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Aggregate Flexible Loads into Virtual Power Plant

Air	
Conditioning Heater Water	

Heater
Energy	
Storage	
System

Plug-in	
Electric	
Vehicles

Chen, Hashmi, Mathias, Busic, Meyn (2018)
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F PEV Charge Schedule Optimization is a MIP!

Only ≈ 10 % of papers on large-scale optimization of PEVs model DISCRETE charging rates!
Scott Moura | UC Berkeley Hopfield Methods: App to DERs January 11, 2019 | Slide 7



F Problem Statement

Consider a mixed integer nonlinear program (MINLP):

minimize f(x) (1)

subject to: gj(x) ≤ 0, j = 1, · · · ,m (2)

xi ∈ {0,1}, i = 1, · · · ,p < n (3)

0 ≤ xi ≤ 1, i = p + 1, · · · ,n (4)

x ∈ Rn is the optimization variable
the first p < n variables must be binary
f(·) : Rn → R is quadratic and Lf – smooth
gj(·) : Rn → R are quadratic and Lj – smooth

Challenge

Solve LARGE-SCALE MINLPs, e.g. n = 103,104,105, · · ·

P vs NP – Millenium Prize Problem
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Existing Convex Relaxation Methods

1 Binary relaxation

2 Lagrangian relaxation

3 Semi-definite relaxation

4 McCormick relaxations
[McCormick ’76][Nagarajan ’16]

5 SoA Branch-and-Bound
(linear relaxation) [Belotti ’08]

6 SoA Branch-and-Cut
[Achterberg ’08]

7 Quadratic Convex
relaxations [Hijazi ’17]

8 Polyhedral relaxations for
MIMFs [Nagarajan ’18]

Stochastic approach to recover integer constraint:

Let xr be sol’n to binary relaxation. Feasible x can be drawn
randomly from {0,1} following Bernoulli distribution B(xr).

This can be sub-optimal.

Example

minimizex∈{0,1}

(
x− 1

4

)2

=
1

16
(x? = 0 is opt. sol’n)

If we apply binary relaxation, we get xr = 1
4 and

Ex∼B(xr)

(
x− 1

4

)2
= 3

16 >
1

16 !
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Outline

1 Hopfield Methods - What are they?

2 Theoretical Analysis

3 Dual Hopfield Method

4 Example and Application

Scott Moura | UC Berkeley Hopfield Methods: App to DERs January 11, 2019 | Slide 10



A short history of Hopfield Networks

(1982) J. J. Hopfield used neural nets to
model collaborative computations

(1985) J. J. Hopfield showed that neural
nets can be used to solve optimization
problems

(1990’s – 2000’s) Hopfield methods
became very popular for solving MIQPs in
power systems optimization

In literature, power system researchers
admit they didn’t fully understand why
Hopfield methods work well.
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The Hopfield Method

Consider MINLP

minimize f(x) (5)

subject to: xi ∈ {0,1}, i = 1, · · · ,p < n (6)

0 ≤ xi ≤ 1, i = p + 1, · · · ,n (7)

Hopfield method follows dynamics:

d

dt
xH(t) = −∇f(x(t)); xH(0) = x(0) ∈ (0,1)n (8)

x(t) = σ(xH(t)) (9)

where σ(·) : Rn → [0,1]n is an “activiation function” defined element-wise as:

σ(x) : x 7→ [σ1(x1), · · · , σn(xn)]
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What is activation function σ(x)?

strictly increasing

σ(·) ∈ C1 with Lipschitz constant Lσi

Example: tanh

σi(x) = 1
2 tanh(βi(x− 1

2 )) + 1
2 ; βi > 0

“soft projection operator” from R to {0,1}
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F F Hopfield Method⇒ Nonlinear Gradient Flow

If σ(·) is a homeomorphism, then a nonlinear gradient flow emerges!

d

dt
x(t) = −σ′(σ−1(x(t)))�∇f(x(t)) (10)

exp tanh sin pwl
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Discretize time dynamics

Forward Euler time discretization of Hopfield dynamics:

xk+1
H = xkH − αk∇f(xk); x0

H = x0 ∈ (0,1)n (11)

xk = σ(xkH) (12)

For quadratic f(x) = 1
2x

TQx

xk+1
H = xkH − αkQxk; x0

H = x0 ∈ (0,1)n (13)

xk = σ(xkH) (14)
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Graphical Interpretation of Hopfield Method
Forward Simulation of Hopfield Neural Net!

