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Aggregate Flexible Loads into Virtual Power Plant
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@ Chen, Hashmi, Mathias, Busic, Meyn (2018)
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PEV Charge Schedule Optimization is a MIP!

eMotorWerks’ Juicebox UC Berkeley Smart EV Charger
| Richmond Field Station
Control € on (40 A) Control € {0 A} U [12 A, 30 4]
or off (0 A)

Only ~ 10 % of papers on large-scale optimization of PEVs model DISCRETE charging rates!
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Problem Statement

Consider a mixed integer nonlinear program (MINLP):

minimize f(x) (1)
subject to: gi(x) <0, j=1,---.m (2)
x;€{0,1}, i=1,---,p<n (3)

0<x; <1, i=p+1,---,n (4)

x € R" is the optimization variable

the first p < n variables must be binary

f() : R" — R is quadratic and Lf — smooth
gi(-) : R" — R are quadratic and L; - smooth
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Problem Statement

Consider a mixed integer nonlinear program (MINLP):

minimize f(x) (1)
subject to: gi(x) <0, j=1,---.m (2)
x;€{0,1}, i=1,---,p<n (3)

0<x; <1, i=p+1,---,n (4)

x € R" is the optimization variable

the first p < n variables must be binary

f() : R" — R is quadratic and Lf — smooth
gi(-) : R" — R are quadratic and L; - smooth

Challenge
Solve LARGE-SCALE MINLPs, e.g. n = 103,10%,10°, - - -

CLAY
MATHEMATICS
. . . INSTITUTE
P vs NP — Millenium Prize Problem
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Existing Convex Relaxation Methods

Binary relaxation
Lagrangian relaxation
Semi-definite relaxation

McCormick relaxations
[McCormick '76][Nagarajan '16]

SoA Branch-and-Bound
(linear relaxation) [Belotti '08]

SoA Branch-and-Cut
[Achterberg '08]

Quadratic Convex
relaxations [Hijazi '17]

Polyhedral relaxations for
MIMFs [Nagarajan ‘18]
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Existing Convex Relaxation Methods

© Binary relaxation Stochastic approach to recover integer constraint:
@ Lagrangian relaxation
. . . Let x" be sol’n to binary relaxation. Feasible x can be drawn

© Semi-definite relaxation randomly from {0, 1} following Bernoulli distribution B(x").
@ McCormick relaxations

[McCormick '76][Nagarajan '16] This can be sub-optimal.
O e eraation) oo

(linear relaxation) [Belotti '08] elnfais
@ SoA Branch-and-Cut 1)\ 2

[Achterberg "08] minimize,c o1} (x - Z) =1e (x* =0 is opt. sol’'n)
@ Quadratic Convex

relaxations [Hijazi '17] If we apply binary relaxation, we get x” = % and

2

© Polyhedral relaxations for Ex~B(x) (X - %) = % > 1_16 !

MIMFs [Nagarajan ‘18]
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e Hopfield Methods - What are they?
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A short history of Hopfield Networks

@ (1982) J. J. Hopfield used neural nets to
model collaborative computations

@ (1985) J. ). Hopfield showed that neural
nets can be used to solve optimization
problems

@ (1990's - 2000’s) Hopfield methods
became very popular for solving MIQPs in
power systems optimization

@ In literature, power system researchers
admit they didn’t fully understand why
Hopfield methods work well.
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The Hopfield Method

Consider MINLP

minimize f(x) (5)
subject to: xi€{0,1}, i=1,---,p<n (6)
0<x;<1, i=p+1,---,n (7)
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The Hopfield Method

Consider MINLP

minimize f(x) (5)
subject to: xi€{0,1}, i=1,---,p<n (6)
0<x;<1, i=p+1,---,n (7)

Hopfield method follows dynamics:

d

&XH(I') = —VIf(x(t)); xy(0) = x(0) € (0,1)" (8)
x(t) = o(xu(t)) (9)

where o(-) : R" — [0, 1]" is an “activiation function” defined element-wise as:

o(x):x = [o1(X1), -+ ,on(Xn)]
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What is activation function o(x)?

