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Outline of the talk

• Introduction to the deterministic N-k problem 

• Probabilistic variant 

• Challenges 

• Formulation 

• Algorithm outline 

• Preliminary computational results 

• Possible extensions (work under progress) 



Deterministic N-k problem

• Given: Transmission system and value of k 

• Find: A set of k components  

• Objective: Removal of these k components 
maximizes the minimum damage to the system 

• Constraints: Physics of the transmission systems 
(power flow and physical limits) 

• Damage - measured in terms of load shed



An alternate interpretation

• Bi-level Stackelberg game 

• Attacker-defender model  

• Attacker chooses k components 

• Defender reacts optimally to minimize damage 

• N-k problem: Attacker’s view point - find optimal attack 

• Network interdiction/inhibition, vulnerability 
evaluation problem



Probabilistic variant

• Each component is associated with probability of 
failure  

• Assumption: the probabilities are independent 

• Probability of an N-k failure  

• Damage given by

pi

p = p1 ⇥ p2 ⇥ · · · ⇥ pk

p ⇥ Load shed



Challenges

• Number of possible solutions is N choose k 

• For each solution we have to solve a power flow 
problem 

• Power flow physics is non-convex  

• Bi-level mixed integer non-linear problem



Literature

• Other applications: critical infrastructure, general capacitated flow networks - K. 
Wood, G. Brown, et. al; deterministic and stochastic versions 

• Stochastic versions for transportation models - Cormican et. al (1998) 

• Deterministic problem with DC approximation for power flow - Samleron et. al 
(2006) 

• Many heuristic ranking schemes for flow based systems, capacity based algorithms 
- Qiang et. al (2008), A. Pinar et. al (2010) 

• Bi-level formulations and algorithms for the deterministic problem -  Samleron et. 
al (2009) and Arroyo et. al (2005) 

• Min-cardinality version and Non-linear continuous version - Bienstock et. al (2010) 

• Non-Linear continuous version - modify resistance of lines to maximize overload 
of any line



Goals of the current work

• Use more accurate representations for the physics and 
address the resulting computational challenges for the 
deterministic version of the problem 

• Extension of the algorithms to probabilistic version; Does 
this break the algorithm? 

• How different are the results when using more accurate 
models for physics of power flows; does it really matter, 
are current DC based models sufficient; under what 
conditions do the results diverge from each other? 

• Case studies and detailed analysis

Work in progress



Problem formulation (deterministic variant)

max
N-k failures

⌘ where,

⌘ := Minimum load shed for the N-k failure
subject to power flow constraints and
generation, line thermal capacity limits

Outer problem

Inner problem

Outer problem has binary variables 

Inner problem has continuous variables and 
non-linear non-convex constraints

Bi-level, mixed-integer non-linear, non-convex problem
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First naive algorithm

• Enumerate all N-k failure scenarios 

• For each failure scenario, solve the inner problem 

• Pick the N-k failure scenario with maximum inner 
problem objective value 

• Two issues: Enumeration and solving inner 
problem



Relaxations to the rescue!

Coffrin et. al (2016) - set 
sizes are for illustration 
and not to scale

SDP: Semi-Definite Programming 

QC: Quadratic Convex 

SOC: Second-Order Cone 

Relaxations can be solved to 
optimality by off-the-shelf 

commercial and open-source 
solvers



Cutting-plane algorithm

solve the relaxed problem: ⌘⇤  maxN-k failures ⌘
s⇤  optimal N-k failure to relaxed problem
upper bound = ⌘⇤

lower bound = minimum load shed for s⇤

while gap > " do
add a cut to the relaxed problem using solution to minimum load shed for s⇤

resolve relaxed problem with cut and set ⌘⇤ as the objective
s⇤  optimal N-k failure to relaxed problem
upper bound = ⌘⇤

lower bound = minimum load shed for s⇤
end

Optimal solution UB1LB1

s1

compute LB1: inner problem

generate cut

UB2

s2



Generating the cut 

• Notations: for each line i, xi is a binary variable 
which takes a value 1 if line fails, 0 otherwise 

• Relaxed problem 

• Minimize the load shed for the optimal N-k failure 
for the relaxed problem 

• Let pi denote the real power flowing through line i 

• Cut: 
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(is not necessarily valid - 
Braess’ paradox)



Extension to probabilistic case

• Each component is associated with probability of 
failure  

• Assumption: the probabilities are independent 

• Probability of an N-k failure 

pi

p = p1 ⇥ p2 ⇥ · · · ⇥ pk

Outer problem

Inner problem

max
N-k failures

(probability of N-k failure) · ⌘

⌘ := Minimum load shed for the N-k failure
subject to power flow constraints and
generation, line thermal capacity limits



Convexification of the problem

Additional concave constraint

Relaxation

y 6 p + log(⌘k ) +
1
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Cutting plane algorithm carries over without changes
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y  p + log ⌘,
⌘ := Minimum load shed for the N-k failure
subject to power flow constraints and
generation, line thermal capacity limits



Preliminary computational results

• Test case: IEEE RTS96 one area and three area 
systems - has line failure rates 

• IEEE 14 bus system to compare enumeration 
results with cutting plane heuristic 

• DC vs SOC relaxation (computation time)



Optimality gap for small instances

• Cutting plane heuristic converges to optimal 
solutions for the test cases IEEE RTS96 one area 
and IEEE 14 bus test systems for k values {2,3,4} 

• Checked against total enumeration 

• Convergence in less than 30 iterations for all 
values of k 

• For larger instances, enumeration becomes 
difficult



Computation time - deterministic
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Computation time - stochastic
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Work under progress

• Develop algorithms for estimating upper bounds on 
the optimal solution 

• When do we need to use these relaxations instead of 
DC approximation for the AC power flow physics? 

• Topology and capacity based heuristics to compute 
lower bounds  

• AC feasibility analysis  

• Scalability studies



Thank you ! Questions?


