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Talk outline

• Optimization framework for using storage to offset uncertainty in renew-

able forecast output

• “OPF-like” setup: minimize cost of generation

•Multiperiod model, with per-period renewable forecasts

• linear control for battery output

• nonconvex model for battery operation

• robust optimization used to handle forecast errors



Broader goal: dealing/using risky injections

• At some buses: controllable injections (e.g. generation) or known loads

• At some buses, uncontrollable (uncertain or adversarial) injections

• At other buses: controllable injection used to mitigate risk

•Multi-time period and ‘OPF-like”: minimize cost subject to being able to

react to any (uncontrollable) event in each time period

• Three-level (not bilevel) optimization problem over multiple periods

• NP-hard in strong sense even for simple trees and one time period



Control setup outline

1. T time periods of equal length ∆. Assume ∆ = 1.

2. P g,t
k = output of generator at bus k at time t (decision variable)

3. w̄t
i + wt

i = output of renewable at bus i at time t.

w̄t
i = forecast, wt

i = error (uncertain).

4. Control used to set battery output; applied as a function of observations

of the wt
i.

5.wt
i estimated at start of period t.

6. Control held constant during period t.

7. Control does not handle additional real-time deviations.



A simple example on 2 periods

G = generator, L = load, B = battery, W = renewable
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• Period 1: each renewable outputs 20, no uncertainty.

• Period 2: each renewable outputs in the range [0, 20].

• Battery and generator are large, but battery starts drained.



• Period 1: each renewable outputs 20, no uncertainty.

• Period 2: each renewable outputs in the range [0, 20].
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Notation

1. T time periods of equal length ∆. Assume ∆ = 1 for this talk.

2. P g,t
k = output of generator at bus k at time t (decision variable)

3. w̄t
i + wt

i = output of renewable at bus i at time t.
w̄t
i = forecast, wt

i = error (uncertain).

4. δtj = output of battery at bus j at time t.
Assumption: all batteries at a given bus j are of similar type.

5. P d,t
k = load at bus k at time t (data).

6. DC power flow → for all t, and all w,∑
k

P g,t
k +

∑
i

(w̄t
i + wt

i) +
∑
j

δtj =
∑
k

P d,t
k
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Generic linear control:

δtj = −
∑
i

λtji w
t
i

• λt: decision variables

• Complex? Requires many (accurate?) real-time observations
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Specialized linear control:

δtj = −λtj
∑
i∈R(j)

wi

• λtj: decision variables

•R(j): set of buses that battery at j responds to

Example 1: (bad?) a battery at each renewable, R(j) = j
for all j

Example 2: for all j, R(j) = all renewables

Regardless of control, nominal case: must hold∑
k

P
g,t
k +

∑
i

w̄ti =
∑
k

P
d,t
k



Balance:
∑
k P

g,t
k +

∑
i(w̄

t
i + wti) +

∑
j δ
t
j =

∑
k P

d,t
k

Nominal case:
∑
k P

g,t
k +

∑
i w̄

t
i =

∑
k P

d,t
k

Generic linear control: δtj = −
∑
i λ
t
ij w

t
i

Rewrite balance:∑
k

P
g,t
k +

∑
i

w̄ti +
∑
i

1−
∑
j

λtji

 wti

 =
∑
k

P
d,t
k

Together with nomimal case, implies:∑
i

[(
1−

∑
j λ

t
ji

)
wti

]
= 0
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Rewrite balance:∑
k
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k +

∑
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w̄ti +
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i

1−
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λtj

 wti

 =
∑
k

P
d,t
k

Together with nomimal case, implies:1−
∑

j : i∈R(j)

λtj

 wti = 0

“Full dimensional” uncertainty set ⇒∑
j : i∈R(j) λ

t
j = 1 for all i (and t)

Sign of λt ?



Battery model

• Energy state bounds. Let E0
j = initial energy state of battery

at site i. Then

Etj = E0
j + ∆

t∑
h=1

δhj

is the energy state at the end of period t. (∆ = length of
time periods)
Must have lower- and upper-bounds on Etj.

