Optimal Treatment Assignment to Evaluate Demand Response

Baosen Zhang
Electrical Engineering
University of Washington
Grid Science Winter School & Conference
Jan 12, 2017

Joint work with Pan Li, Yize Chen

Introduction

- Demand Response (DR): send a signal to elicit a change in customer demand
- Change in price, text message, etc.

Introduction

Standard setup for demand response (DR):

- 1. Direct load control
- 2. Indirect control:
 - Each user has some utility function (public or private)
 - Maximize the social welfare

Our setting: no direct control and no detailed information

This talk:

How to learn the impact of demand response

Problem Setup

Stylized setup:

- Utility sends a signal, 0 or 1, to a user
 - 1: perform demand response
 - 0: do nothing (or no signal to the user)
- Quantity of interest: causal impact of DR

Consumption|DR-Consumption|No DR

Challenges

High Dimensionality of Covariates

Most of time a user is not called for DR

 E.g., a user can be called no more than 5 times in one month

Overcoming the Challenges

Estimating an effect under infrequent signaling with a large number of covariates is a hard problem

Existing estimation techniques performs poorly

Our approach: strategically signaling

Carefully choose DR signals based on the covariates

Result: We show an optimal estimation strategy with high dimensional covariates

Outline

- Linear model
- Signaling strategy
- Theoretical Analysis
- Simulation with real building data
- Online problem

Additive Linear Model

 β : the causal impact of DR signal — Learn This γ : impact of other covariates, vector of dimension d

Observe *n* samples:

$$y \downarrow 1, y \downarrow 2, ..., y \downarrow n$$

 $x \downarrow 1, x \downarrow 2, ..., x \downarrow n$
 $z \downarrow 1, z \downarrow 2, ..., z \downarrow n$

Estimation Problem

Estimate β (impact of DR)

- Given $z \downarrow 1$, $z \downarrow 2$,..., $z \downarrow n$
- Limited signaling: design $x \not\downarrow 1$, $x \not\downarrow 2$,..., $x \not\downarrow n$, at most k of $x \not\downarrow i$ can be 1 ($k \ll n$)
- Observe $y \downarrow 1$, $y \downarrow 2$,..., $y \downarrow n$

 β : estimate of β

- Unbiased
- Minimize $Var(\beta)$

High dimensional setting: $d \approx n$

A designer can optimize of the signaling strategy

Standard Practice

- Signals are randomly assigned
 - E.g., k/n = 1/3, $x \downarrow i = 1$ with probability 1/3
- Metric: variance of the estimate, $Var(\beta)$
- High dimension: d=n-1

Standard Practice

- Signals are randomly assigned
 - E.g., k/n = 1/3, $x \downarrow i = 1$ with probability 1/3
- Metric: variance of the estimate, $Var(\beta)$
- High dimension: d=n-1

Run a linear regression: $y_i = \beta x_i + \gamma^T z_i + \varepsilon_i$,

Variance does not decrease!

Standard Practice

$$y_i = \beta x_i + \gamma^T z_i + \varepsilon_i$$

Method 1: Predict then subtract

 Fit the best predictive model, then subtract out the prediction to find the impact of DR

Estimating γ is hard!

Method 2: Difference-in-Means

Ignore covariates, pretend the model is

$$y \downarrow i = \beta x \downarrow i + \epsilon \downarrow i$$

Throwing information away as noise!

Our approach

- Use information in the covariates
- Don't try to do prediction
- Strategically assign signals

Variance of Estimator

$$y_i = \beta x_i + \gamma^T z_i + \varepsilon_i$$

 Running linear regression, the variance of the estimator of beta is given by

$$\operatorname{Var}\left(\hat{\beta}\right) = \frac{\sigma^2}{\mathbf{x}^T \mathbf{P} \mathbf{x}}$$

Where

$$\mathbf{P} = \mathbf{I} - \mathbf{Z}(\mathbf{Z}^T \mathbf{Z})^{-1} \mathbf{Z}$$

x: vector of DR signals

Z: matrix of covariates

Optimization Problem

$$\begin{array}{lll} \text{minimize} & \operatorname{Var} \hat{\beta} = \frac{\sigma^2}{\boldsymbol{x}^{\mathrm{T}} P \boldsymbol{x}} & \operatorname{maximize} & \boldsymbol{x}^{\mathrm{T}} P \boldsymbol{x} \\ \\ \text{subject to} & \sum_{i=1}^n x_i = k & \operatorname{Limited signals} & \operatorname{subject to} & \sum_{i=1}^n x_i = k \\ \\ & x_i \in \{1,0\}. & x_i \in \{1,0\}. \end{array}$$

- Non-trivial problem:
 - Non-convex, binary variables
- Is it worth solving? How to solve it?

Optimal Assignment

- A lower bound: No strategy can achieve a better reduction in variance than 1/n
- Two questions:
 - Can we achieve this rate?
 Yes, there exist an assignment
 Can we solve the problem efficiently?
 Yes, relaxation

Look at rate first

Best Rate

minimize
$$\operatorname{Var} \hat{\beta} = \frac{\sigma^2}{\boldsymbol{x}^T P \boldsymbol{x}}$$

subject to $\sum_{i=1}^n x_i = k$
 $x_i \in \{1, 0\}.$

- Result: There exist a solution such that $Var(\beta)$ scales as 1/n, as long as d < n and $k/n > \epsilon$, for some fixed ϵ
- Contrast: If x↓i are randomly assigned, then then
 Var(β) stays constant if d is close to n, for all values
 of k

Example

• Synthetic data:

Achieving Optimal Rate

$$y_i = \beta x_i + \gamma^T z_i + \varepsilon_i,$$
Dimension d

- Look at the extreme case where d=n-1, hardest case to learn β
- Quantity of interest: $x \uparrow T P x$
- P is a projection matrix:

$$\mathbf{P} = \mathbf{I} - \mathbf{Z}(\mathbf{Z}^{\mathbf{T}}\mathbf{Z})^{-1}\mathbf{Z}^{\mathbf{T}} = \mathbf{y}\mathbf{y}^{\mathbf{T}}, \ \mathbf{Z}^{T}\mathbf{y} = \mathbf{0}, \ ||\mathbf{y}||_{2} = 1$$

Goal: maximize

$$(\mathbf{x^T}\mathbf{y})^2$$

Null Space

- Assume Z has random Gaussian entries, is n by d-1 null(ZîT): has a basis with i.i.d. Gaussian entries y: normalized version
- Maximize $(x \uparrow T y) \uparrow 2 = (\sum x \downarrow i y \downarrow i) \uparrow 2$

Extreme Case

$Max (x \uparrow T y) \uparrow 2$

- The information from each signal is not equal
- Strategically assign to get the maximum information

The optimal algorithm is easy

- Find y
- Sort: $y \uparrow (1) > y \uparrow (2) > \dots > y \uparrow (n)$
- Assign x=1 to the largest k elements

Rate is n as long as $k/n > \epsilon$

Example

• Synthetic data: d=n-1, k/n=1/3

General Settings

maximize
$$x^T P x$$
subject to $\sum_{i=1}^n x_i = k$
 $x_i \in \{1,0\}.$

This is actually a graph partition problem:

There is a SDP relaxation with provable gaps

Quality of Solution

Gaussian Entries

Uniform Entries

Some Real Data

- A hotel in Seattle, with at most 48 covariates including outside temperature, zonal temperature, heating, appliance, etc...
- Train a regression model based on all the data, then simulate DR
 - We can test the impact of covariate dimensions

Estimation Error

• Fix n=50, varying d

Fix d, varying n

Trying to conduct some trials

Online Setting

We have considered the offline problem

maximize
$$x^T P x$$
 subject to $\sum_{i=1}^n x_i = k$ $x_i \in \{1, 0\}.$

- Online Setting: approximate P in an online fashion
- Some preliminary results

Conclusion

- An optimal treatment assignment strategy in the context of demand response
 - It is possible to learn under unfavorable conditions
- Future work:
 - Online algorithm
 - Other response models
 - Learning and optimizing

SDP Relaxation

maximize
$$x^T P x$$

$$x \downarrow i = 2x \downarrow i - 1$$
 subject to
$$\sum_{i=1}^n x_i = k$$

$$x_i \in \{1, 0\}.$$

$$x \downarrow i = 2x \downarrow i - 1$$

$$x_i \in \{1, 0\}.$$

$$x_i \in \{1, 0\}.$$

$$x \downarrow i = 2x \downarrow i - 1$$
 subject to
$$\sum_i \hat{x}_i = 2k - n$$

$$\sum_i \sum_j X_{i,j} = (2k - n)^2$$

$$\begin{bmatrix} 1 & \hat{x}^T \\ \hat{x} & X \end{bmatrix} \succeq 0.$$

 There is a randomized algorithm to recover a feasible solution x

Can show

 $E[recovered\ solution]/SDP \ge const$

Challenges

Three challenges in estimating the impact of DR:

- 1. The counterfactual is not observed: what would have happened if the opposite was done?
- 2. There are many other exogenous factors