

Dynamics & Optimization of Natural Gas Systems

Michael (Misha) Chertkov

Advanced Network Science Initiative (ANSI) @ LANL Funded by DOE (GMLC & Grid Science)

Third Grid Science, Santa Fe, Jan 9 2019

LANL "gas" & "gas-grid" collaborators:

L. Roald

S. Backhaus

M. Chertkov

S. Misra

M. Vuffray

ау

+ external collaborators on the gas and gas-grid projects:

G. Andersson S. Dyachenko K. Dvijotham ETH UIUC Google

M. Fisher UMich

er A. Korotkevich V. Lebedev n U of NM Landau Inst.

F. Pan PNNL

Misha Chertkov	chertkov@lanl.gov	Dynamics & Optimization of Natural Gas Systems	https://sites.google.com/site/mchertkov/
- Preliminaries			
Pre-though	nts		

In energy systems, there is life beyond power systems ...

Misha Chertkov	chertkov@lanl.gov	Dynamics & Optimization of Natural Gas Systems	https://sites.google.com/site/mchertkov/
- Preliminaries			
Pre-though	nts		

- In energy systems, there is life beyond power systems ...
- Optimizations need to be formulated & challenged ...

Misha Chertkov	chertkov@lanl.gov	Dynamics & Optimization of Natural Gas Systems	https://sites.google.com/site/mchertkov/
- Preliminaries			
Pre-though	its		

- In energy systems, there is life beyond power systems ...
- Optimizations need to be formulated & challenged ...
- For any formulation there may be many algorithms ...

Misha Chertkov	chertkov@lanl.gov	Dynamics & Optimization of Natural Gas Systems	https://sites.google.com/site/mchertkov/
- Preliminaries			
Pre-though	its		

- In energy systems, there is life beyond power systems ...
- Optimizations need to be formulated & challenged ...
- For any formulation there may be many algorithms ...
- Physics/dynamics/statistics of the flows need to be integrated in ...

Pre-thoughts

- In energy systems, there is life beyond power systems ...
- Optimizations need to be formulated & challenged ...
- For any formulation there may be many algorithms ...
- Physics/dynamics/statistics of the flows need to be integrated in ...
- ... be ready to leave your comfort zone

U.S. District Energy Systems Map

Towards Smart District Energy Systems

- Need to be smart in planning, operations, predictions
- Subject to uncertainty
- Inter-dependent = power, gas & heat

- Preliminaries
 - Natural Gas Systems

Natural Gas Systems

- needs to be smart too
- significant growth

Misha Chertkov chertkov@lanl.gov Dynamics & Optimization of Natural Gas Systems https://sites.google.com/site/mchertkov └─Preliminaries └─Methodology: Applied Math, Statistics, Physics & Theoretical Engineering ⇒ Energy Systems

Applied Mathematics & Theoretical Engineering for Energy Systems

Methodology: posing & solving problems in

- (1) **Direct** Models [Power/Gas/Heat Flows; Static \rightarrow Dynamic; **Deterministic** \rightarrow **Statistical**/Inference] \Rightarrow
- (2) Inverse Problems = Machine Learning & Data Analytics [State Estimation; Parameter Identification] ⇒
- (3) Optimization & Control [Deterministic; Stochastic; Optimal Power/Gas/Heat Flows (Deterministic → Robust, Chance-Constrained → Distributionally Robust)] ⇒
- (4) Planning & other multi-stage mixed problems

What are proper/interesting/relevant

- problem formulations ?
- math-sound & physics-relevant methods, tools, solutions ?

Dynamics of Natural Gas Systems

Outline

1 Dynamics of Natural Gas Systems

- Motivation. Structure.
- Gas Dynamics & Line Pack
- Uncertainty. Monotonicity.

2 Optimization & Control of Natural Gas Systems
 Static & Dynamic Optimal Gas Flow

Dynamics of Natural Gas Systems

Motivation. Structure.

Motivation: Gas-Grid Interdependence – Extreme Events

- The interdependence is amplified under extremes [NM winter 2011, NE-ISO & PJM - winter 2014]
- Physics of Natural Gas systems, e.g. dynamics [line pack], adds complexity

Dynamics of Natural Gas Systems

Motivation. Structure.

Grid Structure & Regimes

+ interstate pipe-lines 1.6-14 MPa, 1MPa=145 psi

Motivation. Structure.

Grid Structure & Regimes

consumers are different, modeling is tricky

Dynamics of Natural Gas Systems

Motivation. Structure.

Grid Structure & Regimes

distribution is loopy! transmission is (largely, not always) not

Dynamics of Natural Gas Systems

Motivation. Structure.

