What do we know about learning and
the Linear Quadratic Regulator?

Nikolai Matni
EECS, UC Berkeley

joint work with Sarah Dean, Horia Mania, Stephen Tu, and Ben Recht



Uber’s Self-Driving Cars Were Struggling Before Arizona Crash

Tesla Says Autopilot Was Engaged in Fatal Crash Under
Investigation in California

Vehicle’s system shows driver had hands off the wheel for six seconds before striking highway divider

Las Vegas' self-driving bus crashes in
first hour of service
Google Al looks at rifles and sees helicopters

Street sign hack fools self-driving cars

Data-driven methods need guarantees

of stability, performance, robustness, safety



Robust Control and Learning?

Machine Learning Robust Control
uses data to uses feedback to
reduce uncertainty mitigate uncertainty
more data better models/predictions
- better models/predictions - better performance
probabilistic guarantees worst-case guarantees

Can ML and RC be combined so that we safely achieve
more data = better performance?



Two main takeaways

Robustness is key
Robustness matters in practice and makes theory tractable

Robust and optimal control as optimization
System Level Synthesis

[Dean, Mania, Matni, Recht, Tu, FoCM 2018, submitted]



Cooling a server farm
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Cooling a server farm
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Lt4+1 =

Cooling a server farm
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Unknown dynamics?

[Dean, Mania, Matni, Recht, Tu, FoCM 2018, submitted]
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Frequency of Servers NOT melting (stability)
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The Linear Quadratic Regulator

min limr o +E | 2/ Qui + u) Ru| - state-feedback

S.t. Lt41 :ACI}t—I—B’UJt—l—5t Up = K:Ut
— \
system state  5tonomous actuation disturbance
dynamics

Closed form solution for known (A,B)

Fundamental problem in control theory
(linearize nonlinear systems, MPC)



The offline learning LQR problem

min  limg_e AE {zfzo +T Q; + ul Ru;|  state-feedback
u -

S.t. Typ1 = Axy + Buy + 0y Ut = Kﬂft
\ /

unknown

Obvious strategy:
run some experiments to estimate (A,B), then compute a controller

Question: how many samples are needed for near optimal control?



The Coarse-ID control pipeline

Run N .
) data Solve least- estimates Solve robust
experiments < >
: squares problem | error bounds | control problem
of horizon T

High-dimensional System Level Synthesis
statistics/bootstrapping

Theorem
With probability 1 — 0, for NV sufficiently large, the synthesized
controller is stabilizing and achieves the relative performance bound

J—J, n + p) log(1/9)
T <O<(ABQRT\/ \N )

# of states # of inputs 10

[Dean, Mania, Matni, Recht, Tu, FoCM 2018, submitted]



The Coarse-ID control pipeline

Run N .
) data Solve least- estimates Solve robust
experiments < >
: squares problem | error bounds | control problem
of horizon T

High-dimensional System Level Synthesis
statistics/bootstrapping

Theorem
With probability 1 — 0, for NV sufficiently large, the synthesized
controller is stabilizing and achieves the relative performance bound

J—J. (n+ p)log(1/6)
7. <O (C(A,B,Q,R,T)\/ ~ )

[Dean, Mania, Matni, Recht, Tu, FoCM 2018, submitted]
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How easy is it to identify a system?

Run N experiments for T steps with random input. Then

min Z HxT+1 — Aa;é@ — Buzf

(4,5) * )
~ U%u (n+p) 1 Controllability*Gramian*
f N > 0O <02 Mo () 62) where A, ~ AA_A* + BB

least /

excitable  then ||A—A| <€ and |B - B|| <e

mode 12



How easy is it to identify a stable system?

