Secure state-estimation and control for cyber-physical systems under adversarial attacks

Paulo Tabuada, Yasser Shoukry, and several other collaborators

Cyber-Physical Systems Laboratory
Department of Electrical Engineering
University of California at Los Angeles
The setup

- Physical process modeled as a linear dynamical system:

\[x(t + 1) = Ax(t) + Bu(t), \quad x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, t \in \mathbb{N}_0. \]
The setup

- Physical process modeled as a linear dynamical system:
 \[x(t + 1) = Ax(t) + Bu(t), \quad x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, t \in \mathbb{N}_0. \]

- A total of \(p \) sensors monitor state of plant (\(y(t) \in \mathbb{R}^p \)):
 \[y(t) = Cx(t) \]
The setup

- Physical process modeled as a linear dynamical system:
 \[x(t + 1) = Ax(t) + Bu(t), \quad x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, t \in \mathbb{N}_0. \]

- A total of \(p \) sensors monitor state of plant \(y(t) \in \mathbb{R}^p \):
 \[y(t) = Cx(t) + e(t). \]

- Some sensors are attacked:
 - \(e_i(t) \neq 0 \longrightarrow \) sensor \(i \) is attacked at time \(t \);
The setup

- Physical process modeled as a linear dynamical system:
 \[x(t + 1) = Ax(t) + Bu(t), \quad x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, t \in \mathbb{N}_0. \]

- A total of \(p \) sensors monitor state of plant \((y(t) \in \mathbb{R}^p) \):
 \[y(t) = Cx(t) + e(t). \]

- Some sensors are attacked:
 - \(e_i(t) \neq 0 \implies \) sensor \(i \) is attacked at time \(t \);
 - If sensor \(i \) is attacked, \(e_i(t) \) can be arbitrary (no boundedness assumption, no stochastic model, etc.).
The setup

- Physical process modeled as a linear dynamical system:
 \[x(t + 1) = Ax(t) + Bu(t), \quad x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, t \in \mathbb{N}_0. \]

- A total of \(p \) sensors monitor state of plant \(y(t) \in \mathbb{R}^p \):
 \[y(t) = Cx(t) + e(t). \]

- Some sensors are attacked:
 - \(e_i(t) \neq 0 \rightarrow \) sensor \(i \) is attacked at time \(t \);
 - If sensor \(i \) is attacked, \(e_i(t) \) can be arbitrary (no boundedness assumption, no stochastic model, etc.);

- Set of attacked sensors (unknown) has cardinality \(q \).
Questioning the setup

- Are physical systems really linear?

No! Our first results used ideas from compressed sensing and error correction over the reals, hence linearity. The current understanding allows for nonlinear systems, conceptually.

Why is the set of attacked sensors fixed throughout the game?

Compromising a sensor takes time. While the attacker is working to compromise one additional sensor, we can treat the set of attacked sensors as fixed.

Is the attacker attacking the sensors or the communication between the sensors and the controller?

Our results are independent of where and how the attack is conducted.

Can you not protect the sensors or the communication using cyber-security techniques?
Questioning the setup

- Are physical systems really linear?
 - No! Our first results used ideas from compressed sensing and error correction over the reals, hence linearity.
 - The current understanding allows for nonlinear systems, conceptually.
Questioning the setup

- Are physical systems really linear?
 - No! Our first results used ideas from compressed sensing and error correction over the reals, hence linearity.
 - The current understanding allows for nonlinear systems, conceptually.
- Why is the set of attacked sensors fixed throughout the game?
Questioning the setup

- Are physical systems really linear?
 - No! Our first results used ideas from compressed sensing and error correction over the reals, hence linearity.
 - The current understanding allows for nonlinear systems, conceptually.

- Why is the set of attacked sensors fixed throughout the game?
 - Compromising a sensor takes time.
 - While the attacker is working to compromise one additional sensor we can treat the set of attacked sensors as fixed.
Questioning the setup

- Are physical systems really linear?
 - No! Our first results used ideas from compressed sensing and error correction over the reals, hence linearity.
 - The current understanding allows for nonlinear systems, conceptually.

- Why is the set of attacked sensors fixed throughout the game?
 - Compromising a sensor takes time.
 - While the attacker is working to compromise one additional sensor we can treat the set of attacked sensors as fixed.

- Is the attacker attacking the sensors or the communication between the sensors and the controller?
Questioning the setup

- Are physical systems really linear?
 - No! Our first results used ideas from compressed sensing and error correction over the reals, hence linearity.
 - The current understanding allows for nonlinear systems, conceptually.

- Why is the set of attacked sensors fixed throughout the game?
 - Compromising a sensor takes time.
 - While the attacker is working to compromise one additional sensor we can treat the set of attacked sensors as fixed.

