
2

� ex3/x2 , x
1

, x
2

> 0,

which immediately shows that K
exp

is in fact a cone, i.e. ↵x 2 K
exp

for x 2 K
exp

and ↵ � 0.
Convexity of K

exp

follows from the fact that the Hessian of f(x, y) = y exp(x/y), namely

D2(f) = ex/y


y�1 �xy�2

�xy�2 x2y�3

�

is positive semidefinite for y > 0.
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Chapter 5

Exponential cone optimization

So far we discussed optimization problems involving the major “polynomial” families of cones:
linear, quadratic and power cones. In this chapter we introduce a single new object, namely
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logarithms.
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5.2.4 Relative entropy
The relative entropy or Kullback-Leiber divergence of two probability distributions is defined
in terms of the function D(x, y) = x log(x/y). It is convex, and the minimization problem
t � D(x, y) is equivalent to

t � D(x, y) () �t  x log(y/x) () (y, x,�t) 2 K
exp

. (5.7)

Because of this reparametrization the exponential cone is also referred to as the relative
entropy cone, leading to a class of problems known as REPs (relative entropy problems).
Having the relative entropy function available makes it possible to express epigraphs of other
functions appearing in REPs, for instance:

x log(1 + x/y) = D(x+ y, y) +D(y, x+ y).

5.2.5 Softplus function
In neural networks the function f(x) = log(1+ex), known as the softplus function, is used as
an analytic approximation to the rectifier activation function r(x) = x+ = max(0, x). The
softplus function is convex and we can express its epigraph t � log(1+ ex) by combining two
exponential cones. Note that

t � log(1 + ex) () ex�t + e�t  1

and therefore t � log(1 + ex) is equivalent to the following set of conic constraints:

u+ v  1,
(u, 1, x � t) 2 K

exp

,
(v, 1,�t) 2 K

exp

.
(5.8)

5.2.6 Log-sum-exp
We can generalize the previous example to a log-sum-exp (logarithm of sum of exponentials)
expression

t � log(ex1 + · · · + exn).

This is equivalent to the inequality

ex1�t + · · · + exn�t  1,

and so it can be modeled as follows:
P

ui  1,
(ui, 1, xi � t) 2 K

exp

, i = 1, . . . , n.
(5.9)
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entropy cone, leading to a class of problems known as REPs (relative entropy problems).
Having the relative entropy function available makes it possible to express epigraphs of other
functions appearing in REPs, for instance:

x log(1 + x/y) = D(x+ y, y) +D(y, x+ y).

5.2.5 Softplus function
In neural networks the function f(x) = log(1+ex), known as the softplus function, is used as
an analytic approximation to the rectifier activation function r(x) = x+ = max(0, x). The
softplus function is convex and we can express its epigraph t � log(1+ ex) by combining two
exponential cones. Note that

t � log(1 + ex) () ex�t + e�t  1

and therefore t � log(1 + ex) is equivalent to the following set of conic constraints:

u+ v  1,
(u, 1, x � t) 2 K

exp

,
(v, 1,�t) 2 K

exp

.
(5.8)

5.2.6 Log-sum-exp
We can generalize the previous example to a log-sum-exp (logarithm of sum of exponentials)
expression

t � log(ex1 + · · · + exn).

This is equivalent to the inequality

ex1�t + · · · + exn�t  1,

and so it can be modeled as follows:
P

ui  1,
(ui, 1, xi � t) 2 K

exp

, i = 1, . . . , n.
(5.9)
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Chapter 6

Semidefinite optimization

In this chapter we extend the conic optimization framework introduced before with symmet-
ric positive semidefinite matrix variables.

6.1 Introduction to semidefinite matrices

6.1.1 Semidefinite matrices and cones
A symmetric matrix X 2 Sn is called symmetric positive semidefinite if

zTXz � 0, 8z 2 Rn.

We then define the cone of symmetric positive semidefinite matrices as

Sn
+

= {X 2 Sn | zTXz � 0, 8z 2 Rn}. (6.1)

For brevity we will often use the shorter notion semidefinite instead of symmetric positive
semidefinite, and we will write X ⌫ Y (X � Y ) as shorthand notation for (X � Y ) 2 Sn

+

((Y �X) 2 Sn
+

). As inner product for semidefinite matrices, we use the standard trace inner
product for general matrices, i.e.,

hA,Bi := tr(ATB) =
X

ij

aijbij.

