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Reinforcement Learning (RL)

reward action
s a,

| Spa Environment

source: Sutton & Barto, Reinforcement Learning, 1998

e Combines machine learning with decision making

e Interaction modeled by a Markov decision process (MDP)



SUCCeSSfU| USG CaSGS Of RL [V. Minh et al., NIPS 13; D. Silver et al., Nature 17]
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Some Challenges to Apply RL in Real-world . ipan s

e Noisy data

e Training with insufficient data
e Unknown reward functions

e Robust models w.r.t.

Uncertainty?

e Safety guarantees in RL? e
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e Safe exploration
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Safety Problems in RL
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Safety w.r.t. Baseline

Machine
Learning |
Algorithm

Question:
How to train a RL policy offline that performs no worse than baseline?



Safety w.r.t. Baseline: Model-free Approach

Problem: Safe off-policy optimization [P. Thomas et al., AAAI 15 & ICML 15]

baseline :
performance Disaster,

Bankruptcy,

Confidence Death...
level

Compute
from

the Batch of

Recent work: More Robust Doubly Robust Off-policy Evaluation
[M. Farajtabar, Y. Chow, M. Ghavamzadeh, ICML 18]



Safety w.r.t. Baseline: Model-based Approach

Problem: Sim-to-real with transferable guarantees in performance

current Compute the

policy policy Directly 2
Th from the

Recent work: Safe Policy Improvement by Minimizing Robust Regret
[M. Ghavamzadeh, M. Petrik, Y. Chow, NIPS 16]



Safety and Apprenticeship Learning sbeei icmoa

Problem: Imitate expert but become more risk-averse? (Without reward.)

Recent work: Risk-Sensitive Generative Adversarial Imitation Learning
[J. Lacotte, M. Ghavamzadeh, Y. Chow, M. Pavone, UAI workshop 18, AISTATS 19 (submitted)]
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The Safe Decision Making Problem

=g <. Fas
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WHAT ARE THE MOST USEFUL METRICS FOR
MEASURING CONTENT MARKETING PERFORMANCE?

Safety definitions directly come from environment constraints, e.g.,
e Collision avoidance, speed & fuel limits, traffic rules

e System overheating, quality-of-service guarantees

e User satisfaction in online recommendation



A Lyapunov Approach to Safe RL

Safety w.r.t. Environment,Constraints

Collaboration with Ofir Nachum (Brain), Mohammad Ghavamzadeh, Edgar
Duenez-Guzman (DMG) -- NIPS 2018, ICLR 2019 (submitted)



Overview on Notions of Safety

e Reachability (safety probability):
Safe if agent doesn’t enter an undesirable region (w.h.p.)

Application: Robot motion planning

e Limit Visits to Undesirable States (time spent in dangerous regions):
Safe if agent doesn’t stay in an undesirable region for long

Applications: System (data center) maintenance

NOTE: Constraints are trajectory-based




Notions of Safety

Two definitions of safety w.r.t. mission-based constraints

» Reachability:

Safe if agent doesn’t enter an undesirable region (w.h.p.), i.e.,

P(3te{0,1,..., T" —1},zt € Sg | xo,7) < do

Application: Robot motion planning

» Limit Visits to Undesirable States:

Safe if agent doesn’t stay in an undesirable region for long, i.e.,

T*—1

1

F Z 1{$t€SH}|$O,7T Sdo
t=0

Applications: System maintenance; Data-center temperature control



General Problem Formulation

Modeled by Constrained Markov Decision Process (CMDP)
e Reward: primary return performance

e Constraint cost: model safety constraints

Goals:
1. Find an optimal (feasible) RL agent

2. More restrictive: Guarantee safety during training




Safe RL Formulation
> MDP tuple: (X, A, c, P, x0); CMDP' tuple: (X, A, c,d, P,z0,do)
> Space of stationary Markovian polices A with policy element =

> Bellman operator:
Tr n [VI(2) = 32, w(alz) [h(z, @)+ 320 e x Pa'|z, )V ()]

> For reachability constraint, requires state augmentation

Problem OPT: Given x¢ and do, solve
|
Trrréig Calag) —=E t_ZO c(x¢,at) | xo,

T*—1
st Dylwg)=E [ Z d(zxt) | xo,w] < dp

t=0



Some Prior Art and Limitations

e Prior Art:

Method Summary Pros Cons
Dual Method LP in Exact Computationally expensive
dual space O(|X|3|A|I3)
Lagrangian Iterative method to | Asymptotically Premature stopping;
find saddle point exact Unsafe at iterations
State-wise State-wise Safe at Super conservative
Surrogate constraint surrogate iterations
Lexicographical Global Lyapunov Safe at Conservative
Surrogate based safety set iterations

e Contributions of the Lyapunov-based method:

o Safety during training

o Scalable model-free RL (on-policy/off-policy); Less conservative policies




Lyapunov Function and Safety

Safety verification:
Given a policy 7, find a Lyapunov func- VA
tion L, that satisfies

