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Consider optimization problem

Min
x∈X

{
f(x) = E[F (x, ξ)]

}
,

where X ⊂ Rn, F : Rn × Rd → R and ξ is a d-dimensional random
vector. In case of two-stage linear stochastic programming with
recourse, X = {x ∈ Rn+ : Ax = b} and F (x, ξ) is the first stage

cost c>x plus the optimal value of the second stage problem

Min
y∈Rm

q>y subject to Tx+Wy = h, y ≥ 0,

with ξ formed from random components of q, T,W, h.

For fixed x ∈ X the expectation E[F (x, ξ)] is given by the integral

E[F (x, ξ)] =
∫
F (x, z)dP (z),

where P is the probability distribution of ξ.
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A standard approach to solving such stochastic programs is to

discretize distribution P , i.e., to construct scenarios ξk, k =

1, ...,K, with assigned probabilities pk > 0, and hence to ap-

proximate E[F (x, ξ)] by
∑K
k=1 pkF (x, ξk). In the two-stage linear

case this leads to the linear program

Min
x,y1,...,yK

c>x+
∑K
k=1 pkq

>
k yk

s.t. Tkx+Wkyk = hk, k = 1, ...,K,
Ax = b, x ≥ 0, yk ≥ 0, k = 1, ...,K.

In order to have an accurate approximation of the ‘true’ distri-

bution P the number K of required scenarios typically growths

exponentially with dimension d of the vector of random param-

eters.
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Even crude discretization of the distribution of the random vector

ξ leads to an exponential growth of the number of scenarios with

increase of its dimension d.

Could stochastic programming problems be solved numer-

ically?

What does it mean to solve a stochastic program?

How do we know the probability distribution of the random

data vector?

Why do we optimize the expected value of the objective

(cost) function?
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Computational complexity of solving two-stage linear stochas-
tic programs (deterministic point of view): the approximate so-
lutions, with a sufficiently high accuracy, of linear two-stage
stochastic programs with fixed recourse are #P -hard even if
the random problem data is governed by independent uniform
distributions (Dyer and Stougie, 2006, Hanasusanto, Kuhn and
Wiesemann, 2016).

Sample complexity of solving stochastic programs

Generate a sample ξj, j = 1, ..., N , of random vector ξ and ap-
proximate the expectation E[F (x, ξ)] by the respective sample
average. This leads to the following so-called Sample Average
Approximation (SAA) of the ‘true’ problem

Min
x∈X

f̂N(x) =
1

N

N∑
j=1

F (x, ξj)

 .
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Slow convergence of the sample average f̂N(x) to the expecta-

tion f(x). By the Central Limit Theorem, for fixed x the error

f̂N(x)− f(x) = Op(N
−1/2).

Let v̂N be the optimal value of the SAA problem and v0 and

S0 be the optimal value and set of optimal solutions of the true

problem. Then under mild regularity conditions

v̂N = min
x∈S0

f̂N(x) + op(N
−1/2).

In particular, if S0 = {x0}, then

N1/2[v̂N − v0]⇒ N(0, σ2(x0))

(Shapiro, 1991).
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Large Deviations type bounds. Suppose that: ε > δ ≥ 0, the set
X is of finite diameter D, there is a constant σ > 0 such that

Mx′,x(t) ≤ exp{σ2t2/2}, t ∈ R, x′, x ∈ X,
where Mx′,x(t) is the moment generating function of the random
variable F (x′, ξ)− F (x, ξ)− E[F (x′, ξ)− F (x, ξ)], there exists κ(ξ)
such that its moment generating function is finite valued in a
neighborhood of zero and∣∣∣F (x′, ξ)− F (x, ξ)

∣∣∣ ≤ κ(ξ)‖x′ − x‖, x′, x ∈ X and a.e. ξ.

Then for L = E[κ(ξ)] and sample size

N ≥
8σ2

(ε− δ)2

[
n log

(
O(1)DL

(ε− δ)2

)
+ log

(
2

α

)]
,

we are guaranteed that Pr
(
ŜδN ⊂ S

ε
)
≥ 1 − α. Here ŜδN and Sε

are the sets of δ-optimal and ε-optimal solutions of the SAA and
true problems respectively.
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Distributionally robust approach to stochastic programming

Min
x∈X

{
g(x) := sup

Q∈M
EQ[Fx(ω)]

}
, (1)

where X ⊂ Rn, Fx(ω) = F (x, ξ(ω)), F : Rn×Ξ→ R, ξ : Ω→ Ξ is a
measurable mapping from Ω into Ξ ⊂ Rd and M is a (nonempty)
set of probability measures (distributions) on the sample space
(Ω,F).

Let Z be a linear space of measurable functions Z : Ω→ R. We
assume that Fx ∈ Z for all x ∈ X . Consider

ρ(Z) := sup
Q∈M

EQ[Z(ω)] = sup
Q∈M

∫
Ω
Z(ω)dQ(ω), Z ∈ Z.

The functional ρ : Z → R has the following properties:
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(A1) Convexity:

ρ(αZ1 + (1− α)Z2) ≤ αρ(Z1) + (1− α)ρ(Z2)

for all Z1, Z2 ∈ Z and α ∈ [0,1].

(A2) Monotonicity: If Z1, Z2 ∈ Z and Z2 ≥ Z1, then ρ(Z2) ≥
ρ(Z1).