It is easy to see that (6.1) indeed specifies a convex cone; it is pointed (with origin X = 0),
and X, Y 2 Sn

+

implies that (↵X + �Y ) 2 Sn
+

, ↵, � � 0. Let us review a few equivalent
definitions of Sn

+

. It is well-known that every symmetric matrix A has a spectral factorization

A =
n

X

i=1

�iqiq
T
i .

where qi 2 Rn are the (orthogonal) eigenvectors and �i are eigenvalues of A. Using the
spectral factorization of A we have

xTAx =
n

X

i=1

�i(x
T qi)

2,

51
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Fig. 6.1: Plot of spectrahedron S = {(x, y, z) 2 R3 | A(x, y, z) ⌫ 0}.

• Any principal submatrix of A 2 Sn
+

(A restricted to the same set of rows as columns)
is positive semidefinite; this follows by restricting the Grammian characterization A =
V TV to a submatrix of V .

• The inner product of positive (semi)definite matrices is positive (nonnegative). For
any A,B 2 Sn

++

let A = UTU and B = V TV where U and V have full rank. Then

hA,Bi = tr(UTUV TV ) = kUV Tk2

F > 0,

where strict positivity follows from the assumption that U has full column-rank, i.e.,
UV T 6= 0.

• The inverse of a positive definite matrix is positive definite. This follows from the
positive spectral factorization A = Q⇤QT , which gives us

A�1 = QT⇤�1Q

where ⇤ii > 0. If A is semidefinite then the pseudo-inverse A† of A is semidefinite.

• Consider a matrix X 2 Sn partitioned as

X =



A BT

B C

�

.

Let us find necessary and sufficient conditions for X � 0. We know that A � 0 and
C � 0 (since any principal submatrix must be positive definite). Furthermore, we can
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⟺

Example 6.1. As a more interesting example, consider the symmetric matrix

A(x, y, z) =

2

4

1 x y
x 1 z
y z 1

3

5 (6.4)

parametrized by (x, y, z). The set

S = {(x, y, z) 2 R3 | A(x, y, z) 2 S3

+

},

(shown in Fig. 6.1) is called a spectrahedron and is perhaps the simplest bounded semidef-
inite representable set, which cannot be represented using (finitely many) linear or
quadratic cones. To gain a geometric intuition of S, we note that

det(A(x, y, z)) = �(x2 + y2 + z2 � 2xyz � 1),

so the boundary of S can be characterized as

x2 + y2 + z2 � 2xyz = 1,

or equivalently as


x
y

�T 

1 �z
�z 1

� 

x
y

�

= 1 � z2.

For z = 0 this describes a circle in the (x, y)-plane, and for �1  z  1 it characterizes
an ellipse (for a fixed z).

6.1.2 Properties of semidefinite matrices
Many useful properties of (semi)definite matrices follow directly from the definitions (6.1)-
(6.3) and their definite counterparts.

• The diagonal elements of A 2 Sn
+

are nonnegative. Let ei denote the ith standard basis
vector (i.e., [ei]j = 0, j 6= i, [ei]i = 1). Then Aii = eTi Aei, so (6.1) implies that Aii � 0.

• A block-diagonal matrix A = Diag(A
1

, . . . Ap) is (semi)definite if and only if each
diagonal block Ai is (semi)definite.

• Given a quadratic transformation M := BTAB, M � 0 if and only if A � 0 and B has
full rank. This follows directly from the Grammian characterization M = (V B)T (V B).
For M ⌫ 0 we only require that A ⌫ 0. As an example, if A is (semi)definite then so
is any permutation P TAP .
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Fig. 6.1: Plot of spectrahedron S = {(x, y, z) 2 R3 | A(x, y, z) ⌫ 0}.

• Any principal submatrix of A 2 Sn
+

(A restricted to the same set of rows as columns)
is positive semidefinite; this follows by restricting the Grammian characterization A =
V TV to a submatrix of V .

