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Lab

The setup

Physical process modeled as a linear dynamical system:

x(t + 1) = Ax(t) + Bu(t), x(t) ∈ Rn, u(t) ∈ Rm, t ∈ N0.

A total of p sensors monitor state of plant (y(t) ∈ Rp):

y(t) = Cx(t)

+ e(t).︸︷︷︸
attack
vector

Some sensors are attacked:

ei (t) 6= 0 −→ sensor i is attacked at time t ;

If sensor i is attacked, ei (t) can be arbitrary (no boundedness assumption,
no stochastic model, etc.);

Set of attacked sensors (unknown) has cardinality q.
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Questioning the setup

Are physical systems really linear?

No! Our first results used ideas from compressed sensing and error
correction over the reals, hence linearity.
The current understanding allows for nonlinear systems, conceptually.

Why is the set of attacked sensors fixed throughout the game?

Compromising a sensor takes time.
While the attacker is working to compromise one additional sensor we can
treat the set of attacked sensors as fixed.

Is the attacker attacking the sensors or the communication between the sensors
and the controller?

Our results are independent of where and how the attack is conducted.

Can you not protect the sensors or the communication using cyber-security
techniques?
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Attacking sensors

Noninvasive spoofing attacks for Anti-Lock Braking systems
Y. Shoukry, P. Martin, P. Tabuada, and M. Srivastava.
Workshop on Cryptographic Hardware and Embedded Systems, 2013 (CHES 2013).
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A separation result

The attacks are arbitrary, in particular they can be nonlinear and time-varying.

Do we need to design a nonlinear and time-varying controller to be resilient to
attacks?

Theorem

Consider the linear control system:

x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t) + e(t).

If there exists a controller u(t) = φ(t , y(0), . . . , y(t)) rendering the closed-loop system
exponentially stablea despite an adversarial attack to q sensors then there exists a
decoder D : Rn×p → Rn that correctly reconstructs the state in n steps:

x(t − n + 1) = D(y(t − n + 1), . . . , y(t)).

a
for a rate of decay smaller than the smallest eigenvalue of A.
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y(t) = Cx(t) + e(t).

If there exists a controller u(t) = φ(t , y(0), . . . , y(t)) rendering the closed-loop system
exponentially stablea despite an adversarial attack to q sensors then there exists a
decoder D : Rn×p → Rn that correctly reconstructs the state in n steps:

x(t − n + 1) = D(y(t − n + 1), . . . , y(t)).

a
for a rate of decay smaller than the smallest eigenvalue of A.

We can design a controller resilient to attacks in two steps:

1 design the decoder (observer) D;

2 design a linear static controller.
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Error correction

x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t) + e(t)

We assume the input to be known since we design the controller. For simplicity
we will take u(t) = 0 for all t ∈ N0;

A decoder (observer) D processes observations y(0), . . . , y(T − 1) and
produces an estimate of the initial state x(0).

We say that a decoder D : (Rp)T → Rn corrects q errors after T steps if it is
resilient against any attack of q sensors, i.e., if for any initial condition x(0) ∈ Rn,
and for any attack vectors e(0), . . . , e(T − 1) on q sensors we have:

D(y(0), . . . , y(T − 1)) = x(0).

We say that q errors are correctable, for the system (A,C), if there exists a
decoder that can correct q errors.

Note: correcting q = 0 errors is equivalent to observability.
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Correction of q errors
Necessary and sufficient conditions

A pair (A,C) is said to be q-sparse observable if all the pairs (A,C′), obtained
from (A,C) by removing q rows from C, remain observable.

Theorem
For any pair (A,C), q errors are correctable iff (A,C) is 2q-sparse observable.

No more than p/2 errors can be corrected since 2q is necessarily smaller than p.
This is a fundamental limitation: if an attacker has access to more than half of
the sensors (> p/2), it is impossible to reconstruct the state.
Information theoretic interpretation: if a pair (A,C) is θ-sparse observable, the
Hamming distance between two sequences of outputs is at least θ + 1.
Can we efficiently check sparse observability?

Proposition
Let A be a diagonalizable matrix with eigenvalues of different magnitudes. Then, for
any C of compatible dimensions, q errors are correctable for the pair (A,C) iff
|supp(Cv)| > 2q for every eigenvector v of A.
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State reconstruction under sensor attacks
Convex relaxation approach

First approach: decoding as an `0-optimization problem. Use `0 → `1 relaxation.