> L. X —>RZO
> L’Tl'(xO) < dp

» Lr(z) >d(x)+Ezwpr[Lr(z')],Vz € X
(Lyapunov function decreases as the state

evolves from z to ' under dynamics P™)

Safe policy search:

Given a Lyapunov function L, consider
the “safety-tube” Markovian policy set

Fr(z) = {n(|z) € A : Trq[L](z) <L(2)}




Safe Policy Iteration

CMDP Formulation

e P
min E [Z c(zt,at) | ZEo,T('] ; [Z d(z¢) | zo, ] < dp

t=0

Safe Policy Iteration (SPI)
1. finding the Lyapunov function

_max llellr 5 st Tglt[Le|(x) = Le(z), Ve € X , Li(zo) < do
Li(@) = VjF (@), Vo € X
2. policy evaluation Vi = Vi'k
3. policy improvement Tk+1 € arg minweka(m) T Vil

Fri (@) = {n(-|lz) | T3 [Le](z) < Li(2)}

(a) all m's are safe, (b) 7x,1 is no worse than 7, (c) SPI converges



Environment with Discrete Actions

e Stochastic 2D GridWorld
e Stage-wise cost is 1 for fuel usage

e Goal reward is 1000
lava

+

agent actions
(with ¢-error)

e Incurs a cost of 1 in lava; Tolerate at
most 5 touches

e Experiments: (i) Planning, (ii) RL
(explicit position or image obs.)

agent



Safe Planning with Discrete Actions

Lyapunov-based (Our Method) Dual-LP (Exact But Expensive)




Safe Planning with Discrete Actions

Lagrangian-based (Baseline) Unconstrained (Baseline)
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Exp.

Return

1: 2D Grid-world Planning

1000

30

— Lagrangian
800 | -+ = Lagrangian with lambda = 10
\ —— Lyapunov policy iteration
600 NS N - -+ = Lyapunov value iteration
8 .% — Policy iteration (ignoring constraint)
400 E Feasible baseline
',\ g Step-wise policy iteration
200 \ o - Step-wise value iteration
\ - Super-martingale policy iteration
oR Super-martingale value iteration
—200 \ T e 0 5 — =
0.0 01 0.2 0.3 04 05 0.0 0.1 0.2 0.3 04 05
Density Density

» Shaded regions indicate the 80% confidence intervals

» Policies from SPI and SVI are safe and have good performance



From SPI/SVI to Safe Value-based RL

1. Rewrite the inner optimization problem:
' (1e) € arg min { (1) TQa. ) s (n(fo) = (1) TQu(e,) <7 (o)}
Lyapunov Q-fun: Qr(z,a) = d(z) + €(z) + > P(z'|z,a) Lz (z')

2. Value functions: learn value networks (Q,Qp,Qr), and update
Lyapunov Q-fun Qp,(z,a;0p,07) = Qp(z,a;0p) + ¢ - Qr(z, a; 07)

_ (do — 7k (-|20) TQp (20, 0p))
7k (|20) T Qr (20, -; O7)

()

3. Policy updates: LP + policy distillation (of 7”)

4. More tricks: Policy a-mixing, Replay buffer, Entropy regularization, ...




Safe DQN/DPI with Discrete Actions

Rewards

Constraints

Discrete obs, dg = 5
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Discrete obs, dg = 1

Image obs, dg = 5
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Safe Policy Gradient (Recent Extension)

To handle safety in RL (policy gradient) with continuous actions:

1. Constrained optimization w.r.t. policy parameter (CPO)

2. Embed Lyapunov constraint into policy network via network augmentation

(see [Dalal et al. 2018] for simpler setting)

S—>»

il

Lyapunov Feasibility
Set Projection




Safe Policy Gradient

1. CPO update with empirical Lyapunov-based constraints:

VoCry(zo)lo=0p5

0 € argmin ((6 — 0p), VgEdeeBaaN‘fTe [QQB § a)] |9:93>
(ASC)

st 30~ 05). V3D (0]165) lo=ay, (0~ 05)) < &

(0= 08)Eanigy, [Vo Eanrmy [QLy, (2,0)] l0=05 ] ) < Eanig,, [€(@)]

2. Safe action mapping from safety layer, at any state z € X:

IS

¥ .1 -
(¢) € argmin { Slla = To,unc (@)1 : (@ = 70, (2)TVaQuLy , (#,0) lamny (1) < e<x>}

where policy g ync is computed by unconstrained RL



Safe RL for Continuous Control

Objective: Train a Mujoco HalfCheetah to
run stably.

Standard method: DDPG/PPO
Issue: Unstable if runs too fast!