(A3) Translation Equivariance: If a ∈ R and Z ∈ Z, then

ρ(Z + a) = ρ(Z) + a.

(A4) Positive Homogeneity:

ρ(αZ) = αρ(Z), Z ∈ Z, α > 0.

Functionals ρ : Z → R satisfying axioms (A1)–(A4) are called

coherent risk measures (Artzner, Delbaen, Eber, Heath (1999)).
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Duality relation between coherent risk measures and distribu-

tional robustness

Examples

Space Z := Lp(Ω,F , P ), where P is a (reference) probability

measure on (Ω,F) and p ∈ [1,∞). That is, Z is the space of

random variables Z(ω) having finite p-th order moment.

For ζ = dQ/dP , space Z is paired with its dual space Z∗ =

Lq(Ω,F , P ), where 1/p+ 1/q = 1, and the scalar product

〈ζ, Z〉 :=
∫

Ω
ζ(ω)Z(ω)dP (ω), ζ ∈ Z∗, Z ∈ Z.

We also consider space Z := L∞(Ω,F , P ), of essentially bounded

(measurable) functions Z : Ω→ R, paired with space L1(Ω,F , P ).
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Another example. Let Ω be a metric space equipped with its

Borel sigma algebra F, and Z := C(Ω) be the space of continu-

ous functions Z : Ω→ R with the max-norm ‖Z‖ = supω∈Ω |Z(ω)|.
Its dual space Z∗ is the space of finite signed measures on (Ω,F)

with the scalar product

〈µ,Z〉 :=
∫

Ω
Z(ω)dµ(ω), µ ∈ Z∗, Z ∈ Z.

This framework is suitable when the uncertainty set M is defined

by moment constraints.

We mainly consider the first example with the reference prob-

ability space (Ω,F , P ) and paired spaces Z = Lp(Ω,F , P ) and

Z∗ = Lq(Ω,F , P ).
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In case the functional ρ is law invariant, it can be considered as

a function of the cdf FZ(z) = P (Z ≤ z). Given a random sample

Z1, ..., ZN of the random variable Z, defined on (Ω,F , P ), we can

approximate FZ by the empirical cdf

F̂N(z) :=
1

N

N∑
i=1

1(−∞,z](Zi).

Consequently we can approximate ρ(Z) = ρ(FZ) by ρ(F̂N).

Suppose now that ξ1, ..., ξN is a sample of the random vector

ξ = ξ(ω). Then we can estimate distributionally robust problem

(1) by the SAA problem:

Min
x∈X

ρ(F̂x,N). (2)
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Examples

Example 1 Consider Z := L1(Ω,F , P ) and

A :=
{
ζ : 1− β1 ≤ ζ(ω) ≤ 1 + β2, ω ∈ Ω,

∫
Ω
ζdP = 1

}
,

where β1 ∈ (0,1] and β2 ≥ 0. Clearly the set A is invariant with

respect to measure preserving transformations. The correspond-

ing functional ρ is

ρ(Z) = (1− β1)EP [Z] + β1AV@Rα(Z),

where α = β1/(β1 + β2) and

AV@Rα(Z) =
1

α

∫ 1

1−α
F−1
Z (t)dt = inf

t∈R

{
t+ α−1EP [Z − t]+

}
.
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Example 2 (φ-divergence) Consider a convex continuous func-

tion φ : R+ → R+ such that φ(1) = 0 and φ(x) > 0 for x > 1.

Let

A :=
{
ζ ≥ 0 :

∫
Ω
φ(ζ(ω))dP (ω) ≤ c,

∫
Ω
ζ(ω)dP (ω) = 1

}
for some c > 0. For example we can take φ(x) := |x − 1|p,
p ∈ [1,∞). In that case it will be natural to use the space

Z = Lp(Ω,F , P ) and

A =
{
ζ ≥ 0 : ‖ζ − 1‖p ≤ c1/p,

∫
Ω
ζdP = 1

}
.

For φ(x) := x lnx − x + 1 we have that
∫
Ω φ(ζ(ω))dP (ω) defines

the Kullback-leibler divergence, denoted DKL(ζ‖P ).
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It is possible to show that in case of φ-divergence the corre-

sponding functional can be written in the form

ρ(Z) = inf
λ≥0,µ

{
λc+ µ+ EP [(λφ)∗(Z − µ)]

}
,

where (λφ)∗ is the conjugate function of λφ.

In particular for the Kullback-Leibler divergence,

ρ(Z) = inf
λ>0

{
λc+ λEP [eZ/λ]

}
.
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Multistage stochastic programming

Consider a multistage decision process of the from

decision (x1) observation (ξ2) decision (x2) 
.....  observation (ξT ) decision (xT ).

(3)

Here ξt ∈ Rdt, t = 1, ..., is a sequence of vectors with ξ[t] :=

(ξ1, ..., ξt) representing history of the data process up to time t.