- Is the attacker attacking the sensors or the communication between the sensors and the controller?
 - Our results are independent of where and how the attack is conducted.
Questioning the setup

- Are physical systems really linear?
 - No! Our first results used ideas from compressed sensing and error correction over the reals, hence linearity.
 - The current understanding allows for nonlinear systems, conceptually.

- Why is the set of attacked sensors fixed throughout the game?
 - Compromising a sensor takes time.
 - While the attacker is working to compromise one additional sensor we can treat the set of attacked sensors as fixed.

- Is the attacker attacking the sensors or the communication between the sensors and the controller?
 - Our results are independent of where and how the attack is conducted.

- Can you not protect the sensors or the communication using cyber-security techniques?
Attacking sensors

Wheel Speed Sensor
Tone Wheel
Attacking sensors

Noninvasive spoofing attacks for Anti-Lock Braking systems
Attacking sensors

Noninvasive spoofing attacks for Anti-Lock Braking systems
Attacking sensors

Noninvasive spoofing attacks for Anti-Lock Braking systems
A separation result

- The attacks are arbitrary, in particular they can be nonlinear and time-varying.
- Do we need to design a nonlinear and time-varying controller to be resilient to attacks?
A separation result

- The attacks are arbitrary, in particular they can be nonlinear and time-varying.
- Do we need to design a nonlinear and time-varying controller to be resilient to attacks?

Theorem

Consider the linear control system:

\[
\begin{align*}
x(t + 1) &= Ax(t) + Bu(t) \\
y(t) &= Cx(t) + e(t).
\end{align*}
\]

If there exists a controller \(u(t) = \phi(t, y(0), \ldots, y(t)) \) rendering the closed-loop system exponentially stable\(^a\) despite an adversarial attack to \(q \) sensors then there exists a decoder \(D : \mathbb{R}^{n \times p} \to \mathbb{R}^n \) that correctly reconstructs the state in \(n \) steps:

\[
x(t - n + 1) = D(y(t - n + 1), \ldots, y(t)).
\]

\(^a\)for a rate of decay smaller than the smallest eigenvalue of \(A \).
A separation result

Theorem

Consider the linear control system:

\[x(t + 1) = Ax(t) + Bu(t) \]
\[y(t) = Cx(t) + e(t). \]

If there exists a controller \(u(t) = \phi(t, y(0), \ldots, y(t)) \) rendering the closed-loop system exponentially stable\(^a\) despite an adversarial attack to \(q \) sensors then there exists a decoder \(D : \mathbb{R}^{n \times p} \rightarrow \mathbb{R}^n \) that correctly reconstructs the state in \(n \) steps:

\[x(t - n + 1) = D(y(t - n + 1), \ldots, y(t)). \]

\(^a\) for a rate of decay smaller than the smallest eigenvalue of \(A \).

We can design a controller resilient to attacks in two steps:

1. design the decoder (observer) \(D \);
2. design a linear static controller.
Error correction

\[x(t + 1) = Ax(t) + Bu(t) \]
\[y(t) = Cx(t) + e(t) \]

We assume the input to be known since we design the controller. For simplicity we will take \(u(t) = 0 \) for all \(t \in \mathbb{N}_0 \);

A decoder (observer) \(D \) processes observations \(y(0), \ldots, y(T-1) \) and produces an estimate of the initial state \(x(0) \).

We say that a decoder \(D : (\mathbb{R}^p)^T \rightarrow \mathbb{R}^n \) corrects \(q \) errors after \(T \) steps if it is resilient against any attack of \(q \) sensors, i.e., if for any initial condition \(x(0) \in \mathbb{R}^n \), and for any attack vectors \(e(0), \ldots, e(T-1) \) on \(q \) sensors we have:

\[D(y(0), \ldots, y(T-1)) = x(0). \]

We say that \(q \) errors are correctable, for the system \((A, C)\), if there exists a decoder that can correct \(q \) errors.

Note: correcting \(q = 0 \) errors is equivalent to observability.
We assume the input to be known since we design the controller. For simplicity we will take \(u(t) = 0 \) for all \(t \in \mathbb{N}_0 \);
Error correction

\[
x(t + 1) = Ax(t) \\
y(t) = Cx(t) + e(t)
\]

- We assume the input to be known since we design the controller. For simplicity we will take \(u(t) = 0 \) for all \(t \in \mathbb{N}_0 \);
Error correction

\[
x(t + 1) = Ax(t)
\]
\[
y(t) = Cx(t) + e(t)
\]

- We assume the input to be known since we design the controller. For simplicity we will take \(u(t) = 0 \) for all \(t \in \mathbb{N}_0 \);
- A decoder (observer) \(D \) processes observations \(y(0), \ldots, y(T - 1) \) and produces an estimate of the initial state \(x(0) \).
$$x(t+1) = Ax(t)$$
$$y(t) = Cx(t) + e(t)$$

- We assume the input to be known since we design the controller. For simplicity we will take $u(t) = 0$ for all $t \in \mathbb{N}_0$;

- A decoder (observer) D processes observations $y(0), \ldots, y(T-1)$ and produces an estimate of the initial state $x(0)$.