Grid Structure & Regimes

Fig. 11. Gas stream arrangement in pipelines network; t \ge 18 °C; a) results for 7 am ($p_{z1} = 1707$ Pa; $Q_{feed} = 55.83$ m³/h); b) results for 3 am ($p_{z1} = 1706$ Pa; $Q_{feed} = 12.27$ m³/h).

gas flows change ... often (hours)

Crash course on the hydro (gas) dynamics

Dynamics of Natural Gas Systems

Motivation. Structure.

crash course on the hydro (gas) dynamics

- single pipe; not tilted (gravity is ignored); constant temperature
- ideal gas, $p \sim \rho$ pressure and density are in a linear relation
- all fast transients are ignored gas flow velocity is significantly slower than the speed of sound, $u \ll c_s$
- turbulence is modeled through turbulent friction; mass flow, $\phi = u\rho$, is averaged across the pipe's crossection

Dynamics of Natural Gas Systems

Motivation. Structure.

crash course on the hydro (gas) dynamics

- single pipe; not tilted (gravity is ignored); constant temperature
- ideal gas, $p \sim \rho$ pressure and density are in a linear relation
- all fast transients are ignored gas flow velocity is significantly slower than the speed of sound, $u \ll c_{\rm s}$
- turbulence is modeled through turbulent friction; mass flow, $\phi = u\rho$, is averaged across the pipe's crossection

Mainly interested in the regime of slow dynamics

- seconds-minutes and longer dynamics
 - driven = varying in time injection/consumption
 - sound waves are dumped [at sub-seconds]

Dynamics of Natural Gas Systems

Motivation. Structure.

crash course on the hydro (gas) dynamics

- single pipe; not tilted (gravity is ignored); constant temperature
- ideal gas, $p \sim \rho$ pressure and density are in a linear relation
- all fast transients are ignored gas flow velocity is significantly slower than the speed of sound, $u \ll c_{\rm s}$
- = turbulence is modeled through turbulent friction; mass flow, $\phi = u\rho$, is averaged across the pipe's crossection

Mainly interested in the regime of slow dynamics,

- seconds-minutes and longer dynamics
 - driven = varying in time injection/consumption
 - sound waves are dumped [at sub-seconds]

Dynamics of Natural Gas Systems

Motivation. Structure.

Stationary (balanced) Gas Flows

without compressors, $\alpha_{ij} = 1$ $p_i^2 \xrightarrow{r} \alpha_{ij} \xleftarrow{(1-r)} p_j^2$ $ra_{ij}\phi_{ij}|\phi_{ij}| (1-r)a_{ij}\phi_{ij}|\phi_{ij}|$

 $\begin{array}{ll} & \quad \displaystyle \underbrace{\text{Gas Flow Equations:}}_{\forall (i,j): \quad p_i^2 - p_j^2 = a_{ij}\phi_{ij}^2} (\sum_i q_i = 0, \quad a_{ij} = L_{ij}\beta_{ij}/D_{ij}) \\ \forall i: \quad p_i^2 - p_j^2 = a_{ij}\phi_{ij}^2 \\ \forall i: \quad q_i = \sum_{j:(i,j)\in\mathcal{E}} \phi_{ij} - \sum_{j:(j,i)\in\mathcal{E}} \phi_{ji} \end{array}$

Dynamics of Natural Gas Systems

Motivation. Structure.

Stationary (balanced) Gas Flows

 $\begin{array}{rcl} & \quad \displaystyle \underline{\text{Gas Flow Equations:}} & (\sum_i q_i = 0, & a_{ij} = L_{ij}\beta_{ij}/D_{ij}) \\ \hline \forall (i,j): & \quad \alpha_{ij}^2 = \frac{\rho_j^2 + (1-r)a_{ij}\phi_{ij}^2}{\rho_i^2 - ra_{ij}\phi_{ij}|\phi_{ij}|} \\ \forall i: & \quad q_i = \sum_{j:(i,j)\in\mathcal{E}} \phi_{ij} - \sum_{j:(j,i)\in\mathcal{E}} \phi_{ji} \end{array}$

Dynamics of Natural Gas Systems

Gas Dynamics & Line Pack

Approximating Transient Flows:

Computational Schemes [developed at LANL/ANSI]

- Lump-elements ODE (our main tool for optimization constrained by PDEs). Divide pipe into segments for sufficient approximation of transients.
- Split-step method new for gas systems [UNM-collaboration] most accurate
 golden standard, allows extension to fast sound/shock transients
 [sub-seconds], e.g. physics modeling of turbulent dissipation and sound-scattering requires modification]
- Adiabatic method [new for gas systems (related to approach of M. Herty)] = approximate reduction from PDEs to nodal ODEs - much faster and sufficiently more accurate [at seconds and slower] - critical for extreme [e.g. large scale] simulations

Developing all three

- To validate in the regime of overlap (slow transients)
- To access broader coverage of different extremes [physics]
- To extend applicability for mitigation (optimization & control)

Gas Network: Model Example

- A tree network with 25 joints and 24 pipelines, 1 source, 5 compressors
- Total length: 477km, $d_i = 36$ or 25 inches, $\lambda = 0.011$.