@ strictly increasing
@ o(-) € C! with Lipschitz constant L,

Example: tanh

0.8
1 1 1.
oi(x) = 3tanh(Bi(x — 3)) +3;  Bi>0
06 — g =100
“soft projection operator” from R to {0, 1} 04 — f=
g=2
0.2
-1 -0.5 0 0.5 1.5 E
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Hopfield Method =- Nonlinear Gradient Flow

If o(-) is @ homeomorphism, then a nonlinear gradient flow emerges!

d r(.—1
FpX(8) = —a'(e7(x(1))) © VF(x(t)) (10)
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Hopfield Method = Nonlinear Gradient Flow

If o(-) is @ homeomorphism, then a nonlinear gradient flow emerges!

d r(.—1
FpX(8) = —a'(e7(x(1))) © VF(x(t)) (10)
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Discretize time dynamics

Forward Euler time discretization of Hopfield dynamics:

X=X — k(X)) xE =x% € (0,1)" (11)

XK = a(x5) (12)
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Discretize time dynamics

Forward Euler time discretization of Hopfield dynamics:

X=X — k(X)) xE =x% € (0,1)" (11)
XK = a(x5) (12)
For quadratic f(x) = 1x"Qx
x5 =X — kXK, x) =x" e (0,1) (13)
XK = a(xf) (14)
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Graphical Interpretation of Hopfield Method

Forward Simulation of Hopfield Neural Net!

@ Undirected weighted graph P

a)

@ = [Pol22%2 ()

@ n nodes, one for each x;

@ Each node has internal (x4; € R)
and external (x; € R) states

@ Weights [Pg]; are elements of

gradients of obj fcn
—[Pol33x3(t)

—[Pox()];
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Hopfield vs Projected Gradient Descent

Hopfield Projected Gradient Descent
XKL = x5 — o*VF(x¥) (17)
Xk = PrOj[oﬁl] (Xﬁ) (18)
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Hopfield vs Projected Gradient Descent

Hopfield Projected Gradient Descent

Xt = Projy 11 (x* — ofVF(x¥))  (17)

No dynamics!
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Simple Comparison

minimize,, x,  (x1 — 1.5)® + (x — 0.5)? (18)
subject to: x1 € {0,1} (19)
0<x;<1 (20)
25 ‘
- f*
+fpgd
2r —a—thP
15¢
1t
05"
ol ‘ ‘ ‘ ‘ ‘ ‘
02 0 02 04 06 08 1 12 2 4 6 8 o 12 14

Iterations
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Outline

e Theoretical Analysis
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Continuous Improvement to a Fixed Point

The Hopfield method yields monotonically decreasing iterates, f(x**1) < f(xX), V k if ...
@ activation fcn has Lipschitz continuous first derivative: o(-) € C! (exp, tanh, sin, pwl)
@ step-size aX follows an appropriately decreasing schedule

Specifically, the incremental improvement is bounded by:

0 < f(xX¥) — F(x*T1) < 0.50F - VF(xK)TZXVF(xK) where Y* = diag(o’(xf))
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Continuous Improvement to a Fixed Point

Theorem 1: Continuous Improvement

The Hopfield method yields monotonically decreasing iterates, f(x**1) < f(xX), V k if ...
@ activation fcn has Lipschitz continuous first derivative: o(-) € C! (exp, tanh, sin, pwl)
@ step-size aX follows an appropriately decreasing schedule

Specifically, the incremental improvement is bounded by:

0 < F(xK) — F(x*T) < 0.50F - VFA(x¥)TZKVF(xK) where YX = diag(o’(x¥))

Corollary: Convergence within a set

There exists a ff such that f(x) — ff as k — oo, and xk converges to the (non-empty) set

X:{xe[o,l]”|x,-€{0,1} OR 8if(x):0, i:l,m,p} (21)

Remarks:

@ Set X includes true minimizer x*, but xX< — x* not guaranteed
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Convergence Rates

Theorem 2: Sub-linear convergence

If f(x) is convex and o(-) is smooth and verifies

o'(e7(x)) > min{|x|,|1 — x|}, x€]0,1]" (22)

then,
o f(X) —fl=0 (&), witho<r<1

@ To achieve precision ¢, the worst case number of iterations is 2Mn/(3%¢)
e M is upper-bound on Hessian: V2f(x) < M/
e n is number of variables x € R"
e [ is “hardness” of activation function

Remark: Slower than gradient descent, for which convergence is guaranteed at rate O (%)
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Outline

e Dual Hopfield Method
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Dual Hopfield Method

So far, we have considered Hopfield methods to approximately solve

minimize f(x) (23)
subject to: 0<x;<1 i=1,---,n (24)
x;€{0,1} i=1,---,p<n (25)
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Dual Hopfield Method

So far, we have considered Hopfield methods to approximately solve

minimize f(x) (23)
subject to: 0<x;<1 i=1,---,n (24)
x;€{0,1} i=1,---,p<n (25)

