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Introduction w

 Demand Response (DR): send a signal to elicit a
change in customer demand

* Change in price, text message, etc.
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Introduction w

Standard setup for demand response (DR):
1. Direct load control

2. Indirect control:
— Each user has some utility function (public or private)
— Maximize the social welfare

Our setting: no direct control and no detailed information

This talk:
How to learn the impact of demand response
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Problem Setup

Stylized setup:
« Utility sends a signal, 0 or 1, to a user

- 1: perform demand response
— 0: do nothing (or no signal to the user)

« Quantity of interest: causal impact of DR

Consumption|DR—Consumption/No DR
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Challenges w
No counterfactual High Dimensionality
observation of Covariates

Not Observed
/  Temperature
.load o
g « Type of day

Covariates —

time

Most of time a user is not called for DR

Size of house
EVs

PVs
Appliances

Interaction
terms

 E.g., auser can be called no more than 5 times in

one month
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Overcoming the Challenges w

Estimating an effect under infrequent signaling with a
large number of covariates is a hard problem

— Existing estimation techniques performs poorly

Our approach: strategically signaling
« Carefully choose DR signals based on the covariates

Result: We show an optimal estimation strategy with
high dimensional covariates
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Outline

* Linear model

« Signaling strategy

* Theoretical Analysis

« Simulation with real building data
* Online problem
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Additive Linear Model

yi=Bx;+y"z+¢;.

SN T e

Consumption DR signal  Covariates
{0,1}

/4. the causal impact of DR signal «~——Learn This
y. impact of other covariates, vector of dimension &

Observe 7 samples:
w1, 482 ,..,vin
Xl ,xd2,. . xin
zll,zI2 ,...zin
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Estimation Problem w

Estimate /£ (impact of DR)
« Given z!1,z42,...zin

« Limited signaling: design xJ1 ,xJ2,...xdn, at most £ of
xdi can be 1 (A< n)

* QObserve yi1 ,942,...yin

£ : estimate of £

* Unbiased

 Minimize Var(f)

High dimensional setting: d=~

A designer can optimize of the signaling strategy
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Standard Practice

« Signals are randomly assigned

— E.g., £/n=1/3, xJi=1 with probability 1/3
« Metric: variance of the estimate, Var(4)
* High dimension: d=n—1

Every household is treated equally. /n\\ /n\\

@ ° >
V- & B

()

9/27



Standard Practice

« Signals are randomly assigned

— E.g., £/n=1/3, xJi=1 with probability 1/3
« Metric: variance of the estimate, Var(4)
* High dimension: d=n—1

. . T
Run a linear regression: Yi = BXxi+7' zi+&;.
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Variance does not decrease!

n

10/27



Standard Practice w

vi = Px;+ ’}sz; + E;.
Method 1: Predict then subtract

« Fit the best predictive model, then subtract out the
prediction to find the impact of DR

Estimating pis hard!

Method 2: Difference-in-Means
* Ignore covariates, pretend the model is
Wi=pfgxli+eli

Throwing information away as noise!
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Our approach

« Use information in the covariates
« Don’t try to do prediction
« Strategically assign signals

DR | | —imp
Sign Linear Regression act
. Least Squares .
iy, o (LesstSaaes) o
es
er Of

Assigqfﬁlg DA signals allows us to tradeoff  £pyp

betw&é the estimation of the two types of 47/,

parafféters tes
n
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Variance of Estimator

yi = Bx; + ’}"Tz; + E;.

* Running linear regression, the variance of the
estimator of beta is given by

Var (3) S—

x! Px

2

Where
P=1-Z(Z'Z)"'Z
X : vector of DR signals
Z . matrix of covariates
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Optimization Problem

0_2

minimize Var [ = = maximize x'Px
x | x' Px x

subject to Z;l?g =k Limited signals subject to Z.z, =k

i=1 i=1

x; € {1,0}. x; € {1,0}.

* Non-trivial problem:
— Non-convex, binary variables

* Is it worth solving? How to solve it?

44 Random
@, | assignment
G
~ 4
3.8
50 100 150 200
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Optimal Assignment w

* A lower bound: No strategy can achieve a better
reduction in variance than 1 /7

 Two questions:

— Can we achieve this rate? . .
Yes, there exist an assignment

_ ici ?
Can we solve the problem efficiently” Yes. relaxation

Look at rate first
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Best Rate w

2

C e . A a
minimize Var [ = —
x x'Px

subject to in =k

x; € {1,0}.

* Result: There exist a solution such that Var(f)
scales as 1/7, as long as <7 and k£/n >¢, for some
fixed €

« Contrast: If x4/ are randomly assigned, then then
Var(f) stays constant if Zis close to 7, for all values
of £
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Example

« Synthetic data:

4 - e e

€

—Random assignment

5 —-\_—’_\/\—’(itima] assignment

~
0

Var 3

50 100 n 150 200
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Achieving Optimal Rate W

vi = Bx; +TTE’3+ £

Dimension &

 Look at the extreme case where d=7—1, hardest
case to learn £

* Quantity of interest: x77 Px
* P is a projection matrix:

P=1-2ZZ"2)7'2" = yy™, Z'y =0, [ly|>=1

Goal: maximize

]
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Null Space

W

« Assume Z has random Gaussian entries, is n by d-1
null(ZT7 ). has a basis with i.i.d. Gaussian entries
¥. normalized version

 Maximize (xT7 )12 = xdi ydi )T2
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Extreme Case w

Max (xT7 y)T2

* The information from each
signal is not equal

« Strategically assign to get
the maximum information

Histogram of the elements in y

Frequency

The optimal algorithm is easy

 Find y

o Sort: yT(1) >y7(2) >..>yT(n)

* Assign x=1 to the largest £ elements

Rate is zas long as 4/n>¢
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Example

« Synthetic data: d=n-1, k/n=1/3

4 - e — e e —

€

—Random assignment

5 —\—r\:ﬁma] assignment

~
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General Settings

maximize x' Px
I

'
subject to Z.L, =k
i=1

€T € {],U}.

This is actually a graph partition problem:

There is a SDP relaxation with provable gaps
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Quality of Solution

Gaussian Entries Uniform Entries
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Some Real Data

* A hotel in Seattle, with at most 48 covariates

Including outside temperature, zonal temperature,
heating, appliance, etc...

« Train a regression model based on all the data, then
simulate DR

— We can test the impact of covariate dimensions
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Estimation Error w

* Fix n=50, varying d Fix d, varying n
Random \Random
; T~ Optimal

* Trying to conduct some ftrials
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Online Setting w

« We have considered the offline problem

maximize z' Pz
H

T
subject to Z:z:.,; =k
i=1

x; € {1,0}.

* Online Setting: approximate P in an online fashion

« Some preliminary results
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Conclusion w

« An optimal treatment assignment strategy in the
context of demand response

— It is possible to learn under unfavorable conditions

« Future work:
— Online algorithm
— Other response models
— Learning and optimizing
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SDP Relaxation w

l ~ a
maximize :_ETPQ[: ] ' maxXifgize 7 Z Z Pi(1+ & + i+ Xij)
N xJdi=2xli—1 L
" > subject to Z T =2k —n
subject to Z]::I:,; =k X=0 o
1=1
X, ;= (2k —n)?
xr; € {]’U}_ ZZ g = n)

~T
[], T ] = 0.
r X

« There is a randomized algorithm to recover a feasible
solution x

Can show

Elrecovered solution]/SDP =const
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Challenges w

Three challenges in estimating the impact of DR:

1. The counterfactual is not observed: what would have
happened if the opposite was done?

2. There are many other exogenous factors
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