- We say that a decoder $D : (\mathbb{R}^p)^T \rightarrow \mathbb{R}^n$ corrects q errors after T steps if it is resilient against any attack of q sensors, i.e., if for any initial condition $x(0) \in \mathbb{R}^n$, and for any attack vectors $e(0), \ldots, e(T-1)$ on q sensors we have:

$$D(y(0), \ldots, y(T-1)) = x(0).$$
Error correction

\[
x(t + 1) = Ax(t) \\
y(t) = Cx(t) + e(t)
\]

- We assume the input to be known since we design the controller. For simplicity we will take \(u(t) = 0 \) for all \(t \in \mathbb{N}_0 \);

- A decoder (observer) \(D \) processes observations \(y(0), \ldots, y(T - 1) \) and produces an estimate of the initial state \(x(0) \).

- We say that a decoder \(D : (\mathbb{R}^p)^T \rightarrow \mathbb{R}^n \) corrects \(q \) errors after \(T \) steps if it is resilient against any attack of \(q \) sensors, i.e., if for any initial condition \(x(0) \in \mathbb{R}^n \), and for any attack vectors \(e(0), \ldots, e(T - 1) \) on \(q \) sensors we have:

 \[
 D(y(0), \ldots, y(T - 1)) = x(0).
 \]

- We say that \(q \) errors are correctable, for the system \((A, C)\), if there exists a decoder that can correct \(q \) errors.
Error correction

\[x(t + 1) = Ax(t) \]
\[y(t) = Cx(t) + e(t) \]

- We assume the input to be known since we design the controller. For simplicity we will take \(u(t) = 0 \) for all \(t \in \mathbb{N}_0 \);
- A decoder (observer) \(D \) processes observations \(y(0), \ldots, y(T - 1) \) and produces an estimate of the initial state \(x(0) \).
- We say that a decoder \(D : (\mathbb{R}^p)^T \rightarrow \mathbb{R}^n \) corrects \(q \) errors after \(T \) steps if it is resilient against any attack of \(q \) sensors, i.e., if for any initial condition \(x(0) \in \mathbb{R}^n \), and for any attack vectors \(e(0), \ldots, e(T - 1) \) on \(q \) sensors we have:
 \[D(y(0), \ldots, y(T - 1)) = x(0). \]
- We say that \(q \) errors are correctable, for the system \((A, C)\), if there exists a decoder that can correct \(q \) errors.
- Note: correcting \(q = 0 \) errors is equivalent to observability.
Correction of q errors

Necessary and sufficient conditions

- A pair (A, C) is said to be q-sparse observable if all the pairs (A, C'), obtained from (A, C) by removing q rows from C, remain observable.

Theorem

For any pair (A, C), q errors are correctable iff (A, C) is 2^q-sparse observable.

No more than $p/2$ errors can be corrected since 2^q is necessarily smaller than p.

This is a fundamental limitation: if an attacker has access to more than half of the sensors ($> p/2$), it is impossible to reconstruct the state.

Information theoretic interpretation: if a pair (A, C) is θ-sparse observable, the Hamming distance between two sequences of outputs is at least $\theta + 1$.

Can we efficiently check sparse observability?

Proposition

Let A be a diagonalizable matrix with eigenvalues of different magnitudes. Then, for any C of compatible dimensions, q errors are correctable for the pair (A, C) iff $|\text{supp}(Cv)| > 2^q$ for every eigenvector v of A.
Correction of q errors
Necessary and sufficient conditions

A pair (A, C) is said to be q-sparse observable if all the pairs (A, C'), obtained from (A, C) by removing q rows from C, remain observable.

Theorem

For any pair (A, C), q errors are correctable iff (A, C) is $2q$-sparse observable.
Correction of q errors
Necessary and sufficient conditions

- A pair (A, C) is said to be q-sparse observable if all the pairs (A, C'), obtained from (A, C) by removing q rows from C, remain observable.

Theorem

For any pair (A, C), q errors are correctable iff (A, C) is $2q$-sparse observable.

- No more than $p/2$ errors can be corrected since $2q$ is necessarily smaller than p.

- A pair (A, C) is said to be q-sparse observable if all the pairs (A, C'), obtained from (A, C) by removing q rows from C, remain observable.
Correction of q errors

Necessary and sufficient conditions

- A pair (A, C) is said to be q-sparse observable if all the pairs (A, C'), obtained from (A, C) by removing q rows from C, remain observable.