At time period t ∈ {1, ..., T} we observe the past, ξ[t], but future

observations ξt+1, ..., are uncertain. So our decision at time t

should only depend on information available at that time, i.e.,

xt = xt(ξ[t]) should be a function of ξ[t] and should not depend

on future observations. This is the basic requirement of nonan-

ticipativity of the decision process. A sequence x1, x2(ξ[2]), ... of

such decisions is called a policy or a decision rule.
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Risk neutral multistage stochastic programming

Min
π∈Π

E
[
F1(x1) + F2(x2(ξ[2]), ξ2) + · · ·+ FT

(
xT (ξ[T ]), ξT

) ]
where Π is the set of policies π = (x1, x2(ξ[2]), ..., xT (ξ[T ]) satis-

fying the feasibility constraints

x1 ∈ X1, xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt), t = 2, . . . , T,

for almost every (a.e.) realization of the random process,

Ft : Rnt×Rdt → R are real valued functions and Xt : Rnt−1×Rdt ⇒
Rnt, t = 2, . . . , T , are multifunctions. For example

Ft(xt, ξt) := cTt xt,

Xt(xt−1, ξt) := {xt−1 : Btxt−1 +Atxt ≤ bt},

t = 2, ..., T , X1 := {x1 : A1x1 ≤ b1}, with ξt = (ct, At, Bt, bt),

corresponds to linear multistage stochastic programming.
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Note that it is assumed here that the probability distribution of

the random process ξt does not depend on our decisions. Note

also that

E[Z] = E|ξ1

[
E|ξ[2]

[
· · ·E|ξ[T−1]

[Z]
]]
.

This decomposition property of the expectation allows to write

the multistage stochastic programming problem in the following

nested form

Min
x1∈X1

F1(x1) + E|ξ1

[
inf

x2∈X2(x1,ξ2)
F2(x2, ξ2) + . . .

+E|ξ[T−2]

[
inf

xT−1∈XT (xT−2,ξT−1)
FT−1(xT−1, ξT−1)

+E|ξ[T−1]
[ inf
xT∈XT (xT−1,ξT )

FT (xT , ξT )]
]]
.
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This formulation assumes that: (i) the probability distribution
of the data process is known (specified), (ii) the optimization is
performed on average (both, with respect to different realizations
of the random process, and with respect to time).

Numerical difficulties in solving multistage problems.

From a modeling point of view typically it is natural to assume
that the random data process has a continuous distribution. This
raises the question of how to compute the involved expectations
(multivariate integrals). A standard approach is to discretize the
random process by generating a finite number of possible real-
izations (called scenarios). These scenarios can be represented
by the corresponding scenario tree.

How many scenarios are needed in order to approximate the
”true” distribution of the random data process?
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Note that solving the deterministic equivalent for the constructed

scenario tree does not produce by itself an implementable policy

for the ”true” problem (with continuous distributions). This is

because an actual realization of the data process could, and with

probability one (w.p.1) will, be different from scenarios used in

the constructed tree. In that case policy constructed for scenar-

ios of the tree does not tell what decision to make. Of course,

one can use only the first stage solution which is determinis-

tic (does not depend on future observations) and update it as

new observations become available - this is a rolling horizon ap-

proach. Such a rolling horizon approach requires resolving the

corresponding multistage problem at every stage as new realiza-

tion of the data becomes available.
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Suppose that the data process is stagewise independent, i.e.,
random vector ξt+1 is independent of ξ[t], t = 1, ..., T − 1.

Discretization by Monte Carlo sampling Independent of each
other random samples ξjt = (cjt , B

j
t , A

j
t , b

j
t), j = 1, ..., Nt, of respec-

tive ξt, t = 2, ..., T , are generated and the corresponding scenario
tree is constructed by connecting every ancestor node at stage
t− 1 with the same set of children nodes ξ1

t , ..., ξ
Nt
t . In that way

the stagewise independence is preserved in the generated sce-
nario tree. We refer to the constructed problem as the Sample
Average Approximation (SAA) problem.

The total number of scenarios of the SAA problem is given by
the product N =

∏T
t=2Nt and quickly becomes astronomically

large with increase of the number of stages even for moderate
values of sample sizes Nt.
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If we measure computational complexity, of the ”true” problem,

in terms of the number of scenarios required to approximate true

distribution of the random data process with a reasonable accu-

racy, the conclusion is rather pessimistic. In order for the optimal

value and solutions of the SAA problem to converge to their true

counterparts all sample sizes N2, ..., NT should tend to infinity.

Furthermore, available estimates of the sample sizes required for

a first stage solution of the SAA problem to be ε-optimal for

the true problem, with a given confidence (probability), sums

up to a number of scenarios which grows as O(ε−2(T−1)) with

decrease of the error level ε > 0. This indicates that from the

point of view of the number of scenarios, complexity of multi-

stage programming problems grows exponentially with increase

of the number of stages.
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Because of the exponential growth of the number of scenarios

N it is hopeless to try to solve multistage stochastic programs

by enumerating all scenarios.

An alternative approach is suggested by the dynamic program-

ming.

“Any model is wrong but some are useful”.

From a modeling point of view it is natural to assume that the

random data process has a continuous distribution. We refer to

such model as “true” or “continuous”.
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Dynamic Programming Equations.

For the last period T we have

QT (xT−1, ξT ) := inf
xT∈XT (xT−1,ξT )

FT (xT , ξT ),

QT (xT−1, ξ[T−1]) := E|ξ[T−1]
[QT (xT−1, ξT )],

and for t = T − 1, . . . ,2,

Qt
(
xt−1, ξ[t]

)
= inf

xt∈Xt(xt−1,ξt)

{
Ft(xt, ξt) +Qt+1

(
xt, ξ[t]

) }
,

where

Qt+1

(
xt, ξ[t]

)
:= E|ξ[t]

{
Qt+1

(
xt, ξ[t+1]

)}
.