Run 1 experiment for T steps with random input. Then

(Ijllg) Z |e11 — Az — Bug;

Controllability Gramian

5 [ Ow (n_l_p) 1 * *
if 7" > 0 (02 Mo (AL) 62) where A, = AA_A" + BB

u

least R R
excitable  then [|[A— Al <e and |B - B| < ¢

mode [Simchowitz et al, COLT 2018] **



The Coarse-ID control pipeline

Run N .
) data Solve least- estimates Solve robust
experiments < >
: squares problem | error bounds | control problem
of horizon T

High-dimensional System Level Synthesis
statistics/bootstrapping

Theorem
With probability 1 — 0, for NV sufficiently large, the synthesized
controller is stabilizing and achieves the relative performance bound

J—J. (n+ p)log(1/6)
7. <O (C(A,B,Q,R,T)\/ ~ )

[Dean, Mania, Matni, Recht, Tu, FoCM 2018, submitted]
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Working with system responses
Lt4+1 — Ail?t —+ But -+ 575
Uy — Kil?t
End-to-end (closed loop) system responses
t t
(A+ BK)t=* B b (t— k)
[ } Z [ A+BK)t k} Ok—1 =" Z [@u(t— k) Ok =1

— k=1

15
[Wang, Matni, Doyle TAC 2018, submitted]



Working with system responses

Elz] Qu) £ Tr[(A+ BK)'" *"TQA+ BK)' ™" > Trad, (k) Q. (k)

k=1 =1
t
E[u, Ru;) = Z Tr[K(A+ BK)" *|"TRK(A+ BEK)" "% Y Trd, (k)" RO, (k)
k=1
finite dimensional but non-convex infinite dimensional

but convex

how do we constrain system responses so
that they are achievable?

16
[Wang, Matni, Doyle TAC 2018, submitted]



Working with system responses

t

Sl -

=1

aNd syfficient
A simple necessary“condition

k=1

O,(t+1) = (A+ BK)

[Wang, Matni, Doyle TAC 2018, submitted]

— (A L BK)(I):U(t)
— A, (t) + BK®, ()
— A(I)a: (t) + BP, (t)
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LQR via system responses

. . 1 T
min  limgy, 7B >, _o 2/ Qe + utTRut}
u

S.t. Li41 = AZCt -+ But + 515

[Wang, Matni, Doyle TAC 2018, submitted]



LQR via system responses

q)ril,iq?u Zt oTr[ z (1 )TQ(I) (t) + q)u(t)TRq)u(t)]

st Dy(t+ 1) = A, (t) + BO, (1), P,(1) =1

[Wang, Matni, Doyle TAC 2018, submitted]



LQR via system responses

Equivalent formulation: why bother?

min @ i ix

@xaéu i RQ_ - 11__ HQ
b,

S.t. [Z[—A —B} P, =/

To achieve desired response set u = <I>u<I>;1:r;

[Wang, Matni, Doyle TAC 2018, submitted]



Robust system responses

achievability

[ZI — A —B]

[Wang, Matni, Doyle TAC 2018, submitted]
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Robust system responses
R

«©° achievability
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[Matni, Wang, Anderson CDC 2017]



Robust SLS LQR problem

A=A+Ay, B=B+Ap, |Asllz <ea,l|Apll2 <ep

Let K stabilize (fl, E), and (CiJm, <i>u) be its system response.

Then K achieves the following cost on the true system (A, B):

1 A ~ —1
[@2 0 [q)] (H[AA As] [@D
$,, < ®,
J =
Y

0 Rz
A3
nominal performance A effect of

~
N uncertainty
Stable if ||A]| < 1

J(A, B,K) :=

Ho
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Robust SLS LQR problem

A=A+ A4 B=B+Ap, [|[A4llz <ea,||AB]2 < ep

robust nominal effect of
performance performance uncertainty
'4 A )
min max J(A,B,K)< min J(A, B,K)f(||A]|)
(I)a;,(I)u AA,AB P, P,
— 1 . nominal
S.t. A((I)’ AA’ AB) =0 S.t. ‘A((I)) — Oachievability
achievability

HAH < 1 robust stability
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Robust SLS LQR problem

effect of
uncertainty nominal LQR cost

r‘J\f % N\

. 1 QY2 0 ] [®, .
1min —_— S.U.
vE(0,1), 8,8, 1 — 7 0 RY2||®, "
nominal ~ ~ (I) &?A(I)
achievability{ZI —A _B] [(I)u] =1, \/_| LB(I) ] y <7,

robust stability

But this is infinite dimensional!

