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Talk outline

e Optimization framework for using storage to offset uncertainty in renew-

able forecast output
e “OPF-like” setup: minimize cost of generation
e Multiperiod model, with per-period renewable forecasts
e linear control for battery output
e nonconvex model for battery operation

e robust optimization used to handle forecast errors



Broader goal: dealing/using risky injections
e At some buses: controllable injections (e.g. generation) or known loads
e At some buses, uncontrollable (uncertain or adversarial) injections
e At other buses: controllable injection used to mitigate risk

e Multi-time period and ‘OPF-like”: minimize cost subject to being able to

react to any (uncontrollable) event in each time period
e Three-level (not bilevel) optimization problem over multiple periods

e NP-hard in strong sense even for simple trees and one time period



Control setup outline

1. T time periods of equal length A. Assume A = 1.

2. P " — output of generator at bus k at time ¢ (decision variable)

t

3. w! + w! = output of renewable at bus < at time t.

w; = forecast, w! = error (uncertain).

4. Control used to set battery output; applied as a function of observations

of the w.
5. w! estimated at start of period t.

6. Control held constant during period t.

7. Control does not handle additional real-time deviations.



A simple example on 2 periods

G = generator, L = load, B = battery, W = renewable
20
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e Period 1: each renewable outputs 20, no uncertainty:.
e Period 2: cach renewable outputs in the range [0, 20].

e Battery and generator are large, but battery starts drained.



e Period 1: each renewable outputs 20, no uncertainty.

e Period 2: each renewable outputs in the range [0, 20].
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Notation
1. T time periods of equal length A. Assume A = 1 for this talk.
2. P2* = output of generator at bus k at time t (decision variable)

3. w! + w! = output of renewable at bus < at time t.
w! = forecast, w! = error (uncertain).

4. 5;’. = output of battery at bus 7 at time t.
Assumption: all batteries at a given bus 7 are of similar type.

5. P,f " — load at bus k at time ¢ (data).
6. DC power flow — for all ¢, and all w,

MRy (w4 wh) + Y 6 =) P
i J k

k



1. T time periods of equal length A. Assume A = 1 for this talk.
2. P b — output of generator at bus k at time ¢ (decision variable)

3. ’u_Jf + w! = output of renewable at bus % at time ¢. fu_),f = forecast,

HE
w! = error (uncertain).

4. (5;. = output of battery at bus 7 at time t.

5. PY* = load at bus k at time ¢ (data).

6. For all ¢, and all w, >, Pkg’t + Y (ol + wh) + Zj 5}? =3, p}jat

Generic linear control:

t t
5j — g Aji W,
P
e \: decision variables

e Complex? Requires many (accurate?) real-time observations



1. T time periods of equal length A. Assume A = 1.
2. P b — output of generator at bus k at time ¢ (decision variable)

3. ’u_Jf + w! = output of renewable at bus % at time ¢. fu_J,f = forecast,

HE
w! = error (uncertain).

4. (5;. = output of battery at bus 7 at time t.

5. PY* = load at bus k at time ¢ (data).

6. For all ¢, and all w, >, Pkg’t + Y (ol + wh) + Zj 5}? =3, p}jat

Specialized linear control:

5;:—)\32 w;

i€R(j)
° )\;: decision variables

e R(7): set of buses that battery at j responds to



1. T time periods of equal length A. Assume A = 1.

2. P?' = output of generator at bus k at time ¢ (decision variable)

3. lfjf + ’wf = output of renewable at bus 2 at time t. wf = forecast, wf = error (uncertain).

4. 5;’. = output of battery at bus 7 at time t.

5. P = load at bus k at time ¢ (data).

6. For all ¢, and all w, ), P,f’t + > (Wl + fwf) 4 Zj 5;@ -3, P]gl,t
Specialized linear control:

¢
0 = =X ) wi
i€R(j)
o )\;: decision variables

e R(j): set of buses that battery at j responds to

Example 1: (bad?) abattery at cach renewable, R(3) = 3
for all 5

Example 2: for all j, R(j7) = all renewables

Regardless of control, nominal case: must hold

SRS IED W
k v k



Balance: 30 P + ¥i(wf+ w)) + X;0) = S B

h N g7t —t _ dvt
Nominal case: § kPk + E J W, = E kPk
. . . t t t
(Generic linear control: ¢ ;= § ’é)\z' i W,

Rewrite balance:

SLAEDIED M EEDBVE LI B 3
k i ; ;

Together with nomimal case, implies:

¥ [(1-55;2%) wi] = o




Balance: 33, P + Xw)+ wh) + 3200 = 3, B
Nominal case: Zk P]g’t T ZZ wf _ Zk P,f’t

ic li . ot = N
Generic linear control: 53- = — > )‘ij w!