• The inner product of positive (semi)definite matrices is positive (nonnegative). For
any A,B 2 Sn

++

let A = UTU and B = V TV where U and V have full rank. Then

hA,Bi = tr(UTUV TV ) = kUV Tk2

F > 0,

where strict positivity follows from the assumption that U has full column-rank, i.e.,
UV T 6= 0.

• The inverse of a positive definite matrix is positive definite. This follows from the
positive spectral factorization A = Q⇤QT , which gives us

A�1 = QT⇤�1Q

where ⇤ii > 0. If A is semidefinite then the pseudo-inverse A† of A is semidefinite.

• Consider a matrix X 2 Sn partitioned as

X =



A BT

B C

�

.

Let us find necessary and sufficient conditions for X � 0. We know that A � 0 and
C � 0 (since any principal submatrix must be positive definite). Furthermore, we can
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!
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Since Z ⌫ 0 (see (3.2.2.b)), we have S
k

(Z)  Tr(Z), and combining these inequalities we get

S
k

(X)  Tr(Z) + sk.

The latter inequality, in view of (3.2.2.a)), implies S
k

(X)  t, and (i) is proved.

To prove (ii), assume that we are given X, t with S
k

(X)  t, and let us set s = �
k

(X).

Then the k largest eigenvalues of the matrix X�sI
m

are nonnegative, and the remaining are

nonpositive. Let Z be a symmetric matrix with the same eigenbasis as X and such that the

k largest eigenvalues of Z are the same as those of X � sI
m

, and the remaining eigenvalues

are zeros. The matrices Z and Z � X + sI
m

are clearly positive semidefinite (the first by

construction, and the second since in the eigenbasis of X this matrix is diagonal with the first

k diagonal entries being 0 and the remaining being the same as those of the matrix sI
m

�X,

i.e., nonnegative). Thus, the matrix Z and the real s we have built satisfy (3.2.2.b, c). In

order to see that (3.2.2.a) is satisfied as well, note that by construction Tr(Z) = S
k

(x)� sk,

whence t� sk � Tr(Z) = t� S
k

(x) � 0.

In order to proceed, we need the following highly useful technical result:

Lemma 3.2.1 [Lemma on the Schur Complement] Let

A =
✓
B CT

C D

◆
be a symmetric matrix with k⇥ k block B and `⇥ ` block D. Assume that B is positive definite.
Then A is positive (semi)definite if and only if the matrix

D � CB�1CT

is positive (semi)definite (this matrix is called the Schur complement of B in A).

Proof. The positive semidefiniteness of A is equivalent to the fact that

0  (xT , yT )
✓
B CT

C D

◆✓
x
y

◆
= xTBx+ 2xTCT y + yTDy 8x 2 Rk, y 2 R`,

or, which is the same, to the fact that

inf
x2Rk

h
xTBx+ 2xTCT y + yTDy

i
� 0 8y 2 R`.

Since B is positive definite by assumption, the infimum in x can be computed explicitly for every
fixed y: the optimal x is �B�1CT y, and the optimal value is

yTDy � yTCB�1CT y = yT [D � CB�1CT ]y.

The positive definiteness/semidefiniteness of A is equivalent to the fact that the latter ex-
pression is, respectively, positive/nonnegative for every y 6= 0, i.e., to the positive definite-
ness/semidefiniteness of the Schur complement of B in A.
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3.7.2.2 Outer ellipsoidal approximation of a finite set

Let S be a polyhedral set given as a convex hull of a finite set of points:

S = Conv{x
1

, ..., xm}.

Proposition 3.7.2 Assume that S is a full-dimensional polytope (i.e., possesses a nonempty
interior). Then the smallest volume ellipsoid containing S is

E = {x | (x� c⇤)
TD⇤(x� c⇤)  1},

where c⇤, D⇤ are given by an optimal solution (t⇤, Z⇤, z⇤, s⇤) to the semidefinite program

maximize t
s.t.
(a) t  (DetZ)1/n,
(b) Z ⌫ 0,

(c)
✓
s zT

z Z

◆
⌫ 0,

(d) xTi Zxi � 2xTi z + s  1, i = 1, ...,m,

(Out)

with the design variables Z 2 Sn, z 2 Rn, t, s 2 R via the relations

D⇤ = Z⇤; c⇤ = Z�1

⇤ z⇤.

Note that (Out) indeed is a semidefinite program, cf. Proposition 3.7.1.