Finally, at the first stage we solve the problem

Minx1∈X1
F1(x1) + E[Q2(x1, ξ2)].
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In case of stagewise independence, by induction in t = T, ..., it is

possible to show that cost-to-go functions Qt(xt−1) do not de-

pend on the data process. The dynamic programming equations

take the form

Qt
(
xt−1, ξt

)
= inf

xt∈Xt(xt−1,ξt)

{
Ft(xt, ξt) +Qt+1 (xt)

}
,

where

Qt+1 (xt) = E
[
Qt+1

(
xt, ξt+1

)]
.
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In some cases stagewise dependent problems can be reformulated
in a stagewise independent form at the price of increasing number
of state variables. For example, suppose that only the right hand
side vectors bt are random and can be modeled as a (first order)
autoregressive process

bt = µ+ Φbt−1 + εt,

where µ and Φ are (deterministic) vector and regression matrix,
respectively, and the error process εt, t = 1, ..., T , is stagewise
independent. The corresponding feasibility constraints can be
written in terms of xt and bt as

Btxt−1 +Atxt ≤ bt, Φbt−1 − bt + µ+ εt = 0.

That is, in terms of decision variables (xt, bt) this becomes a
linear multistage stochastic programming problem governed by
the stagewise independent random process ε1, ..., εT .
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Curse of dimensionality

One of the main difficulties in solving the dynamic programming

equations is how to represent the cost-to-go functions in a com-

putationally feasible way.

For dimension of xt say greater than 3 and large number of

stages it is practically impossible to solve the dynamic program-

ming equations with high accuracy. Several alternatives were

suggested in recent literature.
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Risk averse and distributionally robust multistage program-
ming.

Average Value-at-Risk (also called Conditional Value-at-Risk)

AV@Rα(Z) := inf
t∈R

{
t+ α−1E[Z − t]+

}
Note that the minimum in the above is attained at
t∗ = F−1

Z (1 − α), where FZ(t) := P (Z ≤ t) is the cdf of Z and
F−1
Z (1− α) = V@Rα(Z) = inf{t : FZ(t) ≥ 1− α}.

Also

AV@Rα(Z) =
1

α

∫ 1

1−α
F−1
Z (t)dt.

If FZ(z) is continuous at z = F−1
Z (1− α), then

AV@Rα(Z) = E
[
Z|Z ≥ F−1

Z (1− α)
]
.
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With every law invariant risk measure ρ(Z) we can associate the
respective conditional risk measure, denoted ρ(Z|Y ) or ρ|Y (Z),
conditional on random variable Y , by employing conditional dis-
tribution of Z given Y .

Note that ρ(Z|Y ) is a function of Y and we can consider the
composite risk measure ρ(ρ(Z|Y )). For example, for ρ(Z) := E[Z]
and ρ(Z|Y ) = E[Z|Y ] we have E[E[Z|Y ]] = E[Z].

Conditional version of the Average Value-at-Risk:

AV@Rα|Y (Z) = inf
t∈R

E|Y
{
t+ α−1[Z − t]+

}
.

The minimum in the above is attained at

t∗ =
{

(1− α)-quantile of the conditional distribution of Z given Y
}
.

Of course, t∗ is a function of Y here.
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Risk averse multistage programming.

Nested formulation of risk averse multistage programming prob-
lem:

Min
x1∈X1

F1(x1) + ρ|ξ1

[
inf

x2∈X2(x1,ξ2)
F2(x2, ξ2) + . . .

+ρ|ξ[T−2]

[
inf

xT−1∈XT (xT−2,ξT−1)
FT−1(xT−1, ξT−1)

+ρ|ξ[T−1]
[ inf
xT∈XT (xT−1,ξT )

FT (xT , ξT )]
]]
,

where ρ|ξ[t]
(·), t = 1, ..., T − 1, are conditional law invariant co-

herent (convex) risk measures. For example

ρ|ξ[t]
(·) := λE|ξ[t]

[·] + (1− λ)AV@Rα|ξ[t]
[·]

is a convex combination of the conditional expectation and con-
ditional Average Value-at-risk measure.
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We can write the risk averse multistage programming problem

as

Min
x1,x2(·),...,xT (·)

ρ̄
[
F1(x1) + F2(x2(ξ[2]), ξ2) + · · ·+ FT

(
xT (ξ[T ]), ξT

) ]
s.t. x1 ∈ X1, xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt), t = 2, . . . , T,

where

ρ̄(Z1 + ...+ ZT ) = ρ|ξ1

(
ρ|ξ[2]

(
· · · ρ|ξ[T−1]

(Z1 + ...+ ZT )
))

= Z1 + ρ|ξ1

(
Z2 + ρ|ξ[2]

(
+ · · · ρ|ξ[T−1]

(ZT )
))

is the corresponding composite risk measure. The optimization is

performed over (nonanticipative) policies x1, x2(ξ[2]), ..., xT (ξ[T ])

satisfying the feasibility constraints.

30



If ρ|ξ[t]
(·) := E|ξ[t]

(·) are conditional expectations, then ρ̄(·) =

E(·). In that case this becomes the risk neutral stochastic pro-

gramming. If

ρ|ξ[t]
(·) := ess sup(·) = AV@R0|ξ[t]

(·),

then ρ̄(·) = AV@R0(·). This case corresponds to multistage ro-

bust optimization.