Undirected weighted graph

n nodes, one for each xi

Each node has internal (xH,i ∈ R)
and external (xi ∈ R) states

Weights [P0]ij are elements of
gradients of obj fcn
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F Hopfield vs Projected Gradient Descent

Hopfield

xk+1
H = xkH − αk∇f(xk) (15)

xk = σ(xkH) (16)

Projected Gradient Descent

xk+1
H = xk − αk∇f(xk) (17)

xk = Proj[0,1](x
k
H) (18)
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F Hopfield vs Projected Gradient Descent

Hopfield

xk+1
H = xkH − αk∇f(xk) (15)

xk = σ(xkH) (16)

Projected Gradient Descent

xk+1 = Proj[0,1](x
k − αk∇f(xk)) (17)

No dynamics!
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Simple Comparison

minimizex1,x2 (x1 − 1.5)2 + (x2 − 0.5)2 (18)

subject to: x1 ∈ {0,1} (19)

0 ≤ x2 ≤ 1 (20)
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Continuous Improvement to a Fixed Point

Theorem 1: Continuous Improvement

The Hopfield method yields monotonically decreasing iterates, f(xk+1) ≤ f(xk), ∀ k if ...

activation fcn has Lipschitz continuous first derivative: σ(·) ∈ C1 (exp, tanh, sin, pwl)

step-size αk follows an appropriately decreasing schedule

Specifically, the incremental improvement is bounded by:

0 ≤ f(xk)− f(xk+1) ≤ 0.5αk · ∇f(xk)TΣk∇f(xk) where Σk = diag(σ′(xkH))

Corollary: Convergence within a set

There exists a f † such that f(xk)→ f † as k →∞, and xk converges to the (non-empty) set

X =

{
x ∈ [0,1]n | xi ∈ {0,1} OR

∂

∂xi
f(x) = 0, i = 1, · · · ,p

}
(21)

Remarks:

Set X includes true minimizer x?, but xk → x? not guaranteed
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Convergence Rates

Theorem 2: Sub-linear convergence

If f(x) is convex and σ(·) is smooth and verifies

σ′(σ−1(x)) ≥ min {|x|, |1− x|} , x ∈ [0,1]n (22)

then,

f(xk)− f † = O
(

1
kr

)
, with 0 < r < 1

To achieve precision ε, the worst case number of iterations is 2Mn/(β2ε)

M is upper-bound on Hessian: ∇2f(x) � MI
n is number of variables x ∈ Rn

β is “hardness” of activation function

Remark: Slower than gradient descent, for which convergence is guaranteed at rate O
(

1
k

)
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Dual Hopfield Method

So far, we have considered Hopfield methods to approximately solve

minimize f(x) (23)

subject to: 0 ≤ xi ≤ 1 i = 1, · · · ,n (24)

xi ∈ {0,1} i = 1, · · · ,p < n (25)

We now consider inequality constraints:

minimize f(x) (26)

subject to: gj(x) ≤ 0, j = 1, · · · ,m (27)

0 ≤ xi ≤ 1 i = 1, · · · ,n (28)

xi ∈ {0,1} i = 1, · · · ,p < n (29)
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Dual Hopfield Method
Apply Lagrangian relaxation

Idea: Instead of considering the “full” Lagrangian relaxation, consider

L(x, µ) = f(x) +
m∑
j=1

µjgj(x) (30)

Then the dual function is

D(µ) = min
x

L(x, µ) = f(x) +
m∑
j=1

µjgj(x) (31)

subject to: 0 ≤ xi ≤ 1 i = 1, · · · ,n (32)

xi ∈ {0,1} i = 1, · · · ,p < n (33)

which is amenable to Hopfield method, given µ.
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Dual Ascent via Hopfield

Then solve the Dual Problem:

max
µ≥0

D(µ) (34)

D(µ) = min
x

L(x, µ) = min
x

f(x) +
m∑
j=1

µjgj(x) (35)

Run Hopfield method to approximately solve D(µ) = minx L(x, µ).

Suppose x?(µ) = arg minx L(x, µ).

The subgradient of D(µ) along dimension j: gj(x?(µ)) ∈ ∂jD(µ)
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Dual Hopfield Method
The Algorithm

Algorithm 1 Dual (sub)-gradient Ascent via Hopfield Method

Initialize λ0 ≥ 0; Choose β > 0
for k = 0,1, · · · , kmax

... (1) use Hopfield method to approximately compute dual function

... for ` = 0, · · · , `max

... ... x`+1
H = x`H − α`∇xL(x`, µk)

... ... x` = σ(x`+1
H )

... ... xkhop ← x`

... until stopping criterion is met

... (2) update dual variable µ via (sub)-gradient ascent

... µk+1 = µk + βk
∑m

j=1 gj(x
k
hop(µk))

end for
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Examples: Random MIQPs

Consider solving MIQP w.r.t. x ∈ Rn

minimize
1

2
xTQx + RTx (36)

subject to: Ax ≤ b (37)

Aeqx = beq (38)

lb ≤ x ≤ ub (39)

xi ∈ {0,1}, i = 1, · · · ,p (40)

Randomly generated parameters Q,R,A,b,Aeq,beq, lb,ub for each n

Number of constraints also randomized
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Comparative Analysis