auxiliary-nodes are added to spatially discretize pipelines longer than 10 km \rightarrow 62 nodes [lump-element simulations]

Dynamics of Natural Gas Systems

Gas Dynamics & Line Pack

Dynamic Network Simulation [lump-elements ODEs]

Line Pack

- total injection \neq total consumption
- balance is achieved over day
- transient compressor also contributes to dynamics
- Withdrawals from 8 terminal nodes, 4 with transients
- Transient compressions at 5 joints
- A feasible steady state gas flow is computed
- Simulation using ode15s with adaptive step and relative tolerance 10⁻³

Gas Dynamics & Line Pack

[MC, S. Backhaus, V. Lebedev + S. Dyachenko, A. Korotkevich, A. Zlotnik, 2014-16]

Steady (balanced) continuous profile of gas injection/consumption

- $q(t,x) = q_{st}(x) + \xi(t,x)$
 - q_{st}(x) is the forecasted consumption/injection of gas
 - ξ(t, x) actual fluctuating/random profile of consumption/injection, e.g. gas plant follows wind turbines

Exemplary case: One dimensional (1+1) model – distributed injection/consumption and compression

- mass balance: $c_s^{-2}\partial_t p + \partial_x \phi = -q(t,x)$
- momentum balance: $\partial_x p + \frac{\beta}{2d} \frac{\phi |\phi|}{p} = \gamma(x)p$
- γ(x) distributed compression assumed known

Diffusive Jitter = $\mathbb{E}\left[\left(p(t,x) - p_{st}(x)\right)^2\right] \doteq \mathbb{E}\left[\delta p(t,x)^2\right] = t \cdot D(x)$

 spatio-temporal fluctuations of actual pressure (unbalanced/line pack) on the top of the steady/optimized/inhomogeneous forecast

Dynamics of Natural Gas Systems

Gas Dynamics & Line Pack

$\mathbb{E}\left[\delta p(t,x)^2\right] \to t \cdot D(x)$

Diffusion coefficient shows local extrema at the points of flow reversals

- q_{st}(x) is shown in inset distributed injection/consumption, q_{st}(0) = q_{st}(L) = 0
- γ(x) is chosen to get p_{st} = const (example)

Adiabatic [perturbative]

Diffusive Pressure Jitter - Validation [split-step] & Confirmation [jitter]

- Averaging over 4000 realizations
- Split-step vs Adiabatic
 Inon-perturbative
- Adiabatic approach is validated
- Jitter phenomenon is qualitatively confirmed
- Extends to networks

Gas Dynamics & Line Pack

- Transco data available online at http://www.lline.williams.com/ Transco/index.html
- 24 hours period on Dec 27, 2012; $\phi_0 \approx 20 kg/s; \approx 70$ nodes; pressure range 500 - 800 psi
- mile post 1771 (large load in NJ, NYC)
- Marcellus shell (mile post 2000)
- mile post 1339 (large load in NC)

Diffusion coefficient as a function of distance along the Transco mainline

- peak at milepost 1771 (point of steady flow reversal)
- peak is at the same location for two distinct steady solutions (resulting from optimizations)
- peak is much higher for the greedy (steady) case

- Transco data available online at http://www.lline.williams.com/ Transco/index.html
- 24 hours period on Dec 27, 2012; $\phi_0 \approx 20 kg/s; \approx 70$ nodes; pressure range 500 - 800 psi
- mile post 1771 (large load in NJ, NYC)
- Marcellus shell (mile post 2000)
- mile post 1339 (large load in NC)

Diffusion coefficient as a function of distance along the Transco mainline

Main points (qualitative):

- diffusive jitter (coefficient) is proper indicator/measure of the gas/pressure stress
- change in the steady/forecasted solution has a profound effect on the pressure fluctuations

Dynamics of Natural Gas Systems

Uncertainty. Monotonicity.

Complications [additional to line pack]

- Uncertainty of loads +
 - gas generators [responding to fluctuations/uncertainty on the power side]
 - city-gates [primary customers]
 - both subject to failures/treats
 - compressors and (other) controls can also be uncertain

Can we deal with the uncertainty nested in optimization?

- Even when we set boundaries ... there is continuum of scenarios
- What to do with the continuum? Reduction to fewer scenarios?

Dynamics of Natural Gas Systems

Uncertainty. Monotonicity.

Math & Physics Framework

Generalization – Compressible [Potential-Dissipative] Flows:

Nodal Production/Consumption

Flow in a Pipeline $\phi(x,t)$

Density of Gas in a Pipeline $\rho(x,t)$

Dynamic Flow Equations

Mass Conservation

 $\partial_t \rho(x,t) + \partial_x \phi(x,t) = 0$

Momentum Balance

 $\partial_x \rho(x,t) = F^d \big(\rho(x,t), \phi(x,t) \big)$

Steady State Flow Equations

 $\rho_{out} = F^s(\rho_{in}, \phi)$

Assumption

Monotonicity in Natural Gas (+) Networks

Steady State Flow Equations

 $\rho_{out} = F^s(\rho_{in},\phi)$

Ordered Consumptions at every node

 $q \leq q \leq \overline{q}$

Aquarius Theorem: Solutions Exists \Rightarrow Order Preserved

 $\underline{\rho} \le \rho \le \bar{\rho}$

Dynamics of Natural Gas Systems

Uncertainty. Monotonicity.