25



Option 1: FIR truncation
By =) By(t), By =) Dyt

Frobenius norm

i T -
affine | ~ ~1 | P, eAd, .
1 _ i1
constraint |1 4 B} [(I)u] I, V2 LB(I)J . <y -Cp7),
SDP
Tlarge enough || AD,(T) + BOu(T)| < Cp"  (73) complexity

Theorem: Gap between FIR and infinite dimensional solution
decays as O(/') e



Option 2: Common Lyapunov heuristic

minimizex z v, ~ ﬁ {Trace(Q_\/\A ) + Trace(RW5;) }

X X ZF
subject to X W| | W|2 t 0
£ Wy Wi
T X—1  AX4+BZ O 0 ]
(AX 4 BZ)* X X  eZ" |,
0 exX avy?l 0 -
i 0 egl 0 (I —a)y?l

No provable guarantees, but works well in practice
and is much faster to solve



Robust SLS LQR problem

effect of
uncertainty nominal LQR cost

/\f % N\

. 1 QY2 0 ] [®, .
11111 — S. L.
vE(0,1), 8,8, 1 — 7 0 RY?||®, "
nominal -~ -~ (I) 8A(I)
achievability{ZI —A _B] [(I)u] =1, \/_| LB(I) ] y <7,

robust stability

infinite dimensional with tractable solutions
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End-to-end sample complexity bounds

Theorem
With probability 1 — 0, for NV sufficiently large, the synthesized
controller is stabilizing and achieves the relative performance bound

J—J 1 o?(n +p)log(1/6
© < CTu (Amin(Ae) ™2+ K o) \/ ) oel/0)
* robustness  excitability difficulty to control
Closed Loop Robustness Controllability Gramian

Ly :=|(zI —A— BK,) u. A, ~ AN A* + BB*

29
[Dean, Mania, Matni, Recht, Tu, FoCM 2018, submitted]



End-to-end sample complexity bounds

Theorem
With probability 1 — 0, for NV sufficiently large, the synthesized
controller is stabilizing and achieves the relative performance bound

J — Jy 1 d?(n + p)log(1/6)
S Crcl )\min(Ac) 2 + HK*HQ N
*
robustness  excitability difficulty to control
Hard to estimate Easy to estimate
Control insensitive to mismatch Control very sensitive to mismatch
[Dean, Mania, Matni, REcht, Tu, FOCVI 2018, submitted] =




Cooling a server farm
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[Dean, Mania, Matni, Recht, Tu, FoCM 2018, submitted]



Frequency of Stability
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[Dean, Mania, Matni, Recht, Tu, FoCM 2018, submitted]
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(a) LQR Cost Suboptimality
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[Dean, Mania, Matni, Recht, Tu, FoCM 2018, submitted]
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Two main takeaways

Robustness is key
Robustness matters in practice and makes theory tractable

Robust and optimal control as optimization
System Level Synthesis

[Dean, Mania, Matni, Recht, Tu, FoCM 2018, submitted]



Extensions: LQR++

Safety
state/input constraints can be incorporated naturally

Adaptive online algorithm
can be incorporated into online algorithm with O(T%/3) regret

Large-scale adaptive control
Structure can be exploited and enforced

Nonlinear?
Still looking for the right approach/parameterization...
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Number of States

An aside on distributed control
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[Wang, Matni, Doyle, ACC 2017, TAC 2019]
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A brief (and incomplete) review

Learning Linear Systems
- Hardt, Ma, Recht, 2016: descent learns stable linear systems, strong assumptions
- Hazan, Singh, Zhang, 2017: polynomial time algorithm, symmetry assumption

Probably Approximately Correct (PAC)
- Fietcher 1997: discounted costs, many assumptions on contractivity, some bugs in proof.