Let ρ be a law invariant coherent risk measure. It turns out that

only ρ(·) := E(·) and ρ(·) := ess sup(·) risk measures have the

decomposition property

ρ(ρ|Y (Z)) = ρ(Z), Z ∈ Z.
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Distributionally robust multistage stochastic programming.

We can write the risk neutral multistage problem as

Min
π∈Π

EP [Zπ], (4)

where P is the probability distribution of random vector ξ[T ] =

(ξ1, ..., ξT ), Π is a set of policies satisfying the feasibility con-

straints

x1 ∈ X1, xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt), t = 2, ..., T − 1,

and Zπ = Zπ(ξ[T ]) is defined as

Zπ := F1(x1) + F2(x2(ξ[2]), ξ2) + · · ·+ FT (xT (ξ[T ]), ξT ).
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It looks natural to formulate the following distributionally robust

analogue of problem (4). Consider a set M of probability distri-

butions of ξ[T ] supported on a set Ξ ⊂ Rd1 × · · · × RdT equipped

with its Borel sigma algebra B, and the problem

Min
π∈Π

sup
Q∈M

EQ[Zπ]. (5)

However, there is a problem with formulation (5).

The expectation operator has the following property (recall that

ξ1 is deterministic)

EQ[Z] = EQ
[
EQ|ξ[2]

[
· · · EQ|ξ[T−1]

[Z]
]]
.
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Therefore for Z = Z(ξ[T ]) ∈ Z and Q ∈M we have that

sup
Q∈M

EQ[Z] ≤ R(Z),

where

R(Z) := sup
Q∈M

EQ

[
sup
Q∈M

EQ|ξ[2]

[
· · · sup

Q∈M
EQ|ξ[T−1]

[Z]
]]
. (6)

The functional R(·) satisfies the axioms of coherent risk mea-
sures and hence can be represented in the dual form

R(Z) = sup
Q∈M̂

EQ[Z]

for some set M̂ of probability measures. Note that in general
M 6= M̂ even in the rectangular case when

M = {Q = Q1 × · · · ×QT : Qt ∈Mt, t = 1, ..., T}
where Mt is a set of marginal distributions of ξt.
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Dynamic Programming Equations.

For the last period T we have

QT (xT−1, ξT ) := inf
xT∈XT (xT−1,ξT )

FT (xT , ξT ),

QT (xT−1, ξ[T−1]) := ρ|ξ[T−1]
[QT (xT−1, ξT )],

and for t = T − 1, . . . ,2,

Qt
(
xt−1, ξ[t]

)
= inf

xt∈Xt(xt−1,ξt)

{
Ft(xt, ξt) +Qt+1

(
xt, ξ[t]

) }
,

where

Qt+1

(
xt, ξ[t]

)
:= ρ|ξ[t]

{
Qt+1

(
xt, ξ[t+1]

)}
.

Finally, at the first stage we solve the problem

Minx1∈X1
F1(x1) + ρ|ξ1

[Q2(x1, ξ2)].
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In case of stagewise independence, the cost-to-go functions

Qt(xt−1) do not depend on the data process, and dynamic pro-

gramming equations take the form

Qt
(
xt−1, ξt

)
= inf

xt∈Xt(xt−1,ξt)

{
Ft(xt, ξt) +Qt+1 (xt)

}
,

t = T, . . . ,2, where

Qt+1

(
xt, ξ[t]

)
:= ρ

{
Qt+1

(
xt, ξt+1

)}
,

with QT+1(·) ≡ 0. Finally, at the first stage we solve the problem

Min
x1∈X1

F1(x1) + ρ[Q2(x1, ξ2)].
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Time consistency

An optimal policy π ∈ Π designed at the first stage should be
optimal at every stage t = 2, ..., T of the decision process condi-
tional on an observed realization of the data process up to time
t. In order to formalize this we need to give a precise definition of
optimality at every stage t = 2, ..., T conditional on a realization
of the data process up to the considered time period.

For the nested formulation it is natural to use the respective
nested conditional expectation criterion

sup
Q∈M

EQ|ξ[t]

[
sup
Q∈M

EQ|ξ[t+1]

[
· · · sup

Q∈M
EQ|ξ[T−1]

[ · ]
]]
.

Note that this criterion is not the same as taking

sup
Q∈M

EQ|ξ[t]
[ · ].
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Interchangeability principle

Let R : Z → R be a monotone functional. Consider

F (ω) := inf
y∈Y

f(y, ω), (7)

where Y is an abstract set and f : Y × Ω → R ∪ {+∞} is an

extended real valued function. Let Y be the set of mappings

η : Ω→ Y such that fη ∈ Z, where fη(·) := f(η(·), ·).
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Suppose that the minimum in (7) is attained at ȳ(ω) ∈ Y for

ω ∈ Ω, and hence F (ω) = f(ȳ(ω), ω). Then by monotonicity of

R, assuming that F ∈ Z, we have that

R(F ) = inf
η∈Y
R(fη).

That is the minimization operator and functional R can be inter-

changed. For monotone functionals this interchangeability holds

in general (without assuming existence of minimizers). More-

over, the following implication holds

η̄(·) ∈ arg min
y∈Y

f(y, ·)⇒ η̄ ∈ arg min
η∈Y
R(fη).
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It is possible to give simple examples showing that the converse

implication

η̄ ∈ arg min
η∈Y
R(fη)⇒ η̄(·) ∈ arg min

y∈Y
f(y, ·)

may not hold, unless the functional R is strictly monotone.

