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Outline of the talk

- Introduction to the deterministic N-k problem

- Probabilistic variant

- Challenges

- Formulation

- Algorithm outline
- Preliminary computational results

- Possible extensions (work under progress)



Deterministic N-k problem

- Given: Transmission system and value of k
+ Find: A set of k components

- Objective: Removal of these k components
maximizes the minimum damage to the system

+ Constraints: Physics of the transmission systems
(power flow and physical limits)

- Damage - measured in terms of load shed



An alternate interpretation

- Bi-level Stackelberg game

- Attacker-defender model

- Attacker chooses k components
- Defender reacts optimally to minimize damage
- N-k problem: Attacker’s view point - find optimal attack

- Network interdiction/inhibition, vulnerability
evaluation problem



Probabilistic variant

- Each component is associated with probability of
failure pi

- Assumption: the probabilities are independent
- Probability of an N-k failure p = p1 X p2 X -+ X pg

-+ Damage given by p X Load shed



Challenges

- Number of possible solutions is N choose k

+ For each solution we have to solve a power flow

problem

- Power flow physics i1s non-convex

- Bi-level mixed integer non-linear problem



Literature

- Other applications: critical infrastructure, general capacitated flow networks - K.
Wood, G. Brown, et. al; deterministic and stochastic versions

- Stochastic versions for transportation models - Cormican et. al (1998)

Deterministic problem with DC approximation for power flow - Samleron et. al
(2006)

- Many heuristic ranking schemes for flow based systems, capacity based algorithms
- Qiang et. al (2008), A. Pinar et. al (2010)

Bi-level formulations and algorithms for the deterministic problem - Samleron et.
al (2009) and Arroyo et. al (2005)

- Min-cardinality version and Non-linear continuous version - Bienstock et. al (2010)

Non-Linear continuous version - modify resistance of lines to maximize overload
of any line



Goals of the current work

- Use more accurate representations for the physics and
address the resulting computational challenges for the

deterministic version of the problem

- Extension of the algorithms to probabilistic version; Does
this break the algorithm?

- How different are the results when using more accurate
models for physics of power flows; does It really matter,
are current DC based models sufficient; under what
conditions do the results diverge from each other?

- Case studies and detailed analysis

Work In progress



Problem formulation (deterministic variant)

max n where, Outer problem

N-k failures

n := Minimum load shed for the N-k failure
subject to power flow constraints and

generation, line thermal capacity limits

Outer problem has binary variables

Inner problem has continuous variables and
non-linear non-convex constraints

Bi-level, mixed-integer non-linear, non-convex problem



Inner problem
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First naive algorithm

- Enumerate all N-k failure scenarios

- For each failure scenario, solve the inner problem

- Pick the N-k failure scenario with maximum inner

problem objective value

+ Two Issues: Enumeration and solving inner
problem



Relaxations to the rescue!

SDP: Semi-Definite Programming

QC " soc
QC: Quadratic Convex
( SOC: Second-Order Cone
—

Relaxations can be solved to
Coffrin et. al (2016) - set optimality by off-the-shelf
sizes are for illustration .
and not to scale commercial and open-source

solvers



Cutting-plane algorithm

solve the relaxed problem: n* < maXy- faitures 11

s* « optimal N-k failure to relaxed problem

upper bound = n*

lower bound = minimum load shed for s*

while gap > € do

add a cut to the relaxed problem using solution to minimum load shed for s*
resolve relaxed problem with cut and set n* as the objective

s* « optimal N-k failure to relaxed problem

upper bound = n*

lower bound = minimum load shed for s*

end
LB Optimal solution Ufz UB1
4 P

, So S1
wrate cut /

compute LB+ inner problem




Generating the cut

- Notations: for each line |, X;is a binary variable
which takes a value 1 If line fails, 0 otherwise

- Relaxed problem n*:=maxn st Z X; =k
i

- Minimize the load shed for the optimal N-k failure
for the relaxed problem

- Let pi denote the real power flowing through line |

. Cut: n<n+ ZP’X" (is not necessarily valid -
,- Braess' paradox)



Extension to probabilistic case

Each component is associated with probability of
failure p;

- Assumption: the probabilities are independent

Probability of an N-k failure p = p1 X p2 X+ X pg

max  (probability of N-k failure) -

N-k failures

n := Minimum load shed for the N-k failure
subject to power flow constraints and

generation, line thermal capacity limits



Convexification of the problem

1
3 xi = y < p+log(n®) + —(n—n*) V(p*,n")
/ n

y < p+logn, Additional concave constraint
n := Minimum load shed for the N-k failure

subject to power flow constraints and  Relaxation

generation, line thermal capacity limits

Cutting plane algorithm carries over without changes



Preliminary computational results

- Test case: IEEE RTS96 one area and three area

systems - has line failure rates

- |EEE 14 bus system to compare enumeration
results with cutting plane heuristic

- DC vs SOC relaxation (computation time)



Optimality gap for small instances

- Cutting plane heuristic converges to optimal
solutions for the test cases IEEE RTS96 one area
and |IEEE 14 bus test systems for k values {2,3,4}

- Checked against total enumeration

- Convergence In less than 30 iterations for all
values of k

- For larger instances, enumeration becomes
difficult



Computation time - deterministic
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Computation time - stochastic

time taken (seconds)
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Work under progress

- Develop algorithms for estimating upper bounds on
the optimal solution

- When do we need to use these relaxations instead of

DC approximation for the AC power flow physics?

- Topology and capacity based heuristics to compute
lower bounds

- AC feasibility analysis

- Scalability studies



Thank you ! Questions?