Proof. Indeed, let us pass in the description (3.7.2) from the “parameters” D, c to the param-
eters Z = D, z = Dc, thus coming to the representation

E = {x | xTZx� 2xT z + zTZ�1z  1}. (!)

The ellipsoid of the latter type contains the points x
1

, ..., xm if and only if

xTi Zxi � 2xTi z + zTZ�1z  1, i = 1, ...,m,

or, which is the same, if and only if there exists s � zTZ�1z such that

xTi Zxi � 2xTi z + s  1, i = 1, ...,m.

Recalling Lemma on the Schur Complement, we see that the constraints (Out.b�d) say exactly
that the ellipsoid (!) contains the points x

1

, ..., xm. Since the volume of such an ellipsoid is
(DetZ)�1/2, (Out) is the problem of maximizing a negative power of the volume of an ellipsoid
containing the finite set {x

1

, ..., xm}, i.e., the problem of finding the smallest volume ellipsoid
containing this finite set. It remains to note that an ellipsoid is convex, so that it is exactly the
same – to say that it contains a finite set {x

1

, ..., xm} and to say that it contains the convex hull
of this finite set.

We see that if S is a polytope given as a convex hull of a finite set, then the problem of
the best outer ellipsoidal approximation of S is an explicit semidefinite program and as such
can be e�ciently solved. In contrast to this, if S is a polytope given by a list of inequality
constraints, then the problem of the best outer ellipsoidal approximation of S is “computationally
intractable” – in this case, it is di�cult just to check whether a given candidate ellipsoid contains
S.

Schur Complement Lemma:

⟺

3.7. EXTREMAL ELLIPSOIDS 213

3.7.2.2 Outer ellipsoidal approximation of a finite set

Let S be a polyhedral set given as a convex hull of a finite set of points:

S = Conv{x
1

, ..., xm}.

Proposition 3.7.2 Assume that S is a full-dimensional polytope (i.e., possesses a nonempty
interior). Then the smallest volume ellipsoid containing S is

E = {x | (x� c⇤)
TD⇤(x� c⇤)  1},

where c⇤, D⇤ are given by an optimal solution (t⇤, Z⇤, z⇤, s⇤) to the semidefinite program

maximize t
s.t.
(a) t  (DetZ)1/n,
(b) Z ⌫ 0,

(c)
✓
s zT

z Z

◆
⌫ 0,

(d) xTi Zxi � 2xTi z + s  1, i = 1, ...,m,

(Out)

with the design variables Z 2 Sn, z 2 Rn, t, s 2 R via the relations

D⇤ = Z⇤; c⇤ = Z�1

⇤ z⇤.

Note that (Out) indeed is a semidefinite program, cf. Proposition 3.7.1.

Proof. Indeed, let us pass in the description (3.7.2) from the “parameters” D, c to the param-
eters Z = D, z = Dc, thus coming to the representation

E = {x | xTZx� 2xT z + zTZ�1z  1}. (!)

The ellipsoid of the latter type contains the points x
1

, ..., xm if and only if

xTi Zxi � 2xTi z + zTZ�1z  1, i = 1, ...,m,

or, which is the same, if and only if there exists s � zTZ�1z such that

xTi Zxi � 2xTi z + s  1, i = 1, ...,m.

Recalling Lemma on the Schur Complement, we see that the constraints (Out.b�d) say exactly
that the ellipsoid (!) contains the points x

1

, ..., xm. Since the volume of such an ellipsoid is
(DetZ)�1/2, (Out) is the problem of maximizing a negative power of the volume of an ellipsoid
containing the finite set {x

1

, ..., xm}, i.e., the problem of finding the smallest volume ellipsoid
containing this finite set. It remains to note that an ellipsoid is convex, so that it is exactly the
same – to say that it contains a finite set {x

1

, ..., xm} and to say that it contains the convex hull
of this finite set.

We see that if S is a polytope given as a convex hull of a finite set, then the problem of
the best outer ellipsoidal approximation of S is an explicit semidefinite program and as such
can be e�ciently solved. In contrast to this, if S is a polytope given by a list of inequality
constraints, then the problem of the best outer ellipsoidal approximation of S is “computationally
intractable” – in this case, it is di�cult just to check whether a given candidate ellipsoid contains
S.