Definition 1 It is said that a functional R : Z → R is strictly

monotone, if Z � Z′ and Z 6= Z′ imply that R(Z) > R(Z′).

For example

AV@Rα(Z) =
1

1− α

∫ 1

α
F−1
Z (t)dt,

is not strictly monotone for α ∈ (0,1).
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Dynamic equations and time consistency
Consider two stage risk averse stochastic program

min
x∈X1,y(·)∈X2(x,·)

R
(
g(x, y(ω), ω)

)
, (8)

where X1 ⊂ Rn, g : Rn × Rk ×Ω → R and X2 : Rn ×Ω ⇒ Rk is a
multifunction. An alternative formulation is

min
x∈X1

R
(

min
y∈X2(x,ω)

g(x, y, ω)︸ ︷︷ ︸
f(x,ω)

)
,

(9)

where fx(ω) = f(x, ω) is the optimal value of the second stage
problem.

An optimal solution (x̄, ȳ(·)) of problem (8) is time consistent if
ȳ(·) is an optimal solution of the second stage program, i.e.,

ȳ(ω) ∈ arg min
y∈X2(x̄,ω)

g(x̄, y, ω), ω ∈ Ω.
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For the two stage programs the above means that the optimal

values of problems (8) and (9) are the same and if x̄ is an optimal

solution of the first stage problem and ȳ(ω), ω ∈ Ω, is an optimal

solution of the second stage problem

min
y∈X2(x̄,ω)

g(x̄, y, ω),

then (x̄, ȳ(·)) is an optimal solution of problem (8). The converse

of that is true if R is strictly monotone.
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If R is not strictly monotone, then the first stage problem (8)

could have an optimal solution (x̄, ȳ(·)) such that conditional on

x = x̄, the solution ȳ(ω) is not optimal for the second stage prob-

lem for some ω ∈ Ω. That is for some ω ∈ Ω the corresponding

value g(x̄, ȳ(ω), ω) is strictly bigger than the minimal value

min
y∈X2(x̄,ω)

g(x̄, y, ω).

Such solutions are not time consistent. That is, without strict

monotonicity time inconsistent optimal policies could exist al-

ready for two stage problems and finite number of scenarios.
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The Brazilian hydro power operation planning problem

The Brazilian power system generation is hydro dominated (about

75% of the installed capacity) and characterized by large reser-

voirs presenting multi-year regulation capability, arranged in com-

plex cascades over several river basins. The hydro plants use

store water in the reservoirs to produce energy in the future, re-

placing fuel costs from the thermal units. Since the water inflows

depend on rainfalls, the amount of future inflows is uncertain and

cannot be predicted with a high accuracy.

The purpose of hydrothermal system operation planning is to

define an operation strategy which, for each stage of the planning

period, given the system state at the beginning of the stage,

produces generation targets for each plant.
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The Brazilian hydro power operation planning problem is a mul-

tistage, large scale (more than 200 power plants, of which 141

are hydro plants), stochastic optimization problem. On a high

level, planning is for 5 years on monthly basis together with 5

additional years to smooth out the end of horizon effect. This

results in 120-stage stochastic programming problem. Four en-

ergy equivalent reservoirs are considered, one in each one of the

four interconnected main regions, SE, S, N and NE. The re-

sulting policy obtained with the aggregate representation can be

further refined, so as to provide decisions for each of the hydro

and thermal power plants.
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Approximate dynamic programming
Basic idea is to approximate the cost-to-go functions by a class of
computationally manageable functions. Since functions Qt(·) are
convex it is natural to approximate these functions by piecewise
linear functions given by maximum of cutting hyperplanes.

Stochastic Dual Dynamic Programming (SDDP) method
(Pereira and Pinto, 1991).
For trial decisions x̄t, t = 1, ..., T −1, at the backward step of the
SDDP algorithm, piecewise linear approximations Qt(·) of the
cost-to-go functions Qt(·) are constructed by solving problems

Min
xt∈Rnt

(cjt)
Txt + Qt+1(xt) s.t. Bjt x̄t−1 +A

j
txt = b

j
t , xt ≥ 0,

j = 1, ..., Nt, and their duals, going backward in time t = T, ...,1.

Denote by v0 and v̂N the respective optimal values of the true
and SAA problems.
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By construction

Qt(·) ≥ Qt(·), t = 2, ..., T.

Therefore the optimal value of

Min
x1∈Rn1

cT1x1 + Q2(x1) s.t. A1x1 = b1, x1 ≥ 0

gives a lower bound for the optimal value v̂N of the SAA problem.

We also have that

v0 ≥ E[v̂N ].

Therefore on average v̂N is also a lower bound for the optimal

value of the true problem.
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The approximate cost-to-go functions Q2, ...,QT and a feasible
first stage solution x̄1 define a feasible policy. That is for a real-
ization (sample path) ξ1, ..., ξT of the data process, x̄t = x̄t(ξ[t])
are computed recursively in t = 2, ..., T as a solution of

Min
xt

cTt xt + Qt+1(xt) s.t. Btx̄t−1 +Atxt ≤ bt.