Theorem

For any pair (A, C), q errors are correctable iff (A, C) is $2q$-sparse observable.

- No more than $p/2$ errors can be corrected since $2q$ is necessarily smaller than p.
- This is a fundamental limitation: if an attacker has access to more than half of the sensors ($> p/2$), it is impossible to reconstruct the state.
Correction of q errors
Necessary and sufficient conditions

- A pair (A, C) is said to be q-sparse observable if all the pairs (A, C'), obtained from (A, C) by removing q rows from C, remain observable.

Theorem

For any pair (A, C), q errors are correctable iff (A, C) is $2q$-sparse observable.

- No more than $p/2$ errors can be corrected since $2q$ is necessarily smaller than p.
- This is a fundamental limitation: if an attacker has access to more than half of the sensors (> $p/2$), it is impossible to reconstruct the state.
- Information theoretic interpretation: if a pair (A, C) is θ-sparse observable, the Hamming distance between two sequences of outputs is at least $\theta + 1$.

Can we efficiently check sparse observability?

Proposition

Let A be a diagonalizable matrix with eigenvalues of different magnitudes. Then, for any C of compatible dimensions, q errors are correctable for the pair (A, C) iff $|\text{supp}(Cv)| > 2q$ for every eigenvector v of A.

Paulo Tabuada (CyPhyLab - UCLA)
Correction of \(q \) errors

Necessary and sufficient conditions

- A pair \((A, C)\) is said to be \(q \)-sparse observable if all the pairs \((A, C')\), obtained from \((A, C)\) by removing \(q \) rows from \(C \), remain observable.

Theorem

For any pair \((A, C)\), \(q \) errors are correctable iff \((A, C)\) is \(2q \)-sparse observable.

- No more than \(p/2 \) errors can be corrected since \(2q \) is necessarily smaller than \(p \).
- **This is a fundamental limitation:** if an attacker has access to more than half of the sensors (> \(p/2 \)), it is impossible to reconstruct the state.
- **Information theoretic interpretation:** if a pair \((A, C)\) is \(\theta \)-sparse observable, the Hamming distance between two sequences of outputs is at least \(\theta + 1 \).
- Can we efficiently check sparse observability?
Correction of q errors

Necessary and sufficient conditions

- A pair (A, C) is said to be q-sparse observable if all the pairs (A, C'), obtained from (A, C) by removing q rows from C, remain observable.

Theorem

For any pair (A, C), q errors are correctable iff (A, C) is $2q$-sparse observable.

- No more than $p/2$ errors can be corrected since $2q$ is necessarily smaller than p.
- This is a fundamental limitation: if an attacker has access to more than half of the sensors ($> p/2$), it is impossible to reconstruct the state.
- Information theoretic interpretation: if a pair (A, C) is θ-sparse observable, the Hamming distance between two sequences of outputs is at least $\theta + 1$.
- Can we efficiently check sparse observability?

Proposition

Let A be a diagonalizable matrix with eigenvalues of different magnitudes. Then, for any C of compatible dimensions, q errors are correctable for the pair (A, C) iff $|\text{supp}(Cv)| > 2q$ for every eigenvector v of A.
State reconstruction under sensor attacks
Convex relaxation approach

- **First approach:** decoding as an ℓ_0-optimization problem. Use $\ell_0 \rightarrow \ell_1$ relaxation.

1 cf. [Pasqualetti, Dorfler, Bullo 2010]. Thanks to Fabio Pasqualetti from UCR for the data!
State reconstruction under sensor attacks
Convex relaxation approach

- **First approach:** decoding as an ℓ_0-optimization problem. Use $\ell_0 \rightarrow \ell_1$ relaxation.
- **Example:**
 - IEEE 14-bus power network (5 generators, 14 buses);
 - $n = 2 \times 5 = 10$ states for the rotor angles δ_i and the frequencies $d\delta_i/dt$ of each generator i;
 - $p = 35$ sensors to measure: real power injections at every bus (14 sensors), real power flows along every branch (20 sensors), rotor angle at generator 1 (1 sensor).

1 cf. [Pasqualetti, Dorfler, Bullo 2010]. Thanks to Fabio Pasqualetti from UCR for the data!
State reconstruction under sensor attacks
Convex relaxation approach

- **First approach:** decoding as an ℓ_0-optimization problem. Use $\ell_0 \rightarrow \ell_1$ relaxation.

- **Example:**
 - IEEE 14-bus power network (5 generators, 14 buses);
 - $n = 2 \times 5 = 10$ states for the rotor angles δ_i and the frequencies $d\delta_i/dt$ of each generator i;
 - $p = 35$ sensors to measure: real power injections at every bus (14 sensors), real power flows along every branch (20 sensors), rotor angle at generator 1 (1 sensor) \(^1\).

\(^1\) cf. [Pasqualetti, Dorfler, Bullo 2010]. Thanks to Fabio Pasqualetti from UCR for the data!
State reconstruction under sensor attacks
A Satisfiability Modulo Theory Approach

System Dynamics:

\[\Sigma_a \begin{cases} x(t + 1) = A x(t) \\ y(t) = C x(t) + a(t) \end{cases} \]
State reconstruction under sensor attacks
A Satisfiability Modulo Theory Approach

System Dynamics:

$$\Sigma_A \begin{cases} x(t+1) = A x(t) \\ y(t) \end{cases}$$

Collect τ measurements:

$$Y_i = \begin{bmatrix} y_i(t-\tau+1) \\ y_i(t-\tau) \\ \vdots \\ y_i(t) \end{bmatrix} = \begin{bmatrix} C_i \\ C_iA \\ \vdots \\ C_iA^{\tau-1} \end{bmatrix} x + \begin{bmatrix} a_i(t-\tau+1) \\ a_i(t-\tau) \\ \vdots \\ a_i(t) \end{bmatrix}$$

For each individual sensor, we define a binary indicator variable $b_i \in B$ by declaring $b_i = 1$ when the ith sensor is under attack and $b_i = 0$ otherwise.

Problem (secure state-estimation)

For the linear control system under attack Σ_A, construct $\eta = (x, b) \in \mathbb{R}^n \times B^p$ such that $\eta | = \phi$, i.e., η satisfies the formula ϕ defined by:

$$\phi ::= p \land i=1 (\neg b_i \Rightarrow \|Y_i - O_i x\|_2^2 \leq 0) \land (p \sum i=1 b_i \leq q)$$
State reconstruction under sensor attacks
A Satisfiability Modulo Theory Approach

System Dynamics:
\[
\Sigma_a \begin{cases}
 x(t + 1) = Ax(t) \\
 y(t) = Cx(t) + a(t)
\end{cases}
\]

Collect \(\tau \) measurements:
\[
Y_i = \begin{cases}
 O_i x + E_i & \text{if sensor } i \text{ is under attack}, \\
 O_i x & \text{if sensor } i \text{ is attack-free}
\end{cases}
\]
State reconstruction under sensor attacks
A Satisfiability Modulo Theory Approach

System Dynamics:

\[\Sigma_a \begin{cases}
 x(t + 1) = Ax(t) \\
 y(t) = Cx(t) + a(t)
\end{cases} \]

Collect \(\tau \) measurements:

\[Y_i = \begin{cases}
 O_ix + E_i & \text{if sensor } i \text{ is under attack,} \\
 O_ix & \text{if sensor } i \text{ is attack-free}
\end{cases} \]

For each individual sensor, we define a binary indicator variable \(b_i \in \mathbb{B} \) by declaring \(b_i = 1 \) when the \(i \)th sensor is under attack and \(b_i = 0 \) otherwise.
State reconstruction under sensor attacks
A Satisfiability Modulo Theory Approach

System Dynamics:

\[\Sigma_a \begin{cases}
 x(t + 1) = Ax(t) \\
 y(t) = Cx(t) + a(t)
\end{cases} \]

Collect \(\tau \) measurements:

\[Y_i = \begin{cases}
 O_i x + E_i & \text{if sensor } i \text{ is under attack,} \\
 O_i x & \text{if sensor } i \text{ is attack-free}
\end{cases} \]

- For each individual sensor, we define a binary indicator variable \(b_i \in \mathbb{B} \) by declaring \(b_i = 1 \) when the \(i \)th sensor is under attack and \(b_i = 0 \) otherwise.

Problem (secure state-estimation)

For the linear control system under attack \(\Sigma_a \), construct \(\eta = (x, b) \in \mathbb{R}^n \times \mathbb{B}^p \) such that \(\eta \models \phi \), i.e., \(\eta \) satisfies the formula \(\phi \) defined by:

\[\phi ::= \bigwedge_{i=1}^{p} \left(\neg b_i \Rightarrow Y_i = O_i x \right) \land \left(\sum_{i=1}^{p} b_i \leq q \right) \].
State reconstruction under sensor attacks
A Satisfiability Modulo Theory Approach

System Dynamics:

\[\Sigma_a \begin{cases} x(t + 1) = Ax(t) \\ y(t) = Cx(t) + a(t) \end{cases} \]

Collect \(\tau \) measurements:

\[Y_i = \begin{cases} O_i x + E_i & \text{if sensor } i \text{ is under attack,} \\ O_i x & \text{if sensor } i \text{ is attack-free} \end{cases} \]

For each individual sensor, we define a binary indicator variable \(b_i \in \mathbb{B} \) by declaring \(b_i = 1 \) when the \(i \)th sensor is under attack and \(b_i = 0 \) otherwise.

Problem (secure state-estimation)

For the linear control system under attack \(\Sigma_a \), construct \(\eta = (x, b) \in \mathbb{R}^n \times \mathbb{B}^p \) such that \(\eta \models \phi \), i.e., \(\eta \) satisfies the formula \(\phi \) defined by:

\[\phi ::= \bigwedge_{i=1}^{p} \left(-b_i \Rightarrow \|Y_i - O_i x\|_2^2 \leq 0 \right) \bigwedge \left(\sum_{i=1}^{p} b_i \leq q \right). \]
State reconstruction under sensor attacks
A Satisfiability Modulo Theory Approach: Lazy SMT Architecture I

- SMT = pB-SAT solver + τ-Solver.

Original formula:

$\phi ::= p \land_{i=1} \left(\neg b_i \Rightarrow \|Y_i - O_i\|^2 \leq 0 \right) \land \left(p \sum_{i=1}^q b_i \leq q \right)$.

Replace non-boolean variables with boolean ones

$\phi_{initial} ::= p \land_{i=1} \left(\neg b_i \Rightarrow c_i \right) \land \left(p \sum_{i=1}^q b_i \leq q \right)$.

Pass $\phi_{initial}$ to the SAT solver.
State reconstruction under sensor attacks
A Satisfiability Modulo Theory Approach: Lazy SMT Architecture I

- SMT = pB-SAT solver + \mathcal{T}-Solver.
- pB-SAT solver: solves the “boolean version” of the problem.
State reconstruction under sensor attacks
A Satisfiability Modulo Theory Approach: Lazy SMT Architecture I

- SMT = pB-SAT solver + \(\mathcal{T} \)-Solver.
- pB-SAT solver: solves the “boolean version” of the problem.
 - Original formula:

 \[
 \phi ::= \bigwedge_{i=1}^{p} \left(-b_{i} \Rightarrow \|Y_{i} - O_{i}x\|_{2}^{2} \leq 0 \right) \wedge \left(\sum_{i=1}^{p} b_{i} \leq q \right).
 \]

```plaintext
φ := \bigwedge_{i=1}^{p} \left( -b_{i} \Rightarrow \|Y_{i} - O_{i}x\|_{2}^{2} \leq 0 \right) \wedge \left( \sum_{i=1}^{p} b_{i} \leq q \right).
```
SMT = pB-SAT solver + \mathcal{T}-Solver.

pB-SAT solver: solves the “boolean version” of the problem.

- Original formula:
 \[
 \phi := \bigwedge_{i=1}^{p} \left(\neg b_i \Rightarrow \| Y_i - O_i x \|_2^2 \leq 0 \right) \\
 \wedge \left(\sum_{i=1}^{p} b_i \leq q \right).
 \]

- Replace non-boolean variables with boolean ones
 \[
 \phi_{\text{initial}} := \bigwedge_{i=1}^{p} \left(\neg b_i \Rightarrow c_i \right) \wedge \left(\sum_{i=1}^{p} b_i \leq q \right)
 \]
State reconstruction under sensor attacks
A Satisfiability Modulo Theory Approach: Lazy SMT Architecture I

- SMT = pB-SAT solver + T-Solver.
- pB-SAT solver: solves the "boolean version" of the problem.
 - Original formula:
 \[
 \phi := \bigwedge_{i=1}^{p} \left(\neg b_i \Rightarrow \| Y_i - O_i x \|^2 \leq 0 \right) \land \left(\sum_{i=1}^{p} b_i \leq q \right).
 \]
 - Replace non-boolean variables with boolean ones
 \[
 \phi_{\text{initial}} := \bigwedge_{i=1}^{p} \left(\neg b_i \Rightarrow c_i \right) \land \left(\sum_{i=1}^{p} b_i \leq q \right)
 \]
 - Pass ϕ_{initial} to the SAT solver.
- pB-SAT solver returns an assignment for the variable b.
- We extract which sensors are “hypothesized” to be attack free I.
State reconstruction under sensor attacks
A Satisfiability Modulo Theory Approach: Lazy SMT Architecture II

- pB-SAT solver returns an assignment for the variable b.
- We extract which sensors are “hypothesized” to be attack free I.
- Check this assignment.

\[
\begin{align*}
\text{pseudo Boolean (pB) SAT-solver} & \quad \phi_{\text{initial}} \quad \{(Y_1, O_1) \ldots (Y_p, O_p)\} \\
\text{T-SOLVE} & \quad b, I \\
\text{IMHOTEP-SMT} & \quad \text{T-SOLVE, CHECK}
\end{align*}
\]
- pB-SAT solver returns an assignment for the variable b.
- We extract which sensors are “hypothesized” to be attack free \mathcal{I}.
- Check this assignment.

1: **Solve:**
\[x := \arg\min_{x \in \mathbb{R}^n} \| Y_{\mathcal{I}} - O_{\mathcal{I}} x \|_2^2 \]
pB-SAT solver returns an assignment for the variable b.

We extract which sensors are “hypothesized” to be attack free I.

Check this assignment.

1: **Solve:**

 $x := \arg\min_{x \in \mathbb{R}^n} \| Y_I - \mathcal{O}_I x \|_2^2$

2: if $\| Y_I - \mathcal{O}_I x \|_2^2 = 0$ then

3: status = SAT; ☺

6: end if

7: return (status, x);
pB-SAT solver returns an assignment for the variable b.

We extract which sensors are “hypothesized” to be attack free \mathcal{I}.

Check this assignment.

1. **Solve:**

 $$x := \arg\min_{x \in \mathbb{R}^n} \| Y_\mathcal{I} - O_\mathcal{I} x \|_2^2$$

2. **if** $\| Y_\mathcal{I} - O_\mathcal{I} x \|_2^2 = 0$ **then**

3. **status** = SAT;

4. **else**

5. **status** = UNSAT;

6. **end if**

7. **return** (status, x);
Generate “theory lemma”, “counter example”, or “UNSAT certificate”.

\[\phi_{\text{initial}} \]

\[{(Y_1, O_1) \ldots (Y_p, O_p)}\]

\[b, I \]

\[\eta = (x, b) \]
Generate “theory lemma”, “counter example”, or “UNSAT certificate”.

$$\varphi_{\text{triv-cert}} = \sum_{i \in I} b_i \geq 1$$
- Generate “theory lemma”, “counter example”, or “UNSAT certificate”.

\[\phi_{\text{triv-cert}} = \sum_{i \in I} b_i \geq 1 \]

- Add this “certificate” to the original constraints:

\[\phi := \phi_{\text{initial}} \land \phi_{\text{triv-cert}} \]
Generate “theory lemma”, “counter example”, or “UNSAT certificate”.

\[\phi_{\text{triv-cert}} = \sum_{i \in I} b_i \geq 1 \]

Add this “certificate” to the original constraints:

\[\phi := \phi_{\text{initial}} \land \phi_{\text{triv-cert}} \]
State reconstruction under sensor attacks
A Satisfiability Modulo Theory Approach: Termination and performance

Proposition

Let the linear dynamical system Σ_a be $2q$-sparse observable. Then, IMHOTEP-SMT:

- terminates,
- identifies the attacked sensors,
- and reconstructs the state.

Moreover, the number of iterations is upper bounded by $\sum_{s=0}^{q} \binom{p}{s}$.
State reconstruction under sensor attacks
A Satisfiability Modulo Theory Approach: UNSAT certificates

- Why is performance bad?

\[\phi_{\text{triv-cert}} = \sum_{i \in I} b_i \geq 1 \]
Why is performance bad?

\[\phi_{\text{triv-cert}} = \sum_{i \in I} b_i \geq 1 \]

To enhance performance, we need to generate *compact certificates*.

Lemma

Let the linear dynamical system \(\Sigma \) be 2q-sparse observable. If \(\text{T-SOLVE}(I) \) is UNSAT then there exists a subset \(I \subset \text{supp}(b) \) with \(|I| \leq p - 2q + 1 \) such that \(\text{T-SOLVE}(I_{\text{temp}}) \) is also UNSAT.

Trivial certificates have \(p - q \) sensors.

The proof of this lemma is constructive. In practice we can do better by exploiting the convex geometry (observability Gramian).
State reconstruction under sensor attacks
A Satisfiability Modulo Theory Approach: UNSAT certificates

- Why is performance bad?

\[\phi_{\text{triv-cert}} = \sum_{i \in I} b_i \geq 1 \]

- To enhance performance, we need to generate compact certificates.

Lemma

Let the linear dynamical system \(\Sigma_a \) be 2q-sparse observable. If \(T\text{-SOLVE.CHECK}(I) \) is UNSAT then there exists a subset \(I \subset \text{supp}(b) \) with \(|I| \leq p - 2q + 1 \) such that \(T\text{-SOLVE.CHECK}(I_{\text{temp}}) \) is also UNSAT.

- Trivial certificates have \(p - q \) sensors.
- The proof of this lemma is constructive.
- In practice we can do better by exploiting the convex geometry (observability Gramian).
Theorem

Let the linear dynamical system Σ_a be 2q-sparse observable. Then, IMHOTEP-SMT:

- terminates,
- identifies the attacked sensors,
- and reconstructs the state.