• Special bounds for ETj ?

•Discharge rate bounds. We will want to lower- and upper-
bound

δtj = D̄t
j − λtj

 ∑
i∈R(j)

wti


for all batteries i, time t and all w.



Battery chemistry is complex. Traditional model:

1. 0 < ηci ≤ 1, 0 < ηdi ≤ 1: charging, discharging efficiency
for battery i

2. If we inject electrical power Di ≥ 0 into battery i,
energy state increases by ηciDi

3. If we extract electrical power Gi ≥ 0 from battery i,
energy state decreases by (ηdi )−1Gi

4. Summary: if the electrical power injection into bat-
tery i is Pi, energy state changes by

(−ηdi )−1 [Pi]
− + ηci [Pi]

+

5. A nonconvex model: if Pi is a decision variable, must
enforce

[Pi]
− [Pi]

+ = 0



Piecewise-constant battery efficiency model
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• Slope = charge (or discharge) efficiency
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•Constraint: if the battery charge lies in some interval

[C(es) , C(es+1) ]

then can inject charge at most

σs (= slope) per unit time

•Generalizes traditional constraint

• But very nonconvex



Renewable forecast error model

Should we rely on chance-constrained models?
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Renewable forecast error model

Should we rely on chance-constrained models?

Suppose that x(t), t = 1, 2, . . . , T is a stochastic process:

• Even if we understand each x(t) well enough to provide tail
probabilities ...

•Partial sums
∑k
t=1 x(t) are a different story

Except e.g. in the gaussian case



Renewable forecast error model

Output of renewable i at time t: w̄ti + wti

• w̄ti = forecast output

•wti = error; w ∈W, where W = uncertainty model.

Concentration models: W is the set of all w such that

C1w+ + C2w− ≤ b, (1a)

wmin
k,t ≤ wtk ≤ wmax

k,t for all t and k, (1b)

•C1, C2 are nonnegative matrices

• b, wmin, wmax: parameters of model

• Caution! (1a) is not a linear model

•Allows for spatial and temporal correlation



Renewable forecast error model

Output of renewable i at time t: w̄ti + wti

• w̄ti = forecast output

•wti = error; w ∈W, where W = uncertainty model.

Special example: uncertainty budgets

|wti| ≤ γti , all t and i∑
i

αti|w
t
i| ≤ Γt all t

Here, the γti , α
t
i and Γt are parameters.

Extra special case: αti = 1/γti

Many variations, e.g. time-correlated models∑
t

αti|w
t
i| ≤ Γi,

∑
i

∑
t

αti|w
t
i| ≤ Γ



Optimization Problem

Minimize generation cost subject to being feasible under all
modeled renewable outputs.

•Variables: P g, λ (both time-indexed)

•Constraints: feasibility for all w ∈W (soft-robustness for
lines)



Optimization Problem

min
P g,λ

∑
t

∑
k

ctk(P
g,t
k )

s.t. the following system is feasible at all times t, for all w ∈W:

Flow balance:

B θt = P g,t +

renewables︷ ︸︸ ︷
w̄t + wt

batteries︷ ︸︸ ︷
−

∑
i

wti

λt − P d,t

Energy state constraints

Hard (?) line limits:

| θtk − θ
t
m|

xkm
≤ ukm ∀ km, t

Soft line limits are equally tractable and might be
preferred



Soft line limits

Let Wh and W be two uncertainty models with Wh ⊆W

•Require that
| θtk − θ

t
m|

xkm
≤ ukm

for all km, t and w ∈Wh

•Require that

| θtk − θ
t
m|

xkm
≤ ukm(1 + ε)

for all km, t and w ∈W

Ben-Tal, Boyd, Nemirovski, “Comprehensive Robust” models
(2005)



(Familiar?) cutting-plane procedure

Start with a relaxation for the robust problem, e.g. the nom-
inal problem (no errors), and then

1. Solve relaxation, with solution (P g∗, λ∗)

2. Play adversary: find a worst-case distribution ŵ for
(P g∗, λ