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Things I will go over

• Power Grid
• Issues and approach

• Model Fundamentals: Static and Dynamic

• Power flows
• Graphical Model

• Topology Learning in Radial and Loopy Grids

• Extensions & Future Work



Power Grid



Grid Types

Radial/Tree Interconnected/Meshed



Grid ‘Operational’ Structure

Substation Load Nodes

• Underlying Loopy network

• Switches/Relays decide structure

Learning Problem:

• Estimate Configuration of Switches/Relays



Power Grid: Structure Learning

• Uses:

• Real time control  

• Failure Identification

• Optimizing flows

• Challenge: 

• Limited real-time breakers

• Brute Force inefficient

• Solution
• Smart meters: PMUs, micro-PMUs, 

IoT
• Big Data: High fidelity measurements 



Similar Approaches

• Power Systems based: 

• Flow equations

• Regression, Relaxation

• Reno et al, Rajagopal et al, 
Annaswamy et al

• Machine Learning based:

• Empirical evidence based

• Clustering, Greedy approaches

• Bolognani et al, Arya et al, Deka 
et al., Rajagoapal et al, Low et al

• This Talk:

– Probabilistic Graphical Model for nodal voltages 



Similar Approaches

• Power Systems based: 

• Flow equations

• Regression, Relaxation

• Reno et al, Rajagopal et al, 
Annaswamy et al

• This Talk:

– Probabilistic Graphical Model for nodal voltages 

– Advantage: 

– Provable results

– No knowledge of parameters or injections

– Incorporates Dynamics

• Machine Learning based:

• Empirical evidence based

• Clustering, Greedy approaches

• Bolognani et al, Arya et al, Deka 
et al., Rajagoapal et al, Low et al



Learning Regime

Probabilistic Graphical Model for the nodal voltages 

– Static Regime: Power Flow Equations

– Dynamic Regime: Swing Equations



Static Regime: AC power flow
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(active and reactive power)

(line impedances)

(voltage phase and magnitude)

• Relaxation:  One-one map from injections to voltages 

Flow on line function of voltages



• DC power flow: 

Power Flow: Lossless Relaxations
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wt. reduced Laplacian matrix

• Linear-Coupled (LC) power flow: 

• LinDist flow (Baran-Wu): (radial networks)



Probabilistic Distribution of Nodal Voltages

• Distribution of injections:

• Assumption :  Injection fluctuations are independent

voltages Injections
• Distribution of voltages:

Jacobian



• Graphical Model: Graphical Factorization of Distribution

– Nodes represent variables

– Neighbors give conditional independence from all others

Graphical Model of Nodal Voltages
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Graphical Model of Nodal Voltages

• Graphical Model: Graphical Factorization of Distribution

– Nodes represent variables

– Neighbors give conditional independence from all others

– Separator sets make disjoint groups conditionally independent
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Graphical Model of Nodal Voltages

• Distribution

Topology Graphical Model

• If Jacobian             is separable:

• Graphical Model : Topology Edges + 2-hop neighbors
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Graphical Model of Nodal Voltages

• Distribution

• Proof:

– Factorize

– Terms including node f

• If Jacobian             is separable:

• Graphical Model : Topology Edges + 2-hop neighbors
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Graphical Model  Topology estimation

• Distribution

• How to distinguish true edges??
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Graphical Model  Topology estimation

• Radial Grids : Separation Possible

Topology
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Graphical Model

Only topology edges are separators  

(PSCC 2016)



• Radial Grids : Separation Possible
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Graphical Model  Topology estimation

Topology
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• Radial Grids : Separation Possible
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Graphical Model  Topology estimation

Topology
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Previously…..

– Separator sets make disjoint groups conditionally independent
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• Learn the intermediate edges (not connected to leaves)

Structure Learning Algorithm 
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Conditional Independence test

• Learn edges to leaves using known edge pairs.

Additional information needed:

• None (no impedance/injection statistics)

• No knowledge of distribution type



Structure Learning Algorithm: Computation
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Computational Complexity: 

• conditional probability checks (all edges permissible)  

Complexity of conditional probability test:

• Discrete complex voltages: 

• Continuous voltages:

• Kernel based non-parametric checks

• Hilbert-Schmidt norm for covariance

• Independent of Network Size



• Inverse covariance gives graphical model

• Learn the graphical model directly:  Graphical Lasso, Lasso etc.

• Find true edges by separation tests

Special Case: Gaussian random variables
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Simulations

No. of samples (x 100)
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Not Really 

Use DYNAMICS!!

What about loopy grids??

• Separation Results do not hold …. hence not possible

• How to distinguish true edges??
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Topology Graphical Model



Dynamic Regime: Swing Equations

• Frequency

• Inertia (M) and Damping (D) from synchronous 

machines.

• Stochastic noise

Net power imbalanceDynamics of phase angles
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• Fluctuations due to ambient noise in injections:



• Noise Model:

– Stochastic Wide-Sense Stationary (WSS)

– Uncorrelated 

– Diagonal Power Spectral Density:  

Linear Dynamical System for Swing Equations

• Swing Equations in z-domain:
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Linear Dynamical System for Swing Equations

• Swing Equations in z-domain:
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• Measurements: 

Time-series of phase angle dynamics



• Wiener Filter: 
(Wiener, Kolmogorov ,1950)

• Solution:

• Optimal non-causal projection

• Related to Power-Spectral density and transfer function

• Computation Complexity:  

Wiener Filter for phase angles



Wiener Filter for phase angles

• Wiener Filter: 

• Solution:

Wiener Graph of phase angles:  for non-zero Wiener coefficients

𝑎

𝑐

𝑏

𝑑

𝑒

𝑓

𝑎

𝑐

𝑏

𝑑

𝑒

𝑓

Topology Wiener Graph



Wiener Graph for phase angles

• Two-hop neighbors are edges

• Topology Estimation for radial networks:  

– Use separability tests on Wiener graph

– ACC 2017 (submitted)
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Wiener Graph for phase angles

• Topology Estimation for loopy networks??

• Use information in the Wiener coefficients:

– function of frequency

– Not scalar (different from scalar models)
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• Topology Estimation for loopy networks??

• Use information in the Wiener coefficients:

• Doesn’t depend on noise model

Pruning Result:  Phase Response of complex Wiener coefficient              
is constant for spurious edges between two-hop neighbors

Wiener Graph for phase angles
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• Edge pruning Example: 

Wiener Graph for phase angles



Simulations



• Radial networks (Static Case):

– 3 phase unbalanced network

Extensions
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• Loopy networks (Dynamic Case):

– General Linear Dynamical Systems with directed/undirected 
edges

– Change Detection of networks 

Future Questions:

• Sample Optimal Wiener Filter :  Regression?? Lasso??

• Presence of hidden nodes: order based separation

• Higher order control, AC flow equations in dynamics? 

• Effect of sampling frequency

• Parameter estimation

Extensions



Thank You

Questions!



• 3 phase Linear Coupled power flow model:

Every block is a diagonal matrix
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Extensions - 3 phase unbalanced network:


