Optimal Treatment Assignment to Evaluate Demand Response

Baosen Zhang
Electrical Engineering
University of Washington
Grid Science Winter School & Conference
Jan 12, 2017

Joint work with
Pan Li, Yize Chen
Introduction

• Demand Response (DR): send a signal to elicit a change in customer demand
• Change in price, text message, etc.
Introduction

Standard setup for demand response (DR):
1. Direct load control
2. Indirect control:
 – Each user has some utility function (public or private)
 – Maximize the social welfare

Our setting: no direct control and no detailed information

This talk:

How to learn the impact of demand response
Problem Setup

Stylized setup:

• Utility sends a signal, 0 or 1, to a user
 – 1: perform demand response
 – 0: do nothing (or no signal to the user)

• Quantity of interest: causal impact of DR

\[\text{Consumption|DR} - \text{Consumption|No DR} \]
Challenges

No counterfactual observation

High Dimensionality of Covariates

- Temperature
- Type of day
- Size of house
- EVs
- PVs
- Appliances
- Interaction terms

Most of time a user is not called for DR
- E.g., a user can be called no more than 5 times in one month
Overcoming the Challenges

Estimating an effect under *infrequent signaling* with a *large number of covariates* is a hard problem

- Existing estimation techniques performs poorly

Our approach: *strategically* signaling

- Carefully choose DR signals based on the covariates

Result: We show an optimal estimation strategy with high dimensional covariates
Outline

- Linear model
- Signaling strategy
- Theoretical Analysis
- Simulation with real building data
- Online problem
Additive Linear Model

\[y_i = \beta x_i + \gamma^T z_i + \varepsilon_i, \]

\(\beta \): the causal impact of DR signal
\(\gamma \): impact of other covariates, vector of dimension \(d \)

Observe \(n \) samples:
\(y_{1}, y_{2}, \ldots, y_{n} \)
\(x_{1}, x_{2}, \ldots, x_{n} \)
\(z_{1}, z_{2}, \ldots, z_{n} \)

Consumption \hspace{1cm} DR signal \hspace{1cm} Covariates \hspace{1cm} Noise

Learn This

\{0,1\}
Estimation Problem

Estimate β (impact of DR)

- Given z_1, z_2, \ldots, z_n
- Limited signaling: design x_1, x_2, \ldots, x_n, at most k of x_i can be 1 ($k \ll n$)
- Observe y_1, y_2, \ldots, y_n

β : estimate of β

- Unbiased
- Minimize $Var(\beta)$

High dimensional setting: $d \approx n$

A designer can optimize of the signaling strategy
Standard Practice

• Signals are randomly assigned
 – E.g., $k/n = 1/3$, $x_{\downarrow i} = 1$ with probability $1/3$
• Metric: variance of the estimate, $Var(\beta)$
• High dimension: $d = n - 1$

Every household is treated equally.
Standard Practice

- Signals are randomly assigned
 - E.g., \(k/n = 1/3 \), \(x_i \) with probability \(1/3 \)
- Metric: variance of the estimate, \(\text{Var}(\beta') \)
- High dimension: \(d = n - 1 \)

Run a linear regression:

\[y_i = \beta x_i + \gamma^T z_i + \varepsilon_i, \]

Variance does not decrease!
Standard Practice

Method 1: Predict then subtract
• Fit the best predictive model, then subtract out the prediction to find the impact of DR

Estimating ν is hard!

Method 2: Difference-in-Means
• Ignore covariates, pretend the model is

$$y_{\downarrow i} = \beta x_{\downarrow i} + \epsilon_{\downarrow i}$$

Throwing information away as noise!
Our approach

- Use information in the covariates
- Don’t try to do prediction
- Strategically assign signals

Assigning DR signals allows us to tradeoff between the estimation of the two types of parameters.
Running linear regression, the variance of the estimator of beta is given by

\[y_i = \beta x_i + \gamma^T z_i + \varepsilon_i, \]

\[\text{Var} \left(\hat{\beta} \right) = \frac{\sigma^2}{x^T P x} \]

Where

\[P = I - Z (Z^T Z)^{-1} Z \]

- \(x \): vector of DR signals
- \(Z \): matrix of covariates
Optimization Problem

\[
\begin{align*}
\text{minimize} & \quad \text{Var} \ \hat{\beta} = \frac{\sigma^2}{x^T P x} \\
\text{subject to} & \quad \sum_{i=1}^{n} x_i = k \quad \text{Limited signals} \\
& \quad x_i \in \{1, 0\}.
\end{align*}
\]

\[
\begin{align*}
\text{maximize} & \quad x^T P x \\
\text{subject to} & \quad \sum_{i=1}^{n} x_i = k \\
& \quad x_i \in \{1, 0\}.
\end{align*}
\]

- Non-trivial problem:
 - Non-convex, binary variables
- Is it worth solving? How to solve it?

Random assignment

\[
\begin{array}{c}
50 \quad 100 \quad 150 \quad 200 \\
3.8 \quad 4 \quad 4.2 \quad 4.4
\end{array}
\]
Optimal Assignment

• A lower bound: No strategy can achieve a better reduction in variance than $1/n$

• Two questions:
 – Can we achieve this rate? Yes, there exist an assignment
 – Can we solve the problem efficiently? Yes, relaxation

Look at rate first
Best Rate

\[
\begin{align*}
\text{minimize} \quad & \quad \text{Var} \hat{\beta} = \frac{\sigma^2}{x^T P x} \\
\text{subject to} \quad & \quad \sum_{i=1}^{n} x_i = k \\
& \quad x_i \in \{1, 0\}.
\end{align*}
\]

• Result: There exist a solution such that \(\text{Var}(\beta) \) scales as \(1/n \), as long as \(d < n \) and \(k/n > \epsilon \), for some fixed \(\epsilon \).

• Contrast: If \(x_i \) are randomly assigned, then \(\text{Var}(\beta) \) stays constant if \(d \) is close to \(n \), for all values of \(k \).
Example

• Synthetic data:
Achieving Optimal Rate

\[y_i = \beta x_i + \gamma^T z_i + \varepsilon_i, \]

Dimension \(d \)

- Look at the extreme case where \(d = n - 1 \), hardest case to learn \(\beta \)
- Quantity of interest: \(x^T P x \)
- \(P \) is a projection matrix:

\[
P = I - Z(Z^T Z)^{-1} Z^T = y y^T, \quad Z^T y = 0, \quad ||y||_2 = 1
\]

Goal: maximize

\[
(x^T y)^2
\]
Null Space

- Assume Z has random Gaussian entries, is n by $d-1$

 $null(Z^\top)$: has a basis with i.i.d. Gaussian entries

 y: normalized version

- Maximize $(x^\top y)^2 = (\sum x_i y_i)^2$

Choose positive values
Extreme Case

Max \((x^T y)^2\)
- The information from each signal is not equal
- Strategically assign to get the maximum information

The optimal algorithm is easy
- Find \(y\)
- Sort: \(y^{(1)} > y^{(2)} > \ldots > y^{(n)}\)
- Assign \(x=1\) to the largest \(k\) elements

Rate is \(n\) as long as \(k/n > \epsilon\)
Example

- Synthetic data: \(d = n-1, \ k/n = 1/3 \)
General Settings

This is actually a graph partition problem:

\[
\begin{align*}
\text{maximize} & \quad x^T P x \\
\text{subject to} & \quad \sum_{i=1}^{n} x_i = k \\
& \quad x_i \in \{1, 0\}.
\end{align*}
\]

There is a SDP relaxation with provable gaps.
Quality of Solution

Gaussian Entries

Uniform Entries
Some Real Data

- A hotel in Seattle, with at most 48 covariates including outside temperature, zonal temperature, heating, appliance, etc…
- Train a regression model based on all the data, then simulate DR
 - We can test the impact of covariate dimensions
Estimation Error

- Fix $n=50$, varying d

- Fix d, varying n

- Trying to conduct some trials
Online Setting

• We have considered the offline problem

\[
\begin{align*}
\text{maximize} & \quad x^T P x \\
\text{subject to} & \quad \sum_{i=1}^{n} x_i = k \\
& \quad x_i \in \{1, 0\}.
\end{align*}
\]

• Online Setting: approximate P in an online fashion

• Some preliminary results
Conclusion

• An optimal treatment assignment strategy in the context of demand response
 – It is possible to learn under unfavorable conditions

• Future work:
 – Online algorithm
 – Other response models
 – Learning and optimizing
SDP Relaxation

There is a randomized algorithm to recover a feasible solution \(x \).

Can show

\[
E[\text{recovered solution}] / \text{SDP} \geq \text{const}
\]
Challenges

Three challenges in estimating the impact of DR:

1. The *counterfactual* is not observed: what would have happened if the opposite was done?

2. There are many other *exogenous factors*