Hopfield Methods: Application to Optimization of Distributed Energy Resources

Scott Moura

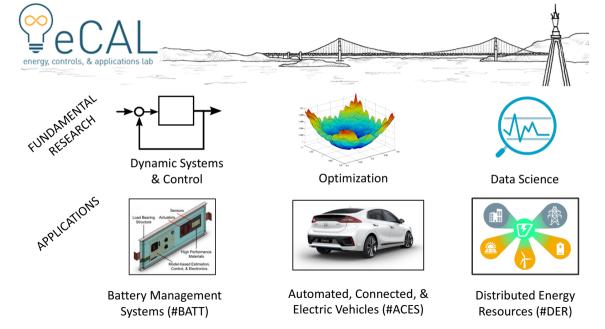
Assistant Professor | eCAL Director University of California, Berkeley

2019 Grid Science Winter School & Conference Santa Fe, New Mexico USA

Scott Moura | UC Berkeley

Hopfield Methods: App to DERs

January 11, 2019 | Slide 2



Scott Moura | UC Berkeley

January 11, 2019 | Slide 3

Probabilistic Model for Assessing Distribution Grid Performance under Hazard Scenarios

Optimal Bidding Strategy on the Energy Market - A Reinforcement Learning Approach

Mathilde BADOUAL

Virtual Inertia Frequency Regulation for Renewable Integration

Victoria CHENG

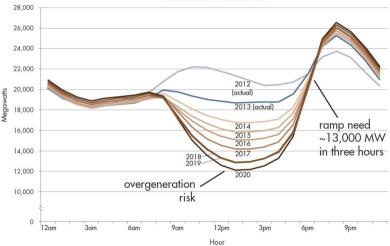
Multi-Armed Bandits DER Control

Armando DOMINGOS

Solving Overstay in PEV Charging Station Planning via Chance Constrained Optimization

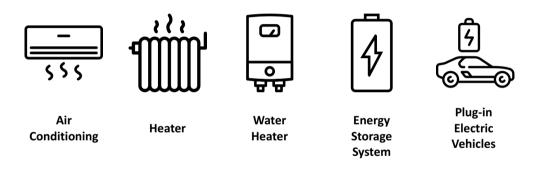
Teng ZENG

The duck curve shows steep ramping needs and overgeneration risk



Net load - March 31

Aggregate Flexible Loads into Virtual Power Plant



• Chen, Hashmi, Mathias, Busic, Meyn (2018)

+ PEV Charge Schedule Optimization is a MIP!

eMotorWerks' Juicebox

UC Berkeley Smart EV Charger

Richmond Field Station

$Control \in on (40 A)$ or off (0 A)

Control $\in \{0 A\} \cup [12 A, 30 A]$

Only \approx 10 % of papers on large-scale optimization of PEVs model DISCRETE charging rates!

+ Problem Statement

Consider a mixed integer nonlinear program (MINLP):

minimize	$f(\mathbf{x})$		(1)
----------	-----------------	--	-----

subject to: $g_i(\mathbf{x}) \leq 0, \quad i = 1, \cdots, m$ (2)

$$\mathbf{x}_i \in \{\mathbf{0}, \mathbf{1}\}, \quad i = \mathbf{1}, \cdots, p < n$$
 (3)

$$0 \leq \mathbf{x}_i \leq 1, \quad i = p + 1, \cdots, n \tag{4}$$

 $\mathbf{x} \in \mathbb{R}^n$ is the optimization variable the first p < n variables must be binary $f(\cdot): \mathbb{R}^n \to \mathbb{R}$ is quadratic and L_f – smooth $g_i(\cdot): \mathbb{R}^n \to \mathbb{R}$ are quadratic and L_i – smooth