Monotonicity in Natural Gas (+) Networks

Monotonicity ⇒ Robust Feasibility Tractable

Is a fixed operating point

safe (feasible)

under uncertain consumption?

A priori hard problem

For infinite number of scenarios test existence of safe flows

Aquarius Theorem (Dynamic & Static Dissipative Networks)

Densities are monotone with consumption

Only two extreme scenarios have to be tested for the entire network

$$q_i = \underline{q}_i \qquad q_i = \overline{q}_i$$

Example of Monotonicity for Scenario/Cases Reduction

Optimization & Control of Natural Gas Systems

Outline

1 Dynamics of Natural Gas Systems

- Motivation. Structure.
- Gas Dynamics & Line Pack
- Uncertainty. Monotonicity.

2 Optimization & Control of Natural Gas Systems Static & Dynamic Optimal Gas Flow

Optimization & Control of Natural Gas Systems

Static & Dynamic Optimal Gas Flow

Static Optimal Gas Flow

Minimizing the cost of compression (\sim work applied externally to compress)

$$\min_{\alpha,p} \sum_{(i,j)} \frac{c_{ij}\phi_{ij}}{\eta_{ij}} \left(\alpha_{ij}^m - 1 \right)^+ \Big| \quad \forall (i,j) : \quad \alpha_{ij}^2 = \frac{p_j^2 + (1-r)a_{ij}\phi_{ij}^2}{\rho_i^2 - ra_{ij}\phi_{ij}^2} \\ \forall i : \quad 0 \le \underline{p}_i \le p_i \le \overline{p}_i \\ \forall (i,j) : \alpha_{ij} \le \overline{\alpha}_{ij}$$

• $0 < m = (\gamma - 1)/\gamma < 1$, γ - gas heat capacity ratio (thermodynamics)

■ The problem is **convex on trees** (many existing gas transmission systems are trees) ← through GeometricProgramming (log-function transformation)

S. Misra, M. W. Fisher, S. Backhaus, R. Bent, MC, F. Pan, Optimal compression in natural gas networks: a geometric programming approach, IEEE CONES 2014

Optimization & Control of Natural Gas Systems

Static & Dynamic Optimal Gas Flow

Static OGF experiments (Transco pipeline)

GP is advantageous over DP

- Exact = no-need to discretize.
- Faster. Allows distributed (ADMM) implementation.
- Convexity is lost in the loopy case. However, efficient heuristics is available.
- This is only one of many possible OGF formulations. Another (Norvegian/European) example – maximize throughput.
- Major handicap of the formulation (ok for scheduling but) = did not account for the line pack (dynamics/storage in lines for hours) ⇒

- Optimization & Control of Natural Gas Systems
 - Static & Dynamic Optimal Gas Flow

Optimal Control: Economic Transient Compression (ETC)

- Minimize cost of compression such that pressure is maintained within bounds
- State functions are $ho(t) \in \mathbb{R}^{V-1}$ and $arphi(t) \in \mathbb{R}^{E}$

Control functions are $\alpha(t) \in \mathbb{R}^C$ where C < 2E

$$\begin{aligned} \mathsf{ETC}: & \min_{\alpha} \quad \int_{0}^{T} \sum_{\{i,j\} \in \mathcal{E}} \frac{1}{\eta_{ij}} |\varphi_{ij}(t)| ((\alpha_{ij}(t))^{m} - 1) \mathrm{d}t \\ & \text{s.t.} \quad |A_{d}|\Lambda|B_{d}^{T}|\dot{\rho} = 4(A_{d}\varphi - d) - |A_{d}|\Lambda|B_{s}^{T}|\dot{s} \\ & \dot{\varphi} = -\Lambda^{-1}(B_{s}^{T}s + B_{d}^{T}\rho) - Kg(\varphi, |B_{s}^{T}|s + |B_{d}^{T}|\rho) \\ & \rho_{\min}^{i} \leq \alpha_{ij}(t)\rho_{i}(t) \leq \rho_{\max}^{i}, & \forall \{i,j\} \in \mathcal{E} \\ & \mathbf{1} \leq \alpha_{ij}(t) \leq \alpha_{ij}^{\max} & \forall \{i,j\} \in \mathcal{E} \\ & \rho(0) = \rho(T), \quad \varphi(0) = \varphi(T) \end{aligned}$$

- State at each time instance is function with compact support
- Convert into algebraic equations using spectral approximation

Static & Dynamic Optimal Gas Flow

Dynamic Optimal Gas Flow: Control of Compression – ETC

Thick and thinner lines indicate 36" and 25" pipes, respectively. Pressure is bounded between 500 and 800 psi on all pipes. Friction factor and sound speed are $\lambda = 0.01$ and $c_s = 377.968$ m/s.

- Optimization & Control of Natural Gas Systems
 - Gas-Grid co-Optimization

Gas-Grid Coordination Scenarios

- 1 Optimal Power Flow (OPF) and Static Optimal Gas Flow (OGF) solved separately.
- 2 OPF and Dynamic OGF solved separately.
- 3a OPF solved with gas dynamics constraints following from static OGF.
- 4a OPF solved with gas dynamics constraints following from dynamic OGF.
- 3 OPF and OGF solved together with a limited overlap (gas compressor setpoints).
- 4 OPF and dynamic OGF solved together.

- Optimization & Control of Natural Gas Systems
 - Gas-Grid co-Optimization

Gas-Grid Coupling

- Gas generators fuel use is a quadratic function of power: $h_i(t) = q(p_i(t)) = q_0 + q_1 p_i(t) + q_2 p_i^2(t)$
- Minimize combined OPF and Dynamic OGF objectives, satisfy all constraints
- 40%-60% of gas for power
- Local Distribution Companies (LDCs) located at gas nodes 6, 12, 18, 25 [green]

- Gas units at power/gas nodes (22/8), (15/13), (13/24), (7,19) [purple]
- 2724 MW prod. capacity, approx 550,000 mmBTU gas moved (base case)

Current Practice vs New Technology – High Stress Case

- 1: OPF is solved, 15% extra capacity requested. Static OGF solved.
- 4: OPF and dynamic OGF with full coordination

- 300 psi-days pressure violation (certain supply disruption) vs. 1 psi-day
- Co-optimization yields alternative day-ahead generation dispatch and transient compression protocols that keep gas system pressure within bounds

- Optimization & Control of Natural Gas Systems
 - Gas-Grid co-Optimization

Comparison of Scenarios and Stress Cases

DC OPF objective ($\$ \times 10^6$)

	1	2	3	4
low	0.5972	0.5972	0.5971	0.5971
base	0.7316	0.7316	0.7532	0.7316
high	0.8256	0.8256	1.0250	0.8883

Gas Usage for Generation (mmBTU $\times 10^3$)

	1	2	3	4
low	214.46	214.46	214.15	214.14
base	306.08	306.08	309.81	305.93
high	380.15	380.15	340.75	362.44

Pressure Violation Norm (psi-days)

	1	2	3	4
low	4.5794	0.1146	0.1309	0.0843
base	83.751	0.1923	0	0.0255
high	303.61	56.925	0	1.0802

- Optimization & Control of Natural Gas Systems
 - Gas-Grid co-Optimization

Take home messages [from LANL + about natural gas systems]

Developed [practical/algorithmic] approaches, tools and capabilities in

- modeling and simulating line pack efficiently
- dealing with uncertainty $\infty \rightarrow 2$
- describing and developing [projecting to future] dynamic optimization/control schemes
- accessing consequences of gas-grid interaction [analysis, optimization, control, mitigation of stesses/uncertainty]

Misha Chertkov chertkov@lanl.gov Dynamics & Optimization of Natural Gas Systems https://sites.google.com/site/mchertkov Conclusions

LANL/ANSI papers on "gas" + "gas-grid" so far [arxiv]

- M. Chertkov, A. Korotkevich, Adiabatic approach for natural gas pipeline computations, CDC 2017.
- S. Dvachenko, A. Zlotnik, A. Korotkevich, M. Chertkov, Operator Splitting Method for Dynamic Simulations of Flows in Natural Gas Transportation Networks, Physica D 2017.
- M. Chertkov, V. Lebedev, S. Backhaus, D. Dyachenko, A. Korotkevich, A. Zlotnik, Nonlinear Stochastic Dynamics of Pressure in Natural Gas Systems, in preparation.
- A. Zlotnik, L. Roald, S. Backhaus, M. Chertkov, and G. Andersson, Control Policies for Operational Coordination of Electric Power and Natural Gas Transmission Systems, ACC (American Control Conference) 2016.
- A. Zlotnik, S. Misra, M. Vuffray, and M. Chertkov, Monotonicity of Actuated Flows on Dissipative Transport Networks, ECC (European Control Conference) 2016.
- A. Zlotnik, M. Chertkov, K. Turitsyn, Assessing risk of gas shortage in coupled gas-electricity infrastructures, HICSS-49/2016.
- A. Zlotnik, L. Roald, M. Chertkov, S. Backhaus, Coordinated Operational Planning for Integrated Electric Power and Natural Gas Infrastructures. IEEE Power Systems 2016.
- A. Zlotnik, M. Chertkov, S. Backhaus, Optimal Control of Transient Flow in Natural Gas Networks, CDC 2015.
- K. Dvijotham, M. Vuffray, S. Misra, M. Chertkov, Natural Gas Flow Solutions with Guarantees: A Monotone Operator Theory Approach, arXiv:1506.06075.
- M. Vuffray, S. Misra, M. Chertkov, Monotonicity of Dissipative Flow Networks Renders Robust Maximum Profit Problem Tractable: General Analysis and Application to Natural Gas Flows, CDC 2015.
- S. Misra, M. Vuffray, M. Chertkov, Maximum Throughput Problem in Dissipative Flow Networks with Application to Natural Gas Systems, CDC 2015.
- M. Chertkov, M. Fisher, S. Backhaus, R. Bent, S. Misra, Pressure Fluctuations in Natural Gas Networks. caused by Gas-Electric Coupling, HICSS-48/2015.
- M. Chertkov, V. Lebedev, S. Backhaus, Cascading of Fluctuations in Interdependent Energy InfrastructuresGas-Grid Coupling, Applied Energy 2015.
- S. Misra, M. W. Fisher, S. Backhaus, and R. Bent, M. Chertkov, F. Pan, Optimal compression in natural gas networks: a geometric programming approach, IEEE Transactions on Control of Networks 2015.

What is next - plans/what? [energy systems]

continue to work on modeling & controlling uncertainty in interacting energy

- + infrastructures [power, gas, district heating, water, communications]
 - specific networks [real models, data driven]
 - \blacksquare modeling: physics of flows \rightarrow proper model reduction \rightarrow state-of-the-art dynamic simulations
 - statistical tools: Graphical Models, Machine Learning [physics informed, algorithms]
 - optimization & control [algorithms]
- analysis of fast (sub-seconds) wave phenomena ... propagation of
 - sound/shock waves (natural gas, district heating, water)
 - electro-mechanical waves (power)

through energy + networks/systems

- Damping & Interaction.
- Localization & Timing of a Source/Perturbation
- Analysis & Prevention of Damage
- District level optimization & control including electric- & gas- systems

What is next - tactics/how? [energy systems]

What?

	How?	Theoretical Engineering
What? Energy Systems Focus? District Level	Physical Network	etwork Flow
 Power Grids Natural Gas Systems District Heating 	 Static/Feasibility Dynamical Systems/Tranasients Uncertainty, Fluctuations Applied Statistics/Probability Statistical Physics/Mechanics 	
Systems Inter-dependent Infrastructures + Cyber	 Graphical Models Machine Learning Optimization Stochastic (Chance-Constrained) Robust Optimal Control 	

Thank You!

Appendix Outline

3 Auxiliary: Gas Systems

- Gas Dynamics Computations
- More on Adiabatic Method. Balanced/Unbalanced.

Auxiliary: Gas Systems

Outline

3 Auxiliary: Gas Systems

- Gas Dynamics Computations
- More on Adiabatic Method. Balanced/Unbalanced.

[A. Zlotnik, MC, S. Backhaus, 2015-2016]

- Nondimensionalization: $\tilde{t} = \frac{t}{\ell/a}, \quad \tilde{x} = \frac{x}{\ell}, \quad \tilde{\rho} = \frac{\rho}{\rho_0}, \quad \tilde{\phi} = \frac{\phi}{a\rho_0}$
- Nondimensional equations: $\partial_t \rho + \partial_x \phi = 0$, $\partial_t \phi + \partial_x \rho = -\frac{\lambda \ell}{2D} \frac{\phi |\phi|}{\rho}$
- Lumped-element approximation: integrate equations along the pipe

$$\int_0^L (\partial_t \rho + \partial_x \phi) dx = 0, \qquad \int_0^L (\partial_t q + \partial_x \rho) dx = -\frac{\lambda \ell}{2D} \int_0^L \frac{\phi |\phi|}{\rho} dx$$

Evaluate and approximate integrals:

$$\frac{L}{2}(\rho_0 + \rho_L)_t = \phi_0 - \phi_L, \qquad \frac{L}{2}(\phi_0 + \phi_L)_t = (\rho_0 - \rho_L) - \frac{\lambda\ell L}{4D}\frac{(\phi_0 + \phi_L)|\phi_0 + \phi_L|}{\rho_0 + \rho_L}$$

Divide pipe into segments for sufficient approximation of transients of interest

[S. Dyachenko, A. Korotkevich, A. Zlotnik, MC, S. Backhaus, 2015-16]

$$c_{s}^{-2}\partial_{t}p + \underbrace{\partial_{x}\phi}_{linear} = 0$$
$$\partial_{t}\phi + \underbrace{\partial_{x}p}_{linear} + \underbrace{\frac{\beta}{2pD}\phi}_{nonlinear}\phi|\phi| = 0$$

 solved alternating linear and nonlinear steps

Properties of the Split-step scheme

- the scheme is exact = conserves the total amount of gas in the pipe
- unconditionally stable
- explicit (both linear and nonlinear)
- second order accurate (high order generalizations are possible)