We now consider inequality constraints:

minimize f(x) (

subject to: gi(x)<0, j=1,---,m (
0<x;<1 i=1,---,n (28
xi€{0,1} i=1,---,p<n (
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Dual Hopfield Method

Apply Lagrangian relaxation

Idea: Instead of considering the “full” Lagrangian relaxation, consider

L(x, ) = f(x) + Zu,-g,-(x) (30)
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Dual Hopfield Method

Apply Lagrangian relaxation

Idea: Instead of considering the “full” Lagrangian relaxation, consider

L(x, 1) = F(x) + ng, (30)
Then the dual function is
m
D(p) =min  L(x,u) = f(x) + Y 1gi(x) (31)
j=1
subject to: 0<x;<1 i:i,m ,n (32)
x;€{0,1} i=1,---,p<n (33)

which is amenable to Hopfield method, given .
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Dual Ascent via Hopfield

Then solve the Dual Problem:

rEZaé(D(/l,) (34)

D(1) = minL(x, 1) = min f(x) + ) 1g;(x) (35)
j=1
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Dual Ascent via Hopfield

Then solve the Dual Problem:
D(1 4
Tgé( () (34)
m
D(p) = minL(x, ;1) = min f(x) + Z 195(x) (35)
Jj=

Run Hopfield method to approximately solve D(11) = miny L(x, ).
Suppose x*(u) = arg miny L(x, 1).
The subgradient of D() along dimension j: g;(x*(x)) € 9;D(x)
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Dual Hopfield Method

The Algorithm

Algorithm 1 Dual (sub)-gradient Ascent via Hopfield Method

Initialize \° > 0; Choose 5 > 0
fork =0,1, -, Kmax
(1) use Hopﬁeld method to approximately compute dual function
for/=0,---,/nax
Xflﬂ Xt — al VT L(xE, 1K)
Xé — (T( £+1)
Xfop X!
until stopping criterion is met
(2) update dual variable p via (sub)-gradient ascent
P = 4 BT gi(x o (19)
end for
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Outline

0 Example and Application
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Examples: Random MIQPs

Consider solving MIQP w.r.t. x € R”

minimize %XTQX—l—RTX (36)
subject to: Ax <b (37)
AegX = beq (38)

Ib<x<ub (39)

x;€{0,1}, i=1,---,p (40)

@ Randomly generated parameters Q,R,A, b, Aeq, beg, Ib, ub for each n
@ Number of constraints also randomized
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Comparative Analysis

All problems solved on Matlab: For each method, we compute:

@ CPLEX MIQP: using function cplexmiqgp @ computer running time [sec]

developed by IBM

@ constraint violations (CV):

@ Binary Relaxation via CPLEX QP : using e binary CV: 2 37, d(x;, {0,1})

function cplexgp e inequality CV: - > [[Ax — b]j|

o equality CV: 2 3°¢_; [[AeqX — beglk|

@ Semi-definite relaxation (SDR):

corresponding SDP solved using CVX @ objective function value

@ Hopfield: Dual Ascent Hopfield Method
uses dual variables from cplexgp
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Comparative Analysis

Computer running time

250 w
CPLEX MIQP
——SDR
@200 | = Dual Hopfield | |
0}
£
2150 1
=
c
2
E 100 f 1
3
Q
5
) 50 | /// |
0

0 500 1000 1500 2000
problem size, n
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Objective value Binary CV

0 0.05
-0.5 0.045
-1 0.04
15 0.035
2 0.03
25 0.025
0.02

-3
0.015

-35
0.01
4 0.005

N equality CV B Hopfield
B CPLEX QP
o B CPLEX MIQP
Zﬁiiig BN spr
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Application: Optimal Economic Dispatch of DERs

Consider n generators with cost: fi(x;) = ¢;x? + bix; + a;, with a;, b;, ¢; > 0.
The first p generators can only make binary decisions. That is:

e Vic {Lp} we have x; € {Pi,mimP/’,max}’

o Vie{p+1,n}wehaveX; € [Pimin, Pimax]

Problem Statement
Find the optimal dispatch for generators to minimize cost and meet demand:

n
minimize Zf,-(x,-)
i

n
subject to: Zx,- =D
i

(constraints above)

Simulation parameters: n = 1000 generators. Other parameters randomly generated.
We perform 5000 Monte-Carlo simulations.
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Monte Caroline Simulation Results

Projected gradient >0.38 b) Sigmoid activation
0.27
0.2
0.14
0.1
0.06

0.03

log(cost)
log(cost)

0.02
<0.01
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@ Hopfield Methods for large-scale MINLPs — An old heuristic with new analysis!