+ Problem Statement

Consider a mixed integer nonlinear program (MINLP):

minimize	$f(\mathbf{x})$	(1)
----------	-----------------	----	---

subject to: $g_i(\mathbf{x}) \leq 0, \quad i = 1, \cdots, m$ (2)

$$x_i \in \{0, 1\}, i = 1, \cdots, p < n$$
 (3)

$$0 \leq \mathbf{x}_i \leq 1, \quad i = p + 1, \cdots, n \tag{4}$$

 $\mathbf{x} \in \mathbb{R}^n$ is the optimization variable the first p < n variables must be binary $f(\cdot): \mathbb{R}^n \to \mathbb{R}$ is quadratic and L_f – smooth $g_i(\cdot): \mathbb{R}^n \to \mathbb{R}$ are quadratic and L_i – smooth

Challenge

Solve **LARGE-SCALE** MINLPs, e.g. $n = 10^{3}, 10^{4}, 10^{5}, \cdots$

P vs NP – Millenium Prize Problem

Existing Convex Relaxation Methods

Binary relaxation

- 2 Lagrangian relaxation
- Semi-definite relaxation
- McCormick relaxations [McCormick '76][Nagarajan '16]
- SoA Branch-and-Bound (linear relaxation) [Belotti '08]
- SoA Branch-and-Cut [Achterberg '08]
- Quadratic Convex relaxations [Hijazi '17]
- Polyhedral relaxations for MIMFs [Nagarajan '18]

Binary relaxation

- 2 Lagrangian relaxation
- Semi-definite relaxation
- McCormick relaxations [McCormick '76][Nagarajan '16]
- SoA Branch-and-Bound (linear relaxation) [Belotti '08]
- SoA Branch-and-Cut [Achterberg '08]
- Quadratic Convex relaxations [Hijazi '17]
- Polyhedral relaxations for MIMFs [Nagarajan '18]

Stochastic approach to recover integer constraint:

Let x^r be sol'n to binary relaxation. Feasible x can be drawn randomly from $\{0, 1\}$ following Bernoulli distribution $\mathcal{B}(x^r)$.

This can be sub-optimal.

Example

minimize_{$$x \in \{0,1\}$$} $\left(x - \frac{1}{4}\right)^2 = \frac{1}{16}$ ($x^* = 0$ is opt. sol'n)

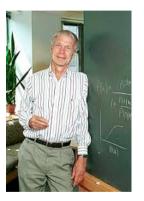
If we apply binary relaxation, we get $x^r = \frac{1}{4}$ and $\mathbb{E}_{x \sim \mathcal{B}(x^r)} \left(x - \frac{1}{4}\right)^2 = \frac{3}{16} > \frac{1}{16}$!

Hopfield Methods - What are they?

- 2 Theoretical Analysis
- 3 Dual Hopfield Method
- Example and Application

A short history of Hopfield Networks

- (1982) J. J. Hopfield used neural nets to model collaborative computations
- (1985) J. J. Hopfield showed that neural nets can be used to solve optimization problems
- (1990's 2000's) Hopfield methods became very popular for solving MIQPs in power systems optimization
- In literature, power system researchers admit they didn't fully understand why Hopfield methods work well.



The Hopfield Method

Consider MINLP

minimize	$f(\mathbf{x})$	(5)
subject to:	$\mathbf{x}_i \in \{0,1\}, \hspace{1em} i = 1, \cdots, \mathbf{p} < \mathbf{n}$	(6)
	$0\leq \mathbf{x}_i\leq 1, i=\mathbf{p}+1,\cdots, n$	(7)

Consider MINLP

minimize
$$f(x)$$
 (5)

subject to:
$$x_i \in \{0, 1\}, \quad i = 1, \cdots, p < n$$
 (6)

$$0 \leq x_i \leq 1, \quad i = p + 1, \cdots, n \tag{7}$$

Hopfield method follows dynamics:

$$\frac{d}{dt}x_{H}(t) = -\nabla f(x(t)); \quad x_{H}(0) = x(0) \in (0,1)^{n}$$
(8)
$$x(t) = \sigma(x_{H}(t))$$
(9)

where $\sigma(\cdot) : \mathbb{R}^n \to [0, 1]^n$ is an "activiation function" defined element-wise as:

 $\sigma(\mathbf{x}): \mathbf{x} \mapsto [\sigma_1(\mathbf{x}_1), \cdots, \sigma_n(\mathbf{x}_n)]$

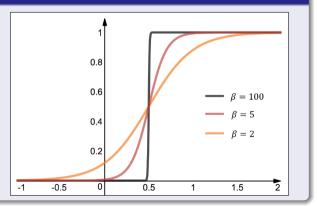
What is activation function $\sigma(x)$?

- strictly increasing
- $\sigma(\cdot) \in \mathbb{C}^1$ with Lipschitz constant L_{σ_i}

Example: tanh

$$\sigma_i(x) = \frac{1}{2} \tanh(\beta_i(x-\frac{1}{2})) + \frac{1}{2}; \qquad \beta_i > 0$$

"soft projection operator" from \mathbb{R} to $\{0,1\}$



\star Hopfield Method \Rightarrow Nonlinear Gradient Flow

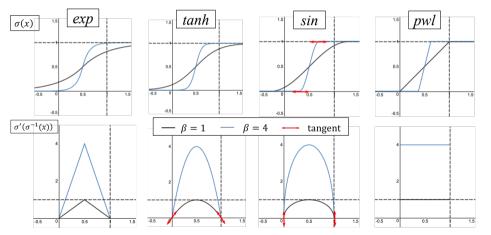
If $\sigma(\cdot)$ is a homeomorphism, then a **nonlinear gradient flow emerges**!

$$\frac{d}{dt}\mathbf{x}(t) = -\sigma'(\sigma^{-1}(\mathbf{x}(t))) \odot \nabla f(\mathbf{x}(t))$$
(10)

\star + Hopfield Method \Rightarrow Nonlinear Gradient Flow

If $\sigma(\cdot)$ is a homeomorphism, then a **nonlinear gradient flow emerges**!

$$\frac{d}{dt}\mathbf{x}(t) = -\sigma'(\sigma^{-1}(\mathbf{x}(t))) \odot \nabla f(\mathbf{x}(t))$$
(10)



Scott Moura | UC Berkeley

Forward Euler time discretization of Hopfield dynamics:

$$\begin{aligned} x_{H}^{k+1} &= x_{H}^{k} - \alpha^{k} \nabla f(x^{k}); \qquad x_{H}^{0} = x^{0} \in (0, 1)^{n} \\ x^{k} &= \sigma(x_{H}^{k}) \end{aligned} \tag{11}$$

Forward Euler time discretization of Hopfield dynamics:

$$\begin{aligned} x_{H}^{k+1} &= x_{H}^{k} - \alpha^{k} \nabla f(x^{k}); \qquad x_{H}^{0} = x^{0} \in (0,1)^{n} \\ x^{k} &= \sigma(x_{H}^{k}) \end{aligned} \tag{11}$$

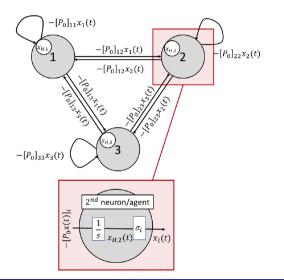
For quadratic $f(x) = \frac{1}{2} x^T Q x$

$$\begin{aligned} x_{H}^{k+1} &= x_{H}^{k} - \alpha^{k} Q x^{k}; \qquad x_{H}^{0} = x^{0} \in (0, 1)^{n} \\ x^{k} &= \sigma(x_{H}^{k}) \end{aligned} \tag{13}$$

Graphical Interpretation of Hopfield Method

Forward Simulation of Hopfield Neural Net!