Example:
IEEE 14-bus power network (5 generators, 14 buses);
n = 2× 5 = 10 states for the rotor angles δi and the frequencies dδi/dt of
each generator i ;
p = 35 sensors to measure: real power injections at every bus (14
sensors), real power flows along every branch (20 sensors), rotor angle at
generator 1 (1 sensor) 1.
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fraction of initial conditions
recovered in less than 10 steps

1
cf. [Pasqualetti, Dorfler, Bullo 2010]. Thanks to Fabio Pasqualetti from UCR for the data!
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0.8

1

number of attacked sensors (q)

fr
ac

tio
n

fraction of initial conditions
recovered in less than 10 steps

1
cf. [Pasqualetti, Dorfler, Bullo 2010]. Thanks to Fabio Pasqualetti from UCR for the data!
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Lab

State reconstruction under sensor attacks
A Satisfiability Modulo Theory Approach

System Dynamics:

Σa

{
x(t + 1) = Ax(t)
y(t) = Cx(t) + a(t)

Collect τ measurements:

Yi =

{
Oix + Ei if sensor i is under attack,
Oix if sensor i is attack-free

For each individual sensor, we define a binary indicator variable bi ∈ B by
declaring bi = 1 when the i th sensor is under attack and bi = 0 otherwise.

Problem (secure state-estimation)
For the linear control system under attack Σa, construct η = (x , b) ∈ Rn × Bp such that
η |= φ, i.e., η satisfies the formula φ defined by:

φ ::=

p∧
i=1

(
¬bi ⇒ ‖Yi −Oix‖2

2 ≤ 0

) ∧ ( p∑
i=1

bi ≤ q

)
.

Collect τ measurements:


yi (t − τ + 1)

yi (t − τ)
...

yi (t)


︸ ︷︷ ︸

Yi

=


Ci

CiA
...

CiAτ−1


︸ ︷︷ ︸

Oi

x +


ai (t − τ + 1)

ai (t − τ)
...

ai (t)


︸ ︷︷ ︸

Ei
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Lab

State reconstruction under sensor attacks
A Satisfiability Modulo Theory Approach: Lazy SMT Architecture I

SMT = pB-SAT solver + T -Solver.

pB-SAT solver: solves the “boolean
version” of the problem.

Original formula:

φ ::=

p∧
i=1

(
¬bi ⇒ ‖Yi −Oi x‖

2
2 ≤ 0

)

∧( p∑
i∈1

bi ≤ q

)
.

Replace non-boolean
variables with boolean ones

φinitial ::=

p∧
i=1

(
¬bi ⇒ ci

)∧( p∑
i=1

bi ≤ q

)

Pass φinitial to the SAT solver.

pseudo
Boolean

(pB)
SAT-solver

T -SOLVE.CHECK

T -SOLVE.CERTIFICATE

T -SOLVE

IMHOTEP-SMT

φinitial

{(
Y1,O1, ‖Ψ1‖2

2

)
. . .
(

Yp,Op, ‖Ψp‖2
2

)}

η = (x , b)
b, I

I

φcert
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Lab

State reconstruction under sensor attacks
A Satisfiability Modulo Theory Approach: Lazy SMT Architecture II

pB-SAT solver returns an
assignment for the variable b.

We extract which sensors are
“hypothesized” to be attack free I.

Check this assignment.

1: Solve:
x := argminx∈Rn ‖YI −OIx‖2

2

2: if ‖YI −OIx‖2
2 = 0 then

3: status = SAT; ©

4: else
5: status = UNSAT; §

6: end if
7: return (status, x);

pseudo
Boolean

(pB)
SAT-solver

T -SOLVE.CHECK

T -SOLVE.CERTIFICATE

T -SOLVE

IMHOTEP-SMT

φinitial

{(Y1,O1) . . . (Yp,Op)}

b, I

η = (x , b)

I

φcert
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Lab

State reconstruction under sensor attacks
A Satisfiability Modulo Theory Approach: Lazy SMT Architecture III

Generate “theory lemma”, “counter
example”, or “UNSAT certificate”.

φtriv-cert =
∑
i∈I

bi ≥ 1

Add this “certificate” to the original
constraints:

φ := φinitial ∧ φtriv-cert

pseudo
Boolean

(pB)
SAT-solver

T -SOLVE.CHECK

T -SOLVE.CERTIFICATE

T -SOLVE

IMHOTEP-SMT

φinitial {(Y1,O1) . . . (Yp,Op)}

b, I η = (x , b)

I

φcert

REPEAT
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Lab

State reconstruction under sensor attacks
A Satisfiability Modulo Theory Approach: Termination and performance

System Dynamics:

Σa

{
x(t + 1) = Ax(t)
y(t) = Cx(t) + a(t)

pseudo
Boolean

(pB)
SAT-solver

T -SOLVE.CHECK

T -SOLVE.CERTIFICATE

T -SOLVE

IMHOTEP-SMT

φinitial {(Y1,O1) , . . . , (Yp,Op)}

η = (x, b)
b, I = supp(b)

I

φcert

Proposition
Let the linear dynamical system Σa be 2q-sparse observable. Then, IMHOTEP-SMT:

terminates,

identifies the attacked sensors,

and reconstructs the state.

