

Probabilistic N-k Vulnerability Analysis for Power Systems

Kaarthik Sundar

advanced network science initiative (ansi)

Joint work with Carleton Coffrin, Harsha Nagarajan, and Russell Bent

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Outline of the talk

- Introduction to the deterministic N-k problem
- Probabilistic variant
- Challenges
- Formulation
- Algorithm outline
- Preliminary computational results
- Possible extensions (work under progress)

Deterministic N-k problem

- Given: Transmission system and value of k
- Find: A set of k components
- Objective: Removal of these k components maximizes the minimum damage to the system
- Constraints: Physics of the transmission systems (power flow and physical limits)
- Damage measured in terms of load shed

An alternate interpretation

- Bi-level Stackelberg game
- Attacker-defender model
- Attacker chooses k components
- Defender reacts optimally to minimize damage
- N-k problem: Attacker's view point find optimal attack
- Network interdiction/inhibition, vulnerability evaluation problem

Probabilistic variant

- Each component is associated with probability of failure p_i
- Assumption: the probabilities are independent
- Probability of an N-k failure $p = p_1 \times p_2 \times \cdots \times p_k$
- Damage given by $p \times Load$ shed

Challenges

- Number of possible solutions is N choose k
- For each solution we have to solve a power flow problem
- Power flow physics is non-convex
- Bi-level mixed integer non-linear problem

Literature

- Other applications: critical infrastructure, general capacitated flow networks K.
 Wood, G. Brown, et. al; deterministic and stochastic versions
- Stochastic versions for transportation models Cormican et. al (1998)
- Deterministic problem with DC approximation for power flow Samleron et. al (2006)
- Many heuristic ranking schemes for flow based systems, capacity based algorithms
 Qiang et. al (2008), A. Pinar et. al (2010)
- Bi-level formulations and algorithms for the deterministic problem Samleron et. al (2009) and Arroyo et. al (2005)
- Min-cardinality version and Non-linear continuous version Bienstock et. al (2010)
- Non-Linear continuous version modify resistance of lines to maximize overload of any line

Goals of the current work

- Use more accurate representations for the physics and address the resulting computational challenges for the deterministic version of the problem
- Extension of the algorithms to probabilistic version; Does this break the algorithm?
- How different are the results when using more accurate models for physics of power flows; does it really matter, are current DC based models sufficient; under what conditions do the results diverge from each other?
- Case studies and detailed analysis

Work in progress

Problem formulation (deterministic variant)

max η where,Outer problemN-k failures η := Minimumload shed for the N-k failuresubject to power flow constraints andgeneration, line thermal capacity limits

Inner problem

Outer problem has binary variables

Inner problem has continuous variables and non-linear non-convex constraints

Bi-level, mixed-integer non-linear, non-convex problem

Inner problemmin :
$$\sum_{i \in N} \Re(S_i^d)(1-\ell_i)$$
 s.t.,Total load shed $v_i^l \leq |V_i| \leq v_i^u \ \forall i \in N,$ $Voltage, generation and thermal limits $S_i^{gl} \leq S_i^g \leq S_i^{gu} \ \forall i \in N,$ $Voltage, generation and thermal limits $|S_{ij}| \leq s_{ij}^u \ \forall (i,j) \in \mathcal{E}_s,$ AC -power flow $\theta^{\Delta I} \leq \angle V_i V_j^* \leq \theta^{\Delta u} \ \forall (i,j) \in \mathcal{E}_s,$ and $\Theta^{\Delta I} \leq \angle V_i V_j^* \leq \theta^{\Delta u} \ \forall (i,j) \in \mathcal{E}_s,$ and $0 \leq \ell_i \leq 1 \ \forall i \in N.$ P hase angle limits$$

First naive algorithm

- Enumerate all N-k failure scenarios
- For each failure scenario, solve the inner problem
- Pick the N-k failure scenario with maximum inner problem objective value
- Two issues: Enumeration and solving inner problem

Relaxations to the rescue!

SDP: Semi-Definite Programming

QC: Quadratic Convex

SOC: Second-Order Cone

Coffrin et. al (2016) - set sizes are for illustration and not to scale Relaxations can be solved to optimality by off-the-shelf commercial and open-source solvers

Cutting-plane algorithm

```
solve the relaxed problem: \eta^* \leftarrow \max_{N-k \text{ failures}} \eta
```

```
s^* \leftarrow \text{optimal N-k failure to relaxed problem}
```

```
upper bound = \eta^*
```

lower bound = minimum load shed for s^*

while $gap > \varepsilon$ do

```
add a cut to the relaxed problem using solution to minimum load shed for s^* resolve relaxed problem with cut and set \eta^* as the objective
```

```
s^* \leftarrow \text{optimal N-k failure to relaxed problem}
```

```
upper bound = \eta^*
```

```
lower bound = minimum load shed for s^*
```

end

Generating the cut

- Notations: for each line i, x_i is a binary variable which takes a value 1 if line fails, 0 otherwise
- Relaxed problem $\eta^* := \max \eta$ s.t. $\sum_i x_i = k$
- Minimize the load shed for the optimal N-k failure for the relaxed problem
- Let p_i denote the real power flowing through line i

• Cut:
$$\eta \leq \eta^* + \sum_i p_i x_i$$
 (is not necessarily valid -
Braess' paradox)

Extension to probabilistic case

- Each component is associated with probability of failure p_i
- Assumption: the probabilities are independent
- Probability of an N-k failure $p = p_1 \times p_2 \times \cdots \times p_k$

 $\begin{array}{ll} \max_{N-k \text{ failures}} (\text{probability of } N-k \text{ failure}) \cdot \eta \\ \eta := \text{Minimum load shed for the } N-k \text{ failure} \\ \text{subject to power flow constraints and} \\ \text{generation, line thermal capacity limits} \end{array} \qquad \begin{array}{ll} \text{Outer problem} \\ \text{Inner problem} \\ \text{Inner problem} \\ \end{array}$

Convexification of the problem

subject to power flow constraints and Relaxation generation, line thermal capacity limits

Cutting plane algorithm carries over without changes

Preliminary computational results

- Test case: IEEE RTS96 one area and three area systems - has line failure rates
- IEEE 14 bus system to compare enumeration results with cutting plane heuristic
- DC vs SOC relaxation (computation time)

Optimality gap for small instances

- Cutting plane heuristic converges to optimal solutions for the test cases IEEE RTS96 one area and IEEE 14 bus test systems for k values {2,3,4}
- Checked against total enumeration
- Convergence in less than 30 iterations for all values of k
- For larger instances, enumeration becomes difficult

Computation time - deterministic

Computation time - stochastic

Work under progress

- Develop algorithms for estimating upper bounds on the optimal solution
- When do we need to use these relaxations instead of DC approximation for the AC power flow physics?
- Topology and capacity based heuristics to compute lower bounds
- AC feasibility analysis
- Scalability studies

Thank you ! Questions?