MICP Example 2: SDP representation of ellipsoid take 2

! − # $% ! − # ≤ 1
⟺ !$%! − 2!$%# + #$%# ≤ 1
⟺ !$%! − 2!$%# + + ≤ 1

#$%# ≤ +
⟺ !$%! − 2!$, + + ≤ 1

,$%-., ≤ +
⟺ !$%! − 2!$, + + ≤ 1

+ ,$
, % ≽ 0

!

1 = {4 ∈ ℝ7: 4 − # $% 4 − # ≤ 1}, % ∈ ;<7

Vol(1) ∝ Det(%)-./G

, = %#

3.2. WHAT CAN BE EXPRESSED VIA LMI’S? 143

Since Z ⌫ 0 (see (3.2.2.b)), we have S
k

(Z)  Tr(Z), and combining these inequalities we get

S
k

(X)  Tr(Z) + sk.

The latter inequality, in view of (3.2.2.a)), implies S
k

(X)  t, and (i) is proved.

To prove (ii), assume that we are given X, t with S
k

(X)  t, and let us set s = �
k

(X).

Then the k largest eigenvalues of the matrix X�sI
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are nonnegative, and the remaining are

nonpositive. Let Z be a symmetric matrix with the same eigenbasis as X and such that the

k largest eigenvalues of Z are the same as those of X � sI
m

, and the remaining eigenvalues

are zeros. The matrices Z and Z � X + sI
m

are clearly positive semidefinite (the first by

construction, and the second since in the eigenbasis of X this matrix is diagonal with the first
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�X,
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k
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✓
B CT

C D

◆
be a symmetric matrix with k⇥ k block B and `⇥ ` block D. Assume that B is positive definite.
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is positive (semi)definite (this matrix is called the Schur complement of B in A).

Proof. The positive semidefiniteness of A is equivalent to the fact that

0  (xT , yT )
✓
B CT

C D

◆✓
x
y

◆
= xTBx+ 2xTCT y + yTDy 8x 2 Rk, y 2 R`,

or, which is the same, to the fact that

inf
x2Rk

h
xTBx+ 2xTCT y + yTDy

i
� 0 8y 2 R`.

Since B is positive definite by assumption, the infimum in x can be computed explicitly for every
fixed y: the optimal x is �B�1CT y, and the optimal value is

yTDy � yTCB�1CT y = yT [D � CB�1CT ]y.

The positive definiteness/semidefiniteness of A is equivalent to the fact that the latter ex-
pression is, respectively, positive/nonnegative for every y 6= 0, i.e., to the positive definite-
ness/semidefiniteness of the Schur complement of B in A.
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k
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S
k
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k
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k
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k

(X).
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m
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m
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m
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m

�X,

i.e., nonnegative). Thus, the matrix Z and the real s we have built satisfy (3.2.2.b, c). In
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k
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k
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3.7.2.2 Outer ellipsoidal approximation of a finite set

Let S be a polyhedral set given as a convex hull of a finite set of points:

S = Conv{x
1

, ..., xm}.

Proposition 3.7.2 Assume that S is a full-dimensional polytope (i.e., possesses a nonempty
interior). Then the smallest volume ellipsoid containing S is

E = {x | (x� c⇤)
TD⇤(x� c⇤)  1},

where c⇤, D⇤ are given by an optimal solution (t⇤, Z⇤, z⇤, s⇤) to the semidefinite program

maximize t
s.t.
(a) t  (DetZ)1/n,
(b) Z ⌫ 0,

(c)
✓
s zT

z Z

◆
⌫ 0,

(d) xTi Zxi � 2xTi z + s  1, i = 1, ...,m,

(Out)

with the design variables Z 2 Sn, z 2 Rn, t, s 2 R via the relations

D⇤ = Z⇤; c⇤ = Z�1

⇤ z⇤.

Note that (Out) indeed is a semidefinite program, cf. Proposition 3.7.1.

Proof. Indeed, let us pass in the description (3.7.2) from the “parameters” D, c to the param-
eters Z = D, z = Dc, thus coming to the representation

E = {x | xTZx� 2xT z + zTZ�1z  1}. (!)