Remedy: Soft constraint torque @ joints

Safe if total torque violation is bounded

(d0=50)


https://docs.google.com/file/d/1jSx5Y1g6r2rQZt26yKYar4a-mN-zsrCL/preview

Lagrangian-PPO versus Lyapunov-PPO

Lagrangian PPO (Baseline) Lyapunov PPO (Our Method)



https://docs.google.com/file/d/1LlMVP6PY9Zo0AkjBgai_guemlczmmwn2/preview
https://docs.google.com/file/d/1vHsXjlpm41Tm97JwLrHrRWFnsNLyRGqD/preview

Lagrangian-PPO versus Lyapunov-PPO

Lagrangian PPO (Baseline) Lyapunov PPO (Our Method)
60 ’ b | 60
: i | )
10 10 N

episodes (x1000) episodes (x1000)



Conclusion

e Contributions:
a. Formulated safety problems as CMDPs
b. Proposed a Lyapunov-based safe RL methodology
m  Work well for on-policy/off-policy settings
m Applicable to value-based and policy-based algorithms

c. Guarantee* safety during training

e Limitations:
a. Provably-optimal only under restricted conditions!

b. Theoretically justified in MDPs, but not with function approximations (RL)!

m Future work in model-based setting



Current Work
In talks with the following projects at Google & DeepMind:

e PRM-RL for indoor robot navigation (Brain Robotics)
e FineTuner/TF.agents (Brain RL/rSWE)
e DrData (DeepMind)
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Appendix of Lyapunov Work



I
Theoretical Results

» Observation: Policies 7 in F, are safe iff there exists a Lyapunov
function L € L, (xo,do).

» Question: How to find a “good” Lyapunov function L*?

> In theory:

1. Assume access to a baseline feasible policy 7, € A

2. Finding L is equivalent to cost-shaping, i.e.,
Le(z) =E [E;P:*O—l d(z2) + e(z) | Wb,x] with auxiliary e

3. Set €*(z) := 2T - DmaxDrv (7*||7)(z); If 7 is close to 7, or is
“very feasible” ?, then 7, _, contains n*

4. Solve for an optimal policy by DP w.r.t. Bellman operator
minﬂ'EJ:Le* (+) Tﬂ’,c[v]()

2Exact condition:

do — 'Dﬁb (:L'o) TDmaX — 5}

max € () < Dmax - min { — , —
SCEX TDmax TDmax + D



Safe Policy Iteration

» Challenge: Compute ¢* requires estimating Dry (7*||m)!

» Remedy: Approximate ¢* via bootstrapping, i.e., start with a =, solve
LP for &

EEarge:XHfﬁfzo{a;{ e(x): do—Dr, (x0) > 1(z0) T (I-{P(2' |z, 7rb)}$7$/ex)_1e}

and improve T,

> Intuition: Larger ¢ implies larger 7, _; Find largest € that satisfies
Lyapunov conditions

» Closed-form: ¢ has the following form:

(do —Dmy(0)) Mz =2} _ . 4

T BT 1o — o) [w0.m]




Safe Policy Iteration (Cont’d)

For k € {0,1,...,}:

1. With m, = m, calculate L., via LP

2. Evaluate the cost value V;, (-) = Cx, (*)

3. Policy improvement: w1 € argmin,cr, () T e[V, ()
€k

Properties:

> Consistent feasibility
> Step-wise policy improvement
» Asymptotic convergence

» Computational complexity O(K|X||A|? + K|X|?|.A|?), which in practice
it is much lower than exact solvers (O(|X[?|A]?))



Highlights of Other Recent Work



1. Robust and Controllable
Representation Learning



Stochastic Control for Non-linear System

. T T

St+1 = fS(St,ut) +n%, st eR™, n®~N(0,3_s)

Common Approach: Iterative LQR (iLQR) algorithm

But what if:
» Model fs is unknown

» Instead of s¢, we observe high-dim sensory data (e.g., images)
X: ER™, fe > Ns

State Space Observation

He = 2 nge = 40 X 40 image

How to do model-based control in visual-servoing or perception-to-control?