In the forward step of the SDDP algorithm M sample paths
(scenarios) are generated and the corresponding x̄t, t = 2, ..., T ,
are used as trial points in the next iteration of the backward step.

It is essential for convergence of this algorithm that at each
iteration in the forward step the paths (scenarios) are resampled,
i.e., generated independently of the previous iteration.

Note that the functions Q2, ...,QT and x̄1 define a feasible policy
also for the true problem.
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Convergence of the SDDP algorithm

It is possible to show that, under mild regularity conditions, the
SDDP algorithm converges as the number of iterations go to
infinity. That is, the computed optimal values and generated
policies converge w.p.1 to their counterparts of the considered
SAA problem. However, the convergence can be very slow and
one should take such mathematical proofs very cautiously.

Moreover, it should be remembered that the SAA problem is just
an approximation of the “true” problem. It is possible to show
that, in a certain probabilistic sense, the SAA problem converges
to the “true” problem as all sample sizes Nt, t = 2, ..., T , tend to
infinity.
It was found in our numerical experiments that optimal solutions
of the SAA problems started to stabilize for sample sizes of about
Nt = 100, t = 2, ..., T .
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Stopping criteria

The policy value E
[∑T

t=1 c
T
t x̄t(ξ[t])

]
can be estimated in the for-

ward step of the algorithm. That is, let ξi2, ..., ξ
i
T , i = 1, ...,M , be

sample paths (scenarios) generated at a current iteration of the

forward step, and

ϑi :=
T∑
t=1

(cit)
Tx̄it, i = 1, ...,M,

be the corresponding cost values. Then E[ϑi] = E
[∑T

t=1 c
T
t x̄t(ξ

i
[t])

]
,

and hence

ϑ̄ =
1

M

M∑
i=1

ϑi

gives an unbiased estimate of the policy value.
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Also

σ̂2 =
1

M − 1

M∑
i=1

(ϑi − ϑ̄)2

estimates variance of the sample ϑ1, ..., ϑM . Hence

ϑ̄+ zασ̂/
√
M

gives an upper bound for the policy value with confidence of
about 100(1− α)%. Here zα is the corresponding critical value.

At the same time this gives an upper bound for the optimal value
of the corresponding multistage problem, SAA or the “true”
problem depending from what data process the random scenarios
were generated.

Typical example of behavior of the lower and upper bounds pro-
duced by the SDDP algorithm for an SAA problem
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8 state variables, 120 stages, 1 cut per iteration
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Theoretical analysis and numerical experiments indicate that

computational complexity of the SDDP algorithm grows fast

with increase of the number of state variables. The optimality

gap jumped from 4% to 20% when the number of state vari-

ables was increased from 4 to 8 as a result of considering an

autoregressive model.

Sensitivity to initial conditions

Individual stage costs for the risk neutral approach in two cases:

all the reservoirs start at 25% or at 75% of the maximum ca-

pacity. The yellow curve denotes the 75% initial reservoir level

and the dark green denotes the 25% initial level.
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Variability of SAA problems
Table shows the 95% confidence interval for the lower bound and
average policy value at iteration 3000 over a sample of 20 SAA
problems. Each of the policy value observations was computed
using 2000 scenarios. The last 2 columns of the table shows
the range divided by the average of the lower bound (where
the range is the difference between the maximum and minimum
observation) and the standard deviation divided by the average
value. This problem has relatively low variability (approx. 4%)
for both of the lower bound and the average policy value.

95% C.I. left Average
95%

C.I. right
range

average
sdev.

average
(×109) (×109) (×109)

Lower bound 22.290 22.695 23.100 15.92% 4.07%
Average policy 27.333 27.836 28.339 17.05% 4.12%

SAA variability for risk neutral SDDP
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Risk averse approach

How to control risk, i.e., to reduce chances of extreme costs, at
every stage of the time process.

Value-at-Risk of a random outcome (variable) Z at level α ∈
(0,1):

V@Rα(Z) = inf{t : FZ(t) ≥ 1− α},

where FZ(t) = Pr(Z ≤ t) is the cdf of Z. That is, V@Rα(Z) is the
(1− α)-quantile of the distribution of Z.

Note that V@Rα(Z) ≤ c is equivalent to Pr(Z > c) ≤ α. Therefore
it could be a natural approach to impose constraints (chance
constraints) of V@Rα(Z) ≤ c for Z = cost, chosen constant c and
significance level α at every stage of the process.
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There are two problems with such approach. It is difficult to han-

dle chance constraints numerically and could lead to infeasibility

problems.

Average Value-at-Risk (also called Conditional Value-at-Risk)

AV@Rα(Z) = inf
t∈R

{
t+ α−1E[Z − t]+

}
Note that the minimum in the above is attained at

t∗ = V@Rα(Z). If the cdf FZ(z) is continuous, then

AV@Rα(Z) = E
[
Z|Z ≥ V@Rα(Z)

]
.

It follows that AV@Rα(Z) ≥ V@Rα(Z). Therefore the constraint

AV@Rα(Z) ≤ c is a conservative approximation of the chance

constraint V@Rα(Z) ≤ c.
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In the problem of minimizing expected cost E[Z] subject to the

constraint AV@Rα(Z) ≤ c, we impose an infinite penalty for vi-

olating this constraint. This could result in infeasibility of the

obtained problem. Instead we can impose a finite penalty and

consider problem of minimization of E[Z] + κAV@Rα(Z) for some

constant κ > 0. Note that this is equivalent to minimization of

ρ(Z), where

ρ(Z) = (1− λ)E[Z] + λAV@Rα(Z)

for λ ∈ (0,1) and κ = λ
1−λ.
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This leads to the following (nested) formulation of risk averse

multistage problem.