- First application of the split-step in natural gas dynamics
- Expected to be uniquely suitable/appropriate to describe fast transients equations need to be modified to account for scattering/dissipation of high frequency waves on turbulence (pipe boundary layer) proper

Auxiliary: Gas Systems

Gas Dynamics Computations

[MC, V. Lebedev, S. Backhaus + S. Dyachenko, A. Korotkevich, A. Zlotnik, 2014-16] Allows reduced description = only network-nodal ODEs

$$\begin{aligned} \forall (i \to j) \in \mathcal{E} : \ \phi_{i \to j} = \text{sgn}(p_i - p_j) \sqrt{\frac{|p_i^2 - p_j^2|}{\alpha_{ij}L_{ij}} + \frac{2L_{ij}}{15c_s^2}} \\ * \left(F^{(0,1)}(p_i, p_j) \frac{d}{dt} p_i + F^{(1,0)}(p_i, p_j) \frac{d}{dt} p_j \right) \\ \forall i \in \mathcal{V} : \ q_i = \sum_{j: (i,j) \in \mathcal{E}} \phi_{i \to j} \\ \forall i \in \mathcal{V}_c, \ (i,j), (i,k) \in \mathcal{E} : \ p_{i \to j} = \gamma_{j \to k} p_{i \to k} \\ F(p_1, p_2) \doteq \frac{3p_1^3 + 6p_1^2 p_2 + 4p_1 p_2^2 + 3p_2^3}{(p_1 + p_2)^2} \\ F^{(0,1)}(p_1, p_2) \doteq \partial_{p_1} F(p_1, p_2), \quad F^{(1,0)}(p_1, p_2) \doteq \partial_{p_2} F(p_1, p_2) \end{aligned}$$

- derived under assumptions that changes are slow, driven by consumption/production
- allows efficient (explicit) high-order network scheme
- validated against split-step & lump-element

Auxiliary: Gas Systems

Gas Dynamics Computations

Long pipe with distributed compression + injection/consumption

$$c_s^{-2}\partial_t p + \partial_x \phi = q_{st}(x) + \xi(t,x), \ \partial_x p + \alpha \frac{\phi|\phi|}{2p} = \gamma(x)p$$

Stationary Solution

$$\begin{split} \phi_{st}(x) &= \phi_0 + \int_0^x dx' q_{st}(x') \\ (\rho_{st}(x))^2 &= \mathcal{Z}(x) \bigg(\rho_L^2 + \int_x^L \frac{dx' \, \alpha \phi_{st}(x') |\phi_{st}(x')|}{\mathcal{Z}(x')} \bigg) \\ \mathcal{Z}(x) &\doteq \exp\bigg(-2 \int_x^L dx' \, \gamma(x') \bigg) \end{split}$$

Full solution - in adiabatic approximation

$$\begin{split} & \frac{p(t,x)^2}{\mathcal{Z}(x)} \approx \left(p_L(t)\right)^2 + \int_x^L \frac{dx' \,\alpha \phi_{st}(x') |\phi_{st}(x')|}{\mathcal{Z}(x')} \\ & \frac{d}{dt} \left(p_L(t)\right)^2 \int_0^L \frac{\exp\left(-\int_x^L dx' \,\gamma(x')\right) \, dx}{2\sqrt{(p_L(t))^2 + \int_x^L dx' \,\alpha \phi_{st}(x') |\phi_{st}(x')|}} \\ & = c_s^2 \int_0^L dx \xi(t,x) \end{split}$$

• \Rightarrow Diffusive Jitter in the result of averaging over $\xi(t, x)$

Auxiliary: Gas Systems

More on Adiabatic Method. Balanced/Unbalanced.

Adiabatic Approach

Setting discussed in CDC 2017 by MC & Korotkevich

Single pipe of length $L, x \in [0, L]$

Dynamics of flow, ϕ , and pressure, p, is governed by

$$c_s^{-2}\partial_t p + \partial_x \phi = 0, \quad \partial_x p + \alpha \frac{\phi|\phi|}{2p} = 0$$

- initial conditions (t = 0) = steady, balanced solution
- boundary conditions e.g. p(t; 0) and p(t; L) are fixed introduce time scale (slower then speed of sound)

Auxiliary: Gas Systems

More on Adiabatic Method. Balanced/Unbalanced.