All problems solved on Matlab:

CPLEX MIQP: using function cplexmiqp
developed by IBM

Binary Relaxation via CPLEX QP : using
function cplexqp

Semi-definite relaxation (SDR):
corresponding SDP solved using CVX

Hopfield: Dual Ascent Hopfield Method
uses dual variables from cplexqp

For each method, we compute:

computer running time [sec]

constraint violations (CV):
binary CV: 1

p

∑p
i=1 d(xi, {0,1})

inequality CV: 1
m

∑m
j=1 |[Ax− b]j|

equality CV: 1
`

∑`
k=1 |[Aeqx− beq]k|

objective function value
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Comparative Analysis
Computer running time
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Application: Optimal Economic Dispatch of DERs

Consider n generators with cost: fi(xi) = cix2
i + bixi + ai, with ai,bi, ci ≥ 0.

The first p generators can only make binary decisions. That is:

∀ i ∈ {1,p} we have xi ∈ {Pi,min, Pi,max}
∀ i ∈ {p + 1,n} we have xi ∈ [Pi,min, Pi,max]

Problem Statement
Find the optimal dispatch for generators to minimize cost and meet demand:

minimize
n∑
i

fi(xi)

subject to:
n∑
i

xi = D

(constraints above)

Simulation parameters: n = 1000 generators. Other parameters randomly generated.
We perform 5000 Monte-Carlo simulations.
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Monte Caroline Simulation Results
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SUMMARY
Hopfield Methods for large-scale MINLPs – An old heuristic with new analysis!

EXTENSIONS
Alternative descent direction

Nesterov acceleration

Chance constraints

Distributed algorithms via dual decomposition

· · ·

ON-GOING / FUTURE
Application to Large-Scale PEV Charge Scheduling

More comprehensive comparative analysis

Open source codes! hmip
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VISIT US!
Energy, Controls, and Applications Lab (eCAL)

ecal.berkeley.edu

smoura@berkeley.edu
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APPENDIX SLIDES
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Existing Methods
Convex Relaxation #1: Binary Relaxation

Stochastic approach to recover integer constraint:

Let xr be solution to binary relaxation. Feasible x can be drawn randomly from {0,1} following
Bernoulli distribution B(xr).

This can be sub-optimal.

Example

minimizex∈{0,1}

(
x− 1

4

)2

=
1

16
(x? = 0 is the optimal solution)

If we apply binary relaxation, we get xr = 1
4 and Ex∼B(xr)

(
x− 1

4

)2
= 3

16 >
1

16 !

Other ideas:

Branch & Bound, Branch & Cut
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Existing Methods
Convex Relaxation #2: Lagrangian Relaxation

Notice that xi ∈ {0,1} is equivalent to satisfying xi(1− xi) = 0

minimize f(x) (41)

subject to: gj(x) ≤ 0, j = 1, · · · ,m (42)

0 ≤ x ≤ 1 (43)

xi(1− xi) = 0, i = 1, · · · ,p < n (44)

Form the Lagrangian:

L(x, µ, µ, µ, λ) = f(x) +
m∑
j=1

[
µjgj(x) + µ

j
xi + µj(1− xi)

]
+

p∑
i=1

λixi(1− xi) (45)

Define the (concave) dual function of Λ = [µ, µ, µ, λ]

D(Λ) = min
x∈Rn

L(x, µ, µ, µ, λ) (46)

Weak duality approach: Solve convex program maxΛ D(Λ)
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Existing Methods
Convex Relaxation #2: Lagrangian Relaxation

Notice that xi ∈ {0,1} is equivalent to satisfying xi(1− xi) = 0

minimize f(x) (41)

subject to: gj(x) ≤ 0, j = 1, · · · ,m (42)

0 ≤ x ≤ 1 (43)

xi(1− xi) = 0, i = 1, · · · ,p < n (44)

Form the Lagrangian:

L(x, µ, µ, µ, λ) = f(x) +
m∑
j=1

[
µjgj(x) + µ

j
xi + µj(1− xi)

]
+

p∑
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λixi(1− xi) (45)
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D(Λ) = min
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Existing Methods
Convex Relaxation #3: Semi-definite Relaxation

Introduce new variable X = xxT . This is called “lifting”. Can re-write MIQCQP

minimize
1

2
Tr(QX) + RTx + S (47)

subject to:
1

2
Tr(QjX) + RT

j x + Sj ≤ 0, j = 1, · · · ,m (48)

0 ≤ x ≤ 1 (49)

Xii = xi, i = 1, · · · ,p < n (50)

X = xxT (51)

If Q,Qi are positive semi-definite, then only X = xxT makes this non-convex. Relax into convex
inequality X � xxT . Using Schur complement:

X � xxT ⇔
[
X x
x 1

]
� 0 (52)

This can be cast as a semi-definite program (SDP).
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