Moreover, the number of iterations is upper bounded by
∑q

s=0

(p
s

)
.
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Lab

State reconstruction under sensor attacks
A Satisfiability Modulo Theory Approach: UNSAT certificates

Why is performance bad?

φtriv-cert =
∑
i∈I

bi ≥ 1

To enhance performance, we need to generate compact certificates.

Lemma
Let the linear dynamical system Σa be 2q-sparse observable. If T -SOLVE.CHECK(I)
is UNSAT then there exists a subset I ⊂ supp(b) with |I| ≤ p − 2q + 1 such that
T -SOLVE.CHECK(Itemp) is also UNSAT.

Trivial certificates have p − q sensors.

The proof of this lemma is constructive.

In practice we can do better by exploiting the convex geometry (observability
Gramian).
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Lab

State reconstruction under sensor attacks
A Satisfiability Modulo Theory Approach: UNSAT certificates

pseudo
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φcert

Theorem
Let the linear dynamical system Σa be 2q-sparse observable. Then, IMHOTEP-SMT:

terminates,

identifies the attacked sensors,

and reconstructs the state.

Moreover, the number of iterations is upper bounded by
( p

p−2q+1

)
(compare to:∑q

s=0

(p
s

)
).
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Lab

State reconstruction under sensor attacks
A Satisfiability Modulo Theory Approach: Simulation results

Random system with 25 states 60
sensors and an increasing number
of attacked sensors.

1 5 10 15 20

0

100

200

300

400

500

Number of attacked sensors q

N
um

be
ro

fi
te
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tio

ns

φtriv-cert φconf-cert φconf-cert ∧ φagree-cert

Random systems with 25 states,
1/3 of sensors under attack, and
increasing number of sensors.
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State reconstruction under sensor attacks
A Satisfiability Modulo Theory Approach: Simulation results

Random system with 25 states 60
sensors and an increasing number
of attacked sensors.
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State reconstruction under sensor attacks
A Satisfiability Modulo Theory Approach: Simulation results

Comparison with 2 convex-relaxation algorithms and 2 logic-based encodings.

Random systems with 60 sensors
(20 under attack) and an increasing
number of states.
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State reconstruction under sensor attacks
A Satisfiability Modulo Theory Approach: Examples

Paulo Tabuada (CyPhyLab - UCLA) Secure CPS Grid Science 2019 19 / 22



Lab

State reconstruction under sensor attacks
A Satisfiability Modulo Theory Approach: Some extensions

Stochastic noise:

combine Kalman filters with SMT solving;
optimal performance: as good as a minimum
mean squared error (MMSE) estimator that
knows the attacked sensors1.

Nonlinear systems: differential flatness and
applications to quadcopters2.

1 Secure State Estimation Against Sensor Attacks in the Presence of Noise
Shaunak Mishra, Yasser Shoukry, Nikhil Karamchandani, Suhas Diggavi, Paulo Tabuada
IEEE Transactions on Control of Network Systems, 4(1), 49-59, 2017
Special issue on Secure Control of Cyber-Physical Systems

2 Secure State Reconstruction in Differentially Flat Systems Under Sensor Attacks Using Satisfiability Modulo Theory Solving
Y. Shoukry, P. Nuzzo, N. Bezzo, A. L. Sangiovanni-Vincentelli, S. A. Seshia, P. Tabuada
IEEE Conference on Decision and Control, 2015.
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Securing Cyber-Physical Systems
Final thoughts

Security for CPS is quite different from cyber-security, e.g., there are CPS
attacks for which there are no cyber-security defenses;

Cyber-security is needed for CPS but CPS-security is the last line of defense.

Challenging technical problems mixing continuous and discrete variables.

These techniques led1 to Satisfiability Modulo Convex optimization (SMC), a
new tool capable of handling many of these continuous+discrete challenges
across a wide range of application domains (robot motion planning, etc).

1 SMC: Satisfiability Modulo Convex Programming
Yasser Shoukry, Pierluigi Nuzzo, Alberto Sangiovanni-Vincentelli, Sanjit A. Seshia, George J. Pappas, Paulo Tabuada
Proceedings of the IEEE, 106(9), 2018.
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