EXTENSIONS

@ Alternative descent direction

Nesterov acceleration
Chance constraints

o
°
@ Distributed algorithms via dual decomposition
o

ON-GOING / FUTURE

@ Application to Large-Scale PEV Charge Scheduling
@ More comprehensive comparative analysis
@ Open source codes! hmip
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VISIT US!

Energy, Controls, and Applications Lab (eCAL)
ecal.berkeley.edu
smoura@berkeley.edu

QeCAL

energy, controls, & applications lab
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APPENDIX SLIDES
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Existing Methods

Convex Relaxation #1: Binary Relaxation

Stochastic approach to recover integer constraint:

Let x” be solution to binary relaxation. Feasible x can be drawn randomly from {0, 1} following
Bernoulli distribution B(x").

This can be sub-optimal.
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Existing Methods

Convex Relaxation #1: Binary Relaxation

Stochastic approach to recover integer constraint:

Let x” be solution to binary relaxation. Feasible x can be drawn randomly from {0, 1} following
Bernoulli distribution B(x").

This can be sub-optimal.

2
1 1
minimize,c o1} (x - —> — (x* =0 is the optimal solution)

4a) ~ 16

If we apply binary relaxation, we get x” = 7 and E,_p(x) (X — —)2 =2>&!

Other ideas:
@ Branch & Bound, Branch & Cut
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Existing Methods

Convex Relaxation #2: Lagrangian Relaxation

Notice that x; € {0, 1} is equivalent to satisfying x;(1 — x;) = 0

minimize f(x) (41)
subject to: gi(x)<0, j=1,---,m (42)
0<x<1 (43)

x(l—x;))=0, i=1,---,p<n (44)

Scott Moura | UC Berkeley Hopfield Methods: App to DERs January 11,2019 | Slide 39



Existing Methods

Convex Relaxation #2: Lagrangian Relaxation

Notice that x; € {0, 1} is equivalent to satisfying x;(1 — x;) = 0

minimize f(x) (41)
subject to: gi(x)<0, j=1,---,m (42)
0<x<1 (43)
X,'(].—X,'):O, i=1---,p<n (44)
Form the Lagrangian:
m P
L(x, Hs [y T A) =f(x)+ Z [ujgj(x) + HjX,' + ﬁj(l — X,'):| + Z Aixi(1 — x;) (45)
=1 i=1
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Existing Methods

Convex Relaxation #2: Lagrangian Relaxation

Notice that x; € {0, 1} is equivalent to satisfying x;(1 — x;) = 0

minimize f(x) (41)
subject to: gi(x)<0, j=1,---,m (42)
0<x<1 (43)
X,'(].—X,')ZO, i=1---,p<n (44)
Form the Lagrangian:
m p
LOX sy T A) = F(X) + ) [ujgj(x) +pxi+ (1 - Xi)} +> (L - x) (45)
j=1 i=1
Define the (concave) dual function of A = [p, i1, Ti, A]
D(A) = min L(x, p1, p, T1, A) (46)
xeRn -

Weak duality approach: Solve convex program maxa D(A)
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Existing Methods

Convex Relaxation #3: Semi-definite Relaxation

Introduce new variable X = xx”. This is called “lifting”. Can re-write MIQCQP
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Existing Methods

Convex Relaxation #3: Semi-definite Relaxation

Introduce new variable X = xx”. This is called “lifting”. Can re-write MIQCQP

1
minimize > Tr(QX) +R"x +S (47)
1
subject to: ST r(QX)+R/x+S5<0, j=1,--.m (48)
0<x<1 (49)
Xii = Xi, i:]-)"'ap<n (50)
X =xx" (51)

If Q, Q; are positive semi-definite, then only X = xx” makes this non-convex.
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Existing Methods

Convex Relaxation #3: Semi-definite Relaxation

Introduce new variable X = xx”. This is called “lifting”. Can re-write MIQCQP

1
minimize > Tr(QX) +R"x +S (47)
1
subject to: ET(QX)+RTX+S <0, j=1,---,m (48)
0<x<1 (49)
Xii = Xi, i:]-)"'ap<n (50)
X =xx" (51)

If Q, Q; are positive semi-definite, then only X = xx” makes this non-convex. Relax into convex
inequality X = xx”. Using Schur complement:

X>xxT<:>[§ )l(]>0 (52)

This can be cast as a semi-definite program (SDP).
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