Moreover, the number of iterations is upper bounded by $\binom{p}{p-2q+1}$ (compare to: $\sum_{s=0}^{q} \binom{p}{s}$).
Random system with 25 states, 60 sensors, and an increasing number of attacked sensors.

Graph showing the number of iterations as a function of the number of attacked sensors.
State reconstruction under sensor attacks
A Satisfiability Modulo Theory Approach: Simulation results

Random system with 25 states, 60 sensors and an increasing number of attacked sensors.

Random systems with 25 states, 1/3 of sensors under attack, and increasing number of sensors.
State reconstruction under sensor attacks
A Satisfiability Modulo Theory Approach: Simulation results

- Comparison with 2 convex-relaxation algorithms and 2 logic-based encodings.

- Random systems with 60 sensors (20 under attack) and an increasing number of states.

![Graph showing execution time vs number of states for different algorithms.](image-url)
State reconstruction under sensor attacks
A Satisfiability Modulo Theory Approach: Simulation results

- Comparison with 2 convex-relaxation algorithms and 2 logic-based encodings.

- Random systems with 60 sensors (20 under attack) and an increasing number of states.

- Random systems with 50 states, 1/3 of sensors under attack, and increasing number of sensors.
State reconstruction under sensor attacks
A Satisfiability Modulo Theory Approach: Examples
State reconstruction under sensor attacks
A Satisfiability Modulo Theory Approach: Some extensions

- Stochastic noise:
 - combine Kalman filters with SMT solving;
 - optimal performance: as good as a minimum mean squared error (MMSE) estimator that knows the attacked sensors\(^1\).

- Nonlinear systems: differential flatness and applications to quadcopters\(^2\).

\(^1\) Secure State Estimation Against Sensor Attacks in the Presence of Noise
Shaunak Mishra, Yasser Shoukry, Nikhil Karamchandani, Suhas Diggavi, Paulo Tabuada
IEEE Transactions on Control of Network Systems, 4(1), 49-59, 2017
Special issue on Secure Control of Cyber-Physical Systems

\(^2\) Secure State Reconstruction in Differentially Flat Systems Under Sensor Attacks Using Satisfiability Modulo Theory Solving
IEEE Conference on Decision and Control, 2015.
Final thoughts

- Security for CPS is quite different from cyber-security, e.g., there are CPS attacks for which there are no cyber-security defenses;

1 SMC: Satisfiability Modulo Convex Programming
Yasser Shoukry, Pierluigi Nuzzo, Alberto Sangiovanni-Vincentelli, Sanjit A. Seshia, George J. Pappas, Paulo Tabuada
Proceedings of the IEEE, 106(9), 2018.
Final thoughts

- Security for CPS is quite different from cyber-security, e.g., there are CPS attacks for which there are no cyber-security defenses;
- Cyber-security is needed for CPS but CPS-security is the last line of defense.

1 SMC: Satisfiability Modulo Convex Programming

Yasser Shoukry, Pierluigi Nuzzo, Alberto Sangiovanni-Vincentelli, Sanjit A. Seshia, George J. Pappas, Paulo Tabuada

Proceedings of the IEEE, 106(9), 2018.
Securing Cyber-Physical Systems

Final thoughts

- Security for CPS is quite different from cyber-security, e.g., there are CPS attacks for which there are no cyber-security defenses;
- Cyber-security is needed for CPS but CPS-security is the last line of defense.
- Challenging technical problems mixing continuous and discrete variables.

1 SMC: Satisfiability Modulo Convex Programming
Yasser Shoukry, Pierluigi Nuzzo, Alberto Sangiovanni-Vincentelli, Sanjit A. Seshia, George J. Pappas, Paulo Tabuada
Proceedings of the IEEE, 106(9), 2018.
Security for CPS is quite different from cyber-security, e.g., there are CPS attacks for which there are no cyber-security defenses;

- Cyber-security is needed for CPS but CPS-security is the last line of defense.
- Challenging technical problems mixing continuous and discrete variables.
- These techniques led\(^1\) to **Satisfiability Modulo Convex optimization (SMC)**, a new tool capable of handling many of these continuous+discrete challenges across a wide range of application domains (robot motion planning, etc).

\(^1\) **SMC: Satisfiability Modulo Convex Programming**
Yasser Shoukry, Pierluigi Nuzzo, Alberto Sangiovanni-Vincentelli, Sanjit A. Seshia, George J. Pappas, Paulo Tabuada
Proceedings of the IEEE, 106(9), 2018.
Acknowledgements

- Students and collaborators;
- NSF, DARPA, and ARL;
- Grid Science Organisers.

For more information:
http://www.cyphylab.ee.ucla.edu/
http://www.ee.ucla.edu/~tabuada