The ellipsoid of the latter type contains the points x
1

, ..., xm if and only if

xTi Zxi � 2xTi z + zTZ�1z  1, i = 1, ...,m,

or, which is the same, if and only if there exists s � zTZ�1z such that

xTi Zxi � 2xTi z + s  1, i = 1, ...,m.

Recalling Lemma on the Schur Complement, we see that the constraints (Out.b�d) say exactly
that the ellipsoid (!) contains the points x

1

, ..., xm. Since the volume of such an ellipsoid is
(DetZ)�1/2, (Out) is the problem of maximizing a negative power of the volume of an ellipsoid
containing the finite set {x

1

, ..., xm}, i.e., the problem of finding the smallest volume ellipsoid
containing this finite set. It remains to note that an ellipsoid is convex, so that it is exactly the
same – to say that it contains a finite set {x

1

, ..., xm} and to say that it contains the convex hull
of this finite set.

We see that if S is a polytope given as a convex hull of a finite set, then the problem of
the best outer ellipsoidal approximation of S is an explicit semidefinite program and as such
can be e�ciently solved. In contrast to this, if S is a polytope given by a list of inequality
constraints, then the problem of the best outer ellipsoidal approximation of S is “computationally
intractable” – in this case, it is di�cult just to check whether a given candidate ellipsoid contains
S.

Schur Complement Lemma:

⟺
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MICP Example 2: SDP representation of determinant part 1

! "
"# $

≽ 0,

diag " = diag(!)
" is upper triangular
! is diagonal

8

9 = {; ∈ ℝ>: ; − A #$ ; − A ≤ 1}, $ ∈ EF>

Vol(9) ∝ Det($)JK/M

N
OPK

>
!O,O ≤ Det($)

⟺

(!)



MICP Example 2: SDP representation of determinant part 2a

!

" = {% ∈ ℝ(: % − + ,- % − + ≤ 1}, - ∈ 23(

Vol(") ∝ Det(-)=>/@ A
BC>

(
DB,B ≤ Det(-)

E ≤ A
BC>

(
DB,B

>/( F>,>@ ≤ D>,> G D@,@
F>,@@ ≤ DH,H G DI,I

⋮
F>,(/@
@ ≤ D((=>,(=>) G D(,(

E@ ≤ FK=>,> G FK=>,@⋯

⟺

(!)



MICP Example 2: SDP representation of determinant part 2a

!

" = {% ∈ ℝ(: % − + ,- % − + ≤ 1}, - ∈ 23
(

Vol(") ∝ Det(-)=>/@ A
BC>

(
DB,B ≤ Det(-)

(!)

min Vol(")

max Det(-) >/(

max J
K. J.

(")
(#) SDP

SDP

RSOCP

⟺ ⟺

SDP



MICP Example 2: SDP representation of determinant part 2b

!

" = {% ∈ ℝ(: % − + ,- % − + ≤ 1}, - ∈ 23(

Vol(") ∝ Det(-)=>/@ A
BC>

(
DB,B ≤ Det(-)

E ≤F
BC>

(
Log (IB,B) ≤ Log Det(-)

E ≤F
BC>

(
Log (IB,B)

E ≤F
BC>

(
EB

IB,B , 1, EB ∈ JKLM

⟺ (!)



MICP Example 2: SDP representation of determinant part 2b

!

" = {% ∈ ℝ(: % − + ,- % − + ≤ 1}, - ∈ 23
(

Vol(") ∝ Det(-)=>/@ A
BC>

(

DB,B ≤ Det(-)

(!)

min Vol(")

max Log Det(-)

max L
M. L.

(")
(#) SDP

SDP

EXP-Cone

⟺ ⟺

SDP + EXP



MICP Example 2: MI part = choose points

!

" = {% ∈ ℝ(: % − + ,- % − + ≤ 1}, - ∈ 23
(

Vol(") ∝ Det(-)=>/@

!,-! − 2!,B + D ≤ 1 ∀ ! ∈ F

D B,

B -
≽ 0

(!)

!,-! − 2!,B + D ≤ 1 +I 1 − JK ∀ ! ∈ F

∑K∈M JK ≥ 0.9 F

JK ∈ 0,1 ∀ ! ∈ F

D B,

B -
≽ 0

(")
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