- Undirected weighted graph
- *n* nodes, one for each *x_i*
- Each node has internal (x_{H,i} ∈ ℝ) and external (x_i ∈ R) states
- Weights [P₀]_{ij} are elements of gradients of obj fcn



Hopfield

$$\begin{aligned} \mathbf{x}_{H}^{k+1} &= \mathbf{x}_{H}^{k} - \alpha^{k} \nabla f(\mathbf{x}^{k}) \qquad (15) \\ \mathbf{x}^{k} &= \sigma(\mathbf{x}_{H}^{k}) \qquad (16) \end{aligned}$$

Projected Gradient Descent

$$\boldsymbol{x}_{H}^{k+1} = \boldsymbol{x}^{k} - \alpha^{k} \nabla f(\boldsymbol{x}^{k})$$
 (17)

$$x^{k} = \operatorname{Proj}_{[0,1]}(x_{H}^{k})$$
 (18)

Hopfield

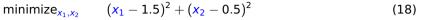
$$x_{H}^{k+1} = \frac{\mathbf{x}_{H}^{k}}{\mathbf{x}^{k}} - \alpha^{k} \nabla f(\mathbf{x}^{k})$$
(15)
$$\mathbf{x}^{k} = \sigma(\mathbf{x}_{H}^{k})$$
(16)

Projected Gradient Descent

$$x^{k+1} = \operatorname{Proj}_{[0,1]}(x^k - \alpha^k \nabla f(x^k))$$
 (17)

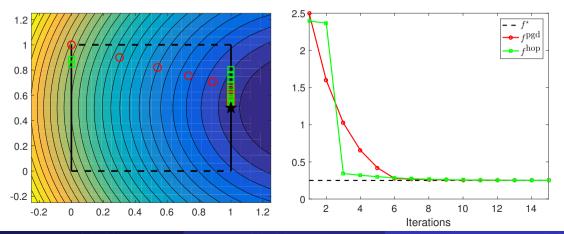
No dynamics!

Simple Comparison



subject to:

$$0 \le x_2 \le 1 \tag{20}$$



x1 ∈

Scott Moura | UC Berkeley

Hopfield Methods - What are they?

- 2 Theoretical Analysis
- 3 Dual Hopfield Method
- Example and Application

Theorem 1: Continuous Improvement

The Hopfield method yields monotonically decreasing iterates, $f(x^{k+1}) \le f(x^k)$, $\forall k$ if ...

- activation fcn has Lipschitz continuous first derivative: $\sigma(\cdot) \in \mathbb{C}^1$ (exp, tanh, sin, pwl)
- step-size α^k follows an appropriately decreasing schedule

Specifically, the incremental improvement is bounded by:

$$0 \leq f(x^k) - f(x^{k+1}) \leq 0.5 lpha^k \cdot
abla f(x^k)^T \Sigma^k
abla f(x^k)$$
 where $\Sigma^k = ext{diag}(\sigma'(x^k_H))$

Theorem 1: Continuous Improvement

The Hopfield method yields monotonically decreasing iterates, $f(x^{k+1}) \le f(x^k)$, $\forall k$ if ...

- activation fcn has Lipschitz continuous first derivative: $\sigma(\cdot) \in \mathbb{C}^1$ (exp, tanh, sin, pwl)
- step-size α^k follows an appropriately decreasing schedule

Specifically, the incremental improvement is bounded by:

$$0 \leq f(x^k) - f(x^{k+1}) \leq 0.5 lpha^k \cdot
abla f(x^k)^T \Sigma^k
abla f(x^k)$$
 where $\Sigma^k = ext{diag}(\sigma'(x^k_H))$

Corollary: Convergence within a set

There exists a f^{\dagger} such that $f(x^k) o f^{\dagger}$ as $k \to \infty$, and x^k converges to the (non-empty) set

$$\mathcal{X} = \left\{ x \in [0,1]^n \mid x_i \in \{0,1\} \quad \text{OR} \quad \frac{\partial}{\partial x_i} f(x) = 0, \quad i = 1, \cdots, p \right\}$$
(21)