RCE [Ershad et. al 2018]: Graphical model with bottleneck latent state and linear dynamics

Goal: maxg log pg(T¢+1|Te, ut)

()

\@ @P/g@
o Yot
& © 0 0® @

Graphical Model Recognition Model

Graphical Model: Pt B s By Tt s et | B85 W ) = P 23| Bs) - DBz |22 )
p(ut|ae) - 1{Ze41 = At(Zt, Ut) 2zt + Be(Ze, Ut)ut + ce(Ze, Ut) } - p(Te41|Z841)

Recognition Model: q(zt, Z¢, Ut, Ze+1|Tt, Teg1, ut) = @(Ze41|Te41)-

qg(ut|ue) - 9(Zt|ze, Zev1) - H{ze=A; (Zt,Ut) (Ze4-1 — B (Ze, we )ue — e (Ze,ue) ) }

Variational ELBO = p(@t41, 2t, Zt, Ut, 2t+1|Tt,ut) R q(2¢, Zt, Ut, 2t4+1|Tt, Te41,Ut)




» Noisy RCE: Add noise models to the components of the linear model (A, B¢, ¢t) and
solve stochastic DDP [Theodorou et al. 2010]

Zi+1 RAL(Ze, T, E¢) 2t + Bt (Ze, U, & )us + ct(Ze, U, &)
Ai(Ze,Us, &) =At(Ze,Ut) + Ag, (Ze,Ut), Aet(Ze, ) ~N(0,1)
B¢ (Zt,Ut, &) =Bt(Zt,ut) + Be, (Z¢,Ut), Bet(Ze,ut) ~ N(0,1)
CelZe: T, &) =€ (Be, Te) + €2, By W)y € 6(Zss W) ~ N(0, I)

» Task-dependent RCE: Bringing the control objective into the latent space loss
function (through the reward function r(z¢, ut))

2 P O Y @ : :
& T o
" 4
o ok
LN /"
i o

» Active-sensing: End-to-end training on policy and models



2. Risk-Sensitive Imitation Learning



Question: How to train a policy that mimics an expert in terms of mean
performance, yet being more risk-averse?

Examples:

> Use history from young drivers to train an autonomous car for seniors

» Use data from a hedge fund to train a personalized trading strategy




Question: How to learn a policy 7 that performs no worse than 7g?

(Risk-sensitive) Imitation learning: Without knowing the exact cost,
consider the cost uncertainty set C = {f : S x A — R}, and

mTEn jclélc) E[CT] — E[C®] + A(pa|CF] — pa|CFF]),

where C7 is the loss of policy 7 w.r.t. the cost function f



R REEEEEE—————EGEm—Eeee—e.—ee—eeE————
Reformulation to two risk-sensitive GAIL algorithms:

> Risk-profile matching of D;® and Df w.r.t. JS distance

min —H (7)) + (1 +A) sup inf Djs(d,d)
T deDf d'€D, P

» Risk-sensitive Wasserstein GAN:

min —H (7) + (14 \) sup p) [CF] - pa [CP]

L JEFy
Criteria Expert GAIL RAIL Ours Criteria Expert GAIL RAIL Ours
Hopper-v1 Walker-v1
Mean - 6096 -5853 -6064 -6105 Mean -7651 -7231 -7363 -7572
VaR, -6129 -6019 -6125 -6124 VaR, -7875 -7274 =773 -7909
CVaRy -5590 -4958 -5493 -5657 CVaRqy -6440 -5353 -5505 -5926
pé -6375 -6100 -6338 -6387 pg -7973 -7498 -7638 -7868

NOTE: RSGAIL >> GAIL; CVaR term reduces variance of cost gradient




3. Minimizing Robust Regret in RL
(Sim-to-Real)



Safety w.r.t. baseline guarantee, model-based approach

curr.en‘l‘ Build a Compute the
policy policy Directly usl
m of the from the

N

system

Proposed formulation: To maximize the robust return regret w.r.t.
baseline policy 73, over the set of model uncertainties &:

max mﬁin (,0(7T, &) — p(mp, f))

Solution is guaranteed to be safe! Hopefully not as conservative as



N ———————
» Main challenge: Optimal policy is stochastic; NP hard

» Heuristic: Assume perfect knowledge of baseline actions:

e(s, ma(s)) = 0;

Reduce the problem into a special robust MDP

» Other baselines:
> Classical approach (Solve the expected MDP model)

» Robust MDP:
1. Compute a robust policy:

T 4— arg max mgin p(m, &)

2. Accept 7 if outperforms 7g with prob 1 — ¢:

m&_in p(7, &) > o p(7s, §)



Improvement over baseline (%)
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4. More Robust Doubly Robust
Off-policy Evaluation



current Compute the

policy Policy 9
™ from the Batch
of Data
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Contextual Bandit RL
7=0,...7T—1

Data TGN 1 T {(x azﬂ"z)}z 1 ,N

Value | ™ = Epparom [ (#,0)] | 0™ = Eppamme [Srg) (@6, 00)]

» Evaluate an OPE estimator p™< (&) based on MSE:

(
A

MSE(p™, p™) = Eq, [(p™ — p™(€))?]

> Existing OPE estimators:

1. Direct Method (DM) (find a value function model 3, accurate but biased)
2. Importance Sampling (IS) (model-free estimator, unbiased)

3. Doubly Robust (DR) (hybrid estimator, leverage the best of both worlds)

» Main Question: How to design (3 to minimize variance (MSE) of DR?
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