Rewrite balance:

SLAEDIED M EEDBVE LI B 3
k i ; ;

Together with nomimal case, implies:
t t|
(-5, o] = o

“Full dimensional” uncertainty set =

D )\;i = 1 forall 7 (and ¢)



Balance: 30 P + ¥i(wf+ w)) + X;0) = S B

Nominal case: ) P]g’t + 5 u—jg =5 Plgl,t

Specialized linear control: 5;’. = — )\j;- D i R(j) fwf

Rewrite balance:

%:P,f’“rwaJrZ - Y A Wt =Y P
[/ [/

Ji€R()) k

Together with nomimal case, implies:

t t _
ji€R(j)
“Full dimensional” uncertainty set =

> jiieR(j) Ny = Llforall 4 (and t)
Sign of At ?



Battery model

e [inergy state bounds. Let Eg = initial energy state of battery
at site 7. Then

t
t _ 0 h
E! = Ej + A) &)
h=1

is the energy state at the end of period t. (A = length of
time periods)
Must have lower- and upper-bounds on E;

e Special bounds for Ef?

e Discharge rate bounds. We will want to lower- and upper-

bound
t _ it t t
0j = Dj — A Z Wi
i€R(j)
for all batteries 2, time ¢ and all w.



Battery chemistry is complex. Traditional model:

1.0 < "77;0 <1 0< ng < 1: charging, discharging efliciency
for battery 2

2.1f we inject electrical power D; > 0 into battery <,
energy state increases by 777;CD7:

3. If we extract electrical power G; > 0 from battery ¢,
energy state decreases by (ngl)_lGi

4. Summary: if the electrical power injection into bat-
tery 2 is P;, energy state changes by

(=) R+ IPT
5. A nonconvex model: if Pj; is a decision variable, must

enforce
Pl [P]T =0



Piecewise-constant battery efficiency model

C(X) =charge (similar picture for discharging)

™

starting state

ending stafe

1

Ye
min / electrical

E 3 energy input e
o b
e. e (=1) e
0 1 C(y K

e Slope = charge (or discharge) efficiency



max

E -
- -
\ ending state
/ starting state
2
min | electrical
E ¢ 7 energy input .
o e .

! 1 K-1 | X

e, e 1 ¢ e

0 1 cw K

e Constraint: if the battery charge lies in some interval

[Cles), Clest1)]
then can inject charge at most

os (= slope) per unit time

e Generalizes traditional constraint

e But very nonconvex



Renewable forecast error model

Should we rely on chance-constrained models?



Renewable forecast error model

Should we rely on chance-constrained models?

Suppose that x(t), t = 1,2,...,T is a stochastic process:

e Even if we understand each a(t) well enough to provide tail
probabilities ...



Renewable forecast error model

Should we rely on chance-constrained models?

Suppose that x(t), t = 1,2,...,T is a stochastic process:

e Even if we understand each a(t) well enough to provide tail
probabilities ...

e Partial sums Zle x(t) are a different story

Except e.g. in the gaussian case



Renewable forecast error model

t

Output of renewable 2 at time ¢: u_J,'L-5 + w;

o ’u_),f = forecast output

o fw,’g = error; w € W, where W = uncertainty model.

Concentration models: W is the set of all w such that
Clw™ + C*w™ < b, (1a)
Wi < wh, < wyy . forallt and k, (1b)

e C1, C? are nonnegative matrices
o b, w™M, wMa: parameters of model
e Caution! (1a) is not a linear model

e Allows for spatial and temporal correlation



Renewable forecast error model

Output of renewable 2 at time ¢: ’u_J,'L.5 -+ w,’f
_t .
e w; = forecast output

o fw,'g = error; w € W, where W = uncertainty model.