Optimism in the Face of Uncertainty (OFU)

- Abbas-Yadkori and Szepesvari, 2011: regret exponential in the dimension, no guarantee
of parameter convergence, OFU NP-hard subroutine.

- Faradonbeh, Tewari, Michailidis, 2017: address issues mentioned above except for OFU
NP-hard subroutine.

Thompson Sampling
- Ouyang, Gagrani, Jain, 2017: replace OFU subroutine with random sampling approach,
strong assumptions on uniform stability (contractivity).



Adaptive control as regret minimization

Solve least- estimates N Solve robust
squares problem | error bounds | control problem

Adapt, collect data, and repeat

T
minimize R(T') := Z [:BtTQa:t + u; Ruy — J*}

t=1
Line of work initiated by Abbasi-Yadkori and Szepesvari in 2011

[Dean, Mania, Matni, Recht, Tu, NIPS 2018]



Adaptive control as regret minimization

T
Z [CE?QCEt + U;FRUt — J*]

t=1

Theorem: With probability at least 1 — 9,

minimize R(T) :

R(T) = O(T3)

Guaranteed stability throughout and

identification of true system parameters

40
[Dean, Mania, Matni, Recht, Tu, NIPS 2018]



Adaptive control as regret minimization

Robust SLS

Thompson Sampling
[Abeille, Lazariz 17]

Thompson Sampling
[Ouyang, Gagrani, Jain 17]

OFU

[Farabondeh, Tewari,
Michalidis, 17]

LSTD
[Abbasi-Yadkori, Lazic,
Szepesvari, 18]

[Dean, Mania, Matni, Recht, Tu, NIPS 2018]
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Expectation

High probability

High probability

“Small” initial
uncertainty

Contractivity

Pair-wise stability
(contractivity)

NP-hard subroutine

Contractivity
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Adaptive control as regret minimization

Epoch 1 Epoch 2
4 A Y A A\
At every T; do: | | —
0 T, T, time
L . )
+ (AW BW)Y = argmin E |xia1 — Axy — Bugl|5
(A’B) teFE;

. K% = RobustSLS(A, B (1)) sharp bounds

from time-series data?

ul? = KWx + 77@) explore vs. exploit?

42
[Dean, Mania, Matni, Recht, Tu, NIPS 2018]



Sharp bounds from time-series data:
OLS

Set 7 K" (0,071) |:>

[Simchowitz, Mania, Tu, Jordan, Recht, arXiv 2018]
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Explore vs. exploit:

Model Mismatch Excitation
O| — 2 __ —3
. + O (O'nT) |:> o =C,T3

[Dean, Mania, Matni, Recht, Tu, NIPS 2018]



Adaptive control as regret minimization

T
Z [CE?QCEt + U;FRUt — J*]

t=1

Theorem: With probability at least 1 — 9,

minimize R(T) :

R(T) = O(T3)

Guaranteed stability throughout and

identification of true system parameters
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Lower bounds for epsilon-greedy approach
ul” = KWx —|—77_(i) i ~ N(0, oo 1)

. 9 L g —
exploit vs. explore Opi = O(T; %)

T Regret lower bounded by:
ZE [:U;ert + u, Ru; — J,| > Q(T12)
t=1

Estimation error of € incurs (e~ ?) regret

g:g’; <e — Tzfz(e—%) C> R(T)>Q(c?)

[Dean, Mania, Matni, Recht, Tu, NIPS 2018]




Adaptive control as regret minimization

(a) Regret (b) Infinite Horizon LQR Cost
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[Dean, Mania, Matni, Recht, Tu, NIPS 2018]