Adiabatic Approach

$$c_s^{-2}\partial_t p + \partial_x \phi = 0, \quad \partial_x p + \alpha \frac{\phi|\phi|}{2p} = 0$$

Main Idea: Adiabaticity = separation of time scales

Suppose that a parameterized family of exact solutions,

 $\phi_{exact}(t; x; \xi), p_{exact}(t; x; \xi)$, is known

$$\cdots (\underbrace{t}_{\text{time space const. paramters}}; \underbrace{\xi}_{\text{time space const. paramters}};$$

Seeking for solution in the form [adiabatically=slowly evolving (parametrized) solution + perturbative correction]:

 $\phi(t;x) = \phi_{exact}(t;x;\xi(t)) + \delta\phi(t;x), \ \rho(t;x) = \rho_{exact}(t;x;\xi(t)) + \delta\rho(t;x)$ $\delta\rho(t;0) = \delta\rho(t;1) = 0$

$$p(t; 0) = p_{exact}(t; 0; \xi(0)), \ p(t; L) = p_{exact}(t; L; \xi(0))$$

■
$$\delta p(t;x) \ll p(t;x), \ \delta \phi(t;x) \ll \phi(t;x) \rightarrow \text{linearization}$$

corrections are small

in addition
$$c_s^{-2}\partial_t\delta p\ll\delta_x\delta\phi$$

a version of singular perturbation analysis/method

Auxiliary: Gas Systems

More on Adiabatic Method. Balanced/Unbalanced.

Experiments: Pressure-Pressure Boundary Conditions

p(t; 0) and p(t; L) are fixed/given

- p(t; L/2) and $\phi(t; L/2)$ are shown
- Unbalanced Adiabatic = Adiabatic profile build about Unbalanced Exact Solution
- Balanced Adiabatic = Adiabatic profile build about Balanced Exact Solution
- UA+ = UA + linear correction
- BA+ = BA + linear correction

Auxiliary: Gas Systems

More on Adiabatic Method. Balanced/Unbalanced.

Experiments: Pressure-Mass Flow Boundary Conditions

• p(t; 0) and $\phi(t; L)$ are fixed/given

- p(t; L/2) and $\phi(t; L/2)$ are shown
- Exact solid red; Linearized dashed red
- Unbalanced Adiabatic green dashed
- Balanced Adiabatic blue dashed
- UA+ green solid
- BA+ blue solid

Auxiliary: Gas Systems

More on Adiabatic Method. Balanced/Unbalanced.

Exact Balanced solution

Steady (time independent) Solution of

$$c_s^{-2}\partial_t p + \partial_x \phi = 0, \quad \partial_x p + \alpha \frac{\phi |\phi|}{2p} = 0$$

$$p_{BA}(x; p_{in}, p_{out}) = \sqrt{(p_{in})^2 - \frac{x}{L}((p_{in})^2 - (p_{out})^2)}$$

$$\phi_{\mathsf{BA}}(p_{in}, p_{out}) = \sqrt{\frac{(p_{in})^2 - (p_{out})^2}{\alpha}}$$

adiabatic

- $p_{in} = \text{const} \rightarrow p_{in}(t), \quad p_{out} = \text{const} \rightarrow p_{out}(t)$
- **Model Reduction**: from PDEs \Rightarrow explicit ODEs for the parameters ($p_{in}(t)$, $p_{out}(t)$)

Auxiliary: Gas Systems

More on Adiabatic Method. Balanced/Unbalanced.

Exact Unbalanced solution

New family of Exact time dependendent solutions of

$$c_s^{-2}\partial_t p + \partial_x \phi = 0, \quad \partial_x p + \alpha \frac{\phi|\phi|}{2p} = 0$$

$$p(t,x) = p_0 \exp\left(\frac{\lambda c_s^2}{\sqrt{2\alpha}}t + \psi_\lambda(x)\right), \quad \phi(t,x) = \sqrt{-\frac{2p_0^2}{\alpha}\psi_\lambda'(x)}\exp\left(\frac{\lambda c_s^2}{\sqrt{2\alpha}}t + \psi_\lambda(x)\right)$$

$$\psi_{\lambda}(x) = -\int_{0}^{x} dx' G(x'; \lambda), \quad \int_{G(x;\lambda,G_0)}^{G_0} \frac{dz}{\lambda\sqrt{z-2z^2}} = x \text{ [implicit]}$$

adiabatic

- $G_0 = \text{const} \rightarrow G_0(t), \quad \lambda = \text{const} \rightarrow \lambda(t)$
- **Model Reduction**: from PDEs \Rightarrow implicit ODEs for the parameters ($G_0(t)$, $\lambda(t)$) [implicit = tabulation is involved]

Auxiliary: Gas Systems

More on Adiabatic Method. Balanced/Unbalanced.

Conclusions [Adiabatic Approach to Gas Systems]

New family of exact solutions (growing, decreasing) for a single pipe

Adiabatic solutions: explicit (balanced), implicit (unbalanced)

- Experiments: emprirical validation of the adiabaticity (scale separation + control of corrections)
- Model reduction: from PDE(s) to ODE(s) = tractability & scalability

Auxiliary: Gas Systems

More on Adiabatic Method. Balanced/Unbalanced.

Path Forward [Adiabatic Approach to Gas Systems]

... adiabatic approach ...

- Other exact solutions (oscillating) ?
- Demonstration on (large) networks (efficiency, scalability)
- Integration into network-wide control & optimization