Special example: uncertainty budgets

wh < A% alltand i
> afwi] < T allt
1

Here, the 'y,f, a',g and Tt are parameters.
Extra special case: af: =1/ 'y,f

Many variations, e.g. time-correlated models

Sallwll <1 YOS alwl] < T
t it



Optimization Problem

Minimize generation cost subject to being feasible under all
modeled renewable outputs.

e Variables: P9, A (both time-indexed)

e Constraints: feasibility for all w € W (soft-robustness for
lines)



Optimization Problem
: t N
min g g ck(P]g )
PIN L

s.t. the following system is feasible at all times ¢, for all w € W:

Flow balance:
bat&eries

reneyablesr

t _ pgt ot t t |\t  pdt

BOt = P9t + w4+ w Zwi)\ P
7

N\

Energy state constraints
Hard (?) line limits:

ot — 0!
%% m|§ukakm,t
Lkm
Soft line limits are equally tractable and might be

preferred



Soft line limits

Let W" and ‘W be two uncertainty models with WwWh CW

e Require that
ot — ot
‘ k m’ <

> Ukm

Lhm,
for all km, tand w e Wh

e Require that
| 6}, — 65l

Lkm
for all km, t and w € W

< ukm(l + 6)

Ben-Tal, Boyd, Nemirovski, “Comprehensive Robust” models
(2005)



(Familiar?) cutting-plane procedure

Start with a relaxation for the robust problem, e.g. the nom-
inal problem (no errors), and then

1. Solve relaxation, with solution (P9%, A*)

2. Play adversary: find a worst-case distribution o for
X *
(PI*, A%)
Comment: Requires solving small LPs

3. Procedure detects if a battery constraint (or line limit con-
straint) is violated.

4. 1f so — add corresponding cut (a disjunctive cut).

5. Else if the adversary fails, (P9*, A\*) is optimal



Adversarial procedure, batteries

Concentration models for renewable uncertainty:

W is the set of all w such that
Clw™ + C%uw™ < b,
wp ' < wz < wpy™ forall t and k

e C1, C? are nonnegative matrices



What is the problem?

Already in “simple” charge/discharge efficiency model, want for all k£ and t,

( _ _ - )
t

d \— X
A{Eé%{ Z)\kz — ()™ Zw;z + M Z’wﬁz o < By — B,
J

1=1 ]
\ - = J
and
( _ - _ -+ 3\
t
. d \—1 t c t min
A min 4 E :Ai)\kji — (M) E :wji + N E :wjz' o > By — Ego.
wew . ) - ) ) - ) )
1=1 J g
\ - = - = Y,




What is the problem?
Already in “simple” charge/discharge efficiency model, want for all k£ and ¢,

- _ - )

—1 t t X
Aglea% \ Z Aki 77/m Z wii |+ Z w;; e < BT — B,

and
_ _ ~ S\ )
t
d \—1 t & t mln
A glel\r/l\? < Z Ai)\k,z’ _<77k:,i> ; w; ; + Mk ; w;; > > E — E} 0.
- - - - J

Adversarial problem:
choose w € W to break either constraint.

Adversarial problem appears to be NON convex!



What is the problem?
Already in “simple” charge/discharge efficiency model, want for all k£ and ¢,

- _ - )

—1 t t <
Agle%< ZA’” =01k Zwiﬂ' i | wii| | ¢ < B - Bro

and
_ - _ - + )
¢
d \\—1 t c t mln
Aglel{lv \ Z AVY —(m;,i) ij,i T Mk, ij,i ¢ = Ly — Lo
= J J
- = - = /

Adversarial problem:
choose w € W to break either constraint.

Lemma!
An optimal solution to adversarial problem is sign-consistent.

Yields efficient routine!



Six-period results on Polish Grid (2746wp)

penetration |/ max error| Cost |Iterations| Time (s)
18 % 9 % 7236431 18 348
18 % 14 % 7257286 28 515
18 % 17 % 7263172 25 498

e base load ~ 24.8 GW

e 32 wind farms, average predicted output ~ 4.5 GW

e 50 batteries, total initial energy state =~ 3.2 GW



Interesting results?

e Solution is sparse! 50 batteries, but only ~ 14 participate
in the optimal control in any time period

e Solution is non-uniform! Different batteries participate to
different degree, even though batteries are all identical

e Which batteries participate depends on the time period!
Why?