Min
A1x1≤b1

cT1x1 + ρ2|ξ1

[
inf

B2x1+A2x2=b2
x2≥0

cT2x2 + . . .

+ρT−1|ξ[T−2]

[
inf

BT−1xT−2+AT−1xT−1=bT−1
xT−1≥0

cTT−1xT−1

+ρT |ξ[T−1]
[ inf
BTxT−1+ATxT=bT

xT≥0

cTTxT ]
]]
,

with

ρt|ξ[t]
(·) := (1− λ)E|ξ[t]

[·] + λAV@Rα|ξ[t]
(·)

being conditional analogue of ρ(·).
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We can write the risk averse multistage programming problem

as

Min
x1,x2(·),...,xT (·)

ρ̄
[
F1(x1) + F2(x2(ξ[2]), ξ2) + · · ·+ FT

(
xT (ξ[T ]), ξT

) ]
s.t. x1 ∈ X1, xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt), t = 2, . . . , T,

where Ft(xt, ξt) = cTt xt and

Xt(xt−1, ξt) = {xt : Btxt−1 +Atxt = bt, xt ≥ 0}.

ρ̄(Z1 + ...+ ZT ) = ρ|ξ1

(
ρ|ξ[2]

(
· · · ρ|ξ[T−1]

(Z1 + ...+ ZT )
))

= Z1 + ρ|ξ1

(
Z2 + ρ|ξ[2]

(
+ · · · ρ|ξ[T−1]

(ZT )
))

is the corresponding composite risk measure. The optimization is

performed over (nonanticipative) policies x1, x2(ξ[2]), ..., xT (ξ[T ])

satisfying the feasibility constraints.
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With some modifications the SDDP algorithm can be applied to

the above multistage problem. Assuming the stagewise indepen-

dence, the dynamic programming equations for the adaptive risk

averse problem take the form

Qt
(
xt−1, ξt

)
= inf

xt∈Rnt

{
cTt xt+Qt+1(xt) : Btxt−1+Atxt = bt, xt ≥ 0

}
,

t = T, ...,2, where QT+1(·) ≡ 0 and

Qt+1 (xt) := ρt+1|ξ[t]

[
Qt+1

(
xt, ξt+1

)]
.

Since ξt+1 is independent of ξ[t], the cost-to-go functions Qt+1 (xt)

do not depend on the data process. In order to apply the back-

ward step of the SDDP algorithm we only need to know how to

compute subgradients of the cost-to-go functions.
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The value of this problem corresponds to the total objective

ρ̄(Z1 + ...+ ZT ) = ρ|ξ[1]

(
· · · ρ|ξ[T−1]

(Z1 + ...+ ZT )
)

= Z1 + ρ|ξ[1]

(
Z2 + · · ·+ ρ|ξ[T−1]

(ZT )
)

The dynamic programming equations of the risk averse formu-

lation of the SAA program take the form

Q
j
t(xt−1) = inf

xt

{
(cjt)

Txt +Qt+1(xt) : Bjtxt−1 +A
j
txt = b

j
t , xt ≥ 0

}
,

j = 1, ..., Nt, t = T, . . . ,2, and

Qt+1(xt) = ρ

(
Q1
t+1(xt), ..., Q

Nt+1
t+1 (xt)

)
,

with QT+1(·) ≡ 0 and the first stage problem

Min
A1x1≤b1

cT1x1 + ρ
(
Q1

2(x1), ..., QN2
2 (x1)

)
.
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For ρ(·) = (1 − λ)E[·] + λAV@Rα(·), and (Z1, ..., ZN) =(
Q1
t+1(xt), ..., QNt+1(xt)

)
we have that

Qt+1(xt) =
1− λ
Nt+1

Nt+1∑
j=1

Zj + λ

Zι +
1

αNt+1

∑
j:Zj>Zι

[
Zj − Zι

] ,
where Zι is the (1 − α)-quantile of Z1, ..., ZNt+1

. Note that if

Nt+1 < (1− α)−1, then Zι = max{Z1, ..., ZNt+1
}.

A subgradient of Qt+1(xt) is given by

∇Qt+1(xt) =
1− λ
N

Nt+1∑
j=1

∇Qjt+1(xt) +

λ

∇Qιt+1(xt) +
1

αNt+1

∑
j:Zj>Zι

[
∇Qjt+1(xt)−∇Qιt+1(xt)

] .
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These formulas allow construction of cuts in the backward step
of the SDDP algorithm. In the forward step trial points are
generated in the same way as in the risk neutral case.

Remarks
Unfortunately there is no easy way for evaluating value of the
risk objective of generated policies, and hence constructing a
corresponding upper bound. Some suggestions were made in
the recent literature. However, in larger problems the optimality
gap (between the upper and lower bounds) never approaches
zero in any realistic time. Therefore stopping criteria based on
stabilization of the lower bound (and may be optimal solutions)
could be reasonable. Also it should be remembered that there
is no intuitive interpretation for the risk objective ρ̄(cost) of the
total cost. Rather the goal is to control risk at every stage of
the process.
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