Remarks:

• Set $\mathcal X$ includes true minimizer x^\star , but $x^k o x^\star$ not guaranteed

Theorem 2: Sub-linear convergence

If f(x) is convex and $\sigma(\cdot)$ is smooth and verifies

$$\sigma'(\sigma^{-1}(x)) \ge \min\{|x|, |1-x|\}, \quad x \in [0,1]^n$$
(22)

then,

- $f(x^k) f^{\dagger} = \mathcal{O}\left(\frac{1}{k^r}\right)$, with 0 < r < 1
- To achieve precision ε , the worst case number of iterations is $2Mn/(\beta^2 \varepsilon)$
 - *M* is upper-bound on Hessian: $\nabla^2 f(x) \preceq MI$
 - *n* is number of variables $x \in \mathbb{R}^n$
 - β is "hardness" of activation function

Remark: Slower than gradient descent, for which convergence is guaranteed at rate $\mathcal{O}\left(\frac{1}{k}\right)$

Hopfield Methods - What are they?

- 2 Theoretical Analysis
- 3 Dual Hopfield Method
- Example and Application

So far, we have considered Hopfield methods to approximately solve

minimize
$$f(\mathbf{x})$$
 (23)

subject to:
$$0 \le x_i \le 1$$
 $i = 1, \cdots, n$ (24)

$$x_i \in \{0, 1\}$$
 $i = 1, \cdots, p < n$ (25)

So far, we have considered Hopfield methods to approximately solve

minimize
$$f(\mathbf{x})$$
 (23)

subject to:
$$0 \le x_i \le 1$$
 $i = 1, \cdots, n$ (24)

$$x_i \in \{0, 1\}$$
 $i = 1, \cdots, p < n$ (25)

We now consider inequality constraints:

minimize	$f(\mathbf{x})$	(26)

subject to: $g_j(x) \le 0, \quad j = 1, \cdots, m$ (27) $0 \le x_i \le 1 \quad i = 1, \cdots, n$ (28)

$$x_i \in \{0,1\}$$
 $i = 1, \cdots, p < n$ (29)

Apply Lagrangian relaxation

Idea: Instead of considering the "full" Lagrangian relaxation, consider

$$L(\mathbf{x},\mu) = f(\mathbf{x}) + \sum_{j=1}^{m} \mu_j g_j(\mathbf{x})$$
(30)

Apply Lagrangian relaxation

Idea: Instead of considering the "full" Lagrangian relaxation, consider

$$L(\mathbf{x},\mu) = f(\mathbf{x}) + \sum_{j=1}^{m} \mu_j g_j(\mathbf{x})$$
(30)

Then the dual function is

$$D(\mu) = \min_{x} \qquad L(x,\mu) = f(x) + \sum_{j=1}^{m} \mu_j g_j(x)$$
 (31)

subject to:
$$0 \le x_i \le 1$$
 $i = 1, \cdots, n$ (32)

$$x_i \in \{0, 1\}$$
 $i = 1, \cdots, p < n$ (33)

which is amenable to Hopfield method, given μ .

Then solve the Dual Problem:

$$\max_{\mu \ge 0} D(\mu)$$
(34)
$$D(\mu) = \min_{x} L(x, \mu) = \min_{x} f(x) + \sum_{j=1}^{m} \mu_{j} g_{j}(x)$$
(35)

Then solve the Dual Problem:

$$\max_{\mu \ge 0} D(\mu)$$
(34)
$$D(\mu) = \min_{x} L(x, \mu) = \min_{x} f(x) + \sum_{j=1}^{m} \mu_{j} g_{j}(x)$$
(35)

Run Hopfield method to approximately solve $D(\mu) = \min_{x} L(x, \mu)$.

Suppose $x^*(\mu) = \arg \min_x L(x, \mu)$.

The subgradient of $D(\mu)$ along dimension *j*: $g_j(x^*(\mu)) \in \partial_j D(\mu)$

The Algorithm

Algorithm 1 Dual (sub)-gradient Ascent via Hopfield Method

Initialize $\lambda^0 > 0$; Choose $\beta > 0$ for $k = 0, 1, \dots, k_{max}$ (1) use Hopfield method to approximately compute dual function for $\ell = 0, \cdots, \ell_{max}$ $\mathbf{x}_{H}^{\ell+1} = \mathbf{x}_{H}^{\ell} - \alpha^{\ell} \nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^{\ell}, \mu^{k})$ $\mathbf{x}^{\ell} = \sigma(\mathbf{x}_{H}^{\ell+1})$ $x_{\text{hop}}^k \leftarrow x^\ell$ **until** stopping criterion is met (2) update dual variable μ via (sub)-gradient ascent $\mu^{k+1} = \mu^{k} + \beta^{k} \sum_{i=1}^{m} g_{i}(x_{\text{hop}}^{k}(\mu^{k}))$ end for

Hopfield Methods - What are they?

- 2 Theoretical Analysis
- 3 Dual Hopfield Method
- Example and Application

Consider solving MIQP w.r.t. $x \in \mathbb{R}^n$

minimize
$$\frac{1}{2}x^TQx + R^Tx$$
 (36)

subject to:
$$Ax \le b$$
 (37)

$$A_{eq}x = b_{eq} \tag{38}$$

$$lb \le x \le ub$$
 (39)

$$x_i \in \{0, 1\}, i = 1, \cdots, p$$
 (40)

- Randomly generated parameters Q, R, A, b, A_{eq}, b_{eq}, lb, ub for each n
- Number of constraints also randomized

All problems solved on Matlab:

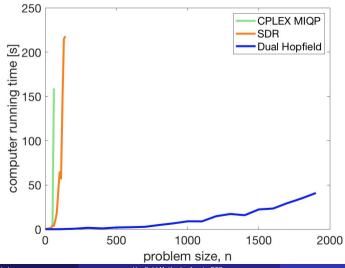
For each method, we compute:

- CPLEX MIQP: using function *cplexmiqp* developed by IBM
- Binary Relaxation via CPLEX QP : using function *cplexqp*
- Semi-definite relaxation (SDR): corresponding SDP solved using CVX
- Hopfield: Dual Ascent Hopfield Method uses dual variables from *cplexqp*

- computer running time [sec]
- constraint violations (CV):
 - binary CV: $\frac{1}{p} \sum_{i=1}^{p} d(x_i, \{0, 1\})$
 - inequality CV: $\frac{1}{m} \sum_{j=1}^{m} |[Ax b]_j|$
 - equality CV: $\frac{1}{\ell} \sum_{k=1}^{\ell} |[A_{eq}x b_{eq}]_k|$
- objective function value

Comparative Analysis

Computer running time



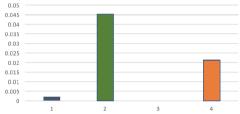
Scott Moura | UC Berkeley

Hopfield Methods: App to DERs

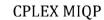
Objective value

Binary CV





equality CV



Application: Optimal Economic Dispatch of DERs

Consider *n* generators with cost: $f_i(x_i) = c_i x_i^2 + b_i x_i + a_i$, with $a_i, b_i, c_i \ge 0$.

The first *p* generators can only make binary decisions. That is:

•
$$\forall i \in \{1, p\}$$
 we have $x_i \in \{P_{i,\min}, P_{i,\max}\}$

•
$$orall i \in \{ p+1, n \}$$
 we have $x_i \in [P_{i,\min}, P_{i,\max}]$

Problem Statement

Find the optimal dispatch for generators to minimize cost and meet demand:

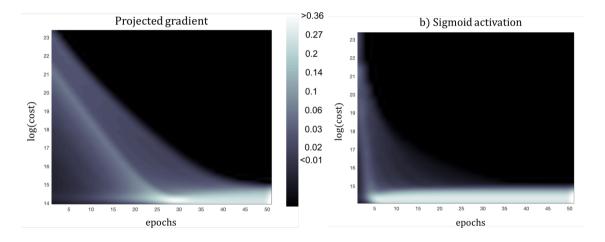
minimize
$$\sum_{i}^{n} f_{i}(x_{i})$$

subject to: $\sum_{i}^{n} x_{i} = D$
(constraints above)

Simulation parameters: n = 1000 generators. Other parameters randomly generated. We perform 5000 Monte-Carlo simulations.

Scott Moura | UC Berkeley

Monte Caroline Simulation Results



SUMMARY

• Hopfield Methods for large-scale MINLPs – An old heuristic with new analysis!

EXTENSIONS

- Alternative descent direction
- Nesterov acceleration
- Chance constraints
- Distributed algorithms via dual decomposition
- o . . .

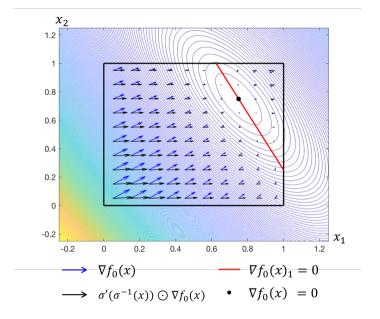
ON-GOING / FUTURE

- Application to Large-Scale PEV Charge Scheduling
- More comprehensive comparative analysis
- Open source codes! hmip

VISIT US!

Energy, Controls, and Applications Lab (eCAL) ecal.berkeley.edu smoura@berkeley.edu

APPENDIX SLIDES



Stochastic approach to recover integer constraint:

Let x^r be solution to binary relaxation. Feasible x can be drawn randomly from $\{0, 1\}$ following Bernoulli distribution $\mathcal{B}(x^r)$.

This can be sub-optimal.

Stochastic approach to recover integer constraint:

Let x^r be solution to binary relaxation. Feasible x can be drawn randomly from $\{0, 1\}$ following Bernoulli distribution $\mathcal{B}(x^r)$.

This can be sub-optimal.

Example

minimize_{$$x \in \{0,1\}$$} $\left(x - \frac{1}{4}\right)^2 = \frac{1}{16}$ ($x^* = 0$ is the optimal solution)

If we apply binary relaxation, we get $x^r = \frac{1}{4}$ and $\mathbb{E}_{x \sim \mathcal{B}(x^r)} \left(x - \frac{1}{4}\right)^2 = \frac{3}{16} > \frac{1}{16}$!

Other ideas:

• Branch & Bound, Branch & Cut

Convex Relaxation #2: Lagrangian Relaxation

Notice that $x_i \in \{0, 1\}$ is equivalent to satisfying $x_i(1 - x_i) = 0$

minimize $f(\mathbf{x})$ (41)

subject to: $g_i(\mathbf{x}) \leq 0, \quad j = 1, \cdots, m$ (42) 0

$$1 \le \mathbf{x} \le \mathbf{1}$$
 (43)

$$x_i(1-x_i) = 0, \quad i = 1, \cdots, p < n$$
 (44)

Convex Relaxation #2: Lagrangian Relaxation

Notice that $x_i \in \{0,1\}$ is equivalent to satisfying $x_i(1-x_i) = 0$

minimize $f(\mathbf{x})$ (41)

subject to

to:
$$g_j(\mathbf{x}) \le 0, \quad j = 1, \cdots, m$$
 (42)

$$0 \le \mathbf{x} \le \mathbf{1} \tag{43}$$

$$x_i(1 - x_i) = 0, \quad i = 1, \cdots, p < n$$
 (44)

Form the Lagrangian:

$$L(x,\mu,\underline{\mu},\overline{\mu},\lambda) = f(x) + \sum_{j=1}^{m} \left[\mu_j g_j(x) + \underline{\mu}_j x_i + \overline{\mu}_j (1-x_i) \right] + \sum_{i=1}^{p} \lambda_i x_i (1-x_i)$$
(45)

Convex Relaxation #2: Lagrangian Relaxation

Notice that $x_i \in \{0, 1\}$ is equivalent to satisfying $x_i(1 - x_i) = 0$

minimize	$f(\mathbf{x})$	(41)
----------	-----------------	------

subject to: $g_i(\mathbf{x}) \leq 0, \quad j = 1, \cdots, m$ (42)

$$0 \le \mathbf{x} \le \mathbf{1} \tag{43}$$

$$x_i(1-x_i) = 0, \quad i = 1, \cdots, p < n$$
 (44)

Form the *Lagrangian*:

$$L(x,\mu,\underline{\mu},\overline{\mu},\lambda) = f(x) + \sum_{j=1}^{m} \left[\mu_j g_j(x) + \underline{\mu}_j x_i + \overline{\mu}_j (1-x_i) \right] + \sum_{i=1}^{p} \lambda_i x_i (1-x_i)$$
(45)

Define the (concave) *dual function* of $\Lambda = [\mu, \mu, \overline{\mu}, \lambda]$

$$D(\Lambda) = \min_{\mathbf{x} \in \mathbb{R}^n} L(\mathbf{x}, \mu, \underline{\mu}, \overline{\mu}, \lambda)$$
(46)

Weak duality approach: Solve convex program $\max_{\Lambda} D(\Lambda)$

Scott Moura I UC Berkelev

Convex Relaxation #3: Semi-definite Relaxation

Introduce new variable $X = xx^{T}$. This is called "lifting". Can re-write MIQCQP

Convex Relaxation #3: Semi-definite Relaxation

Introduce new variable $X = xx^{T}$. This is called "lifting". Can re-write MIQCQP

minimize
$$\frac{1}{2}$$
Tr(QX) + $R^T x$ + S (47)

subject to:
$$\frac{1}{2} \operatorname{Tr}(Q_j X) + R_j^T x + S_j \le 0, \quad j = 1, \cdots, m$$
 (48)
 $0 \le x \le 1$ (49)

$$\leq \mathbf{x} \leq \mathbf{1}$$
 (49)

$$X_{ii} = X_i, \quad i = 1, \cdots, p < n \tag{50}$$

$$\boldsymbol{\zeta} = \boldsymbol{x}\boldsymbol{x}^{\mathsf{T}} \tag{51}$$

If O, O_i are positive semi-definite, then only $X = xx^{T}$ makes this non-convex.

Convex Relaxation #3: Semi-definite Relaxation

Introduce new variable $X = xx^{T}$. This is called "lifting". Can re-write MIQCQP

0

minimize
$$\frac{1}{2}$$
Tr(QX) + $R^T x$ + S (47)

subject to:
$$\frac{1}{2} \operatorname{Tr}(Q_j X) + R_j^T x + S_j \le 0, \quad j = 1, \cdots, m$$
 (48)

$$\leq \mathbf{x} \leq \mathbf{1}$$
 (49)

$$\mathbf{X}_{ii} = \mathbf{x}_i, \quad i = 1, \cdots, p < n$$
 (50)

$$X = xx^{T}$$
(51)

If Q, Q_i are positive semi-definite, then only $X = xx^T$ makes this non-convex. Relax into convex inequality $X \succeq xx^T$. Using Schur complement:

$$X \succeq x x^{\mathsf{T}} \Leftrightarrow \left[\begin{array}{cc} X & x \\ x & 1 \end{array} \right] \succeq 0 \tag{52}$$

This can be cast as a semi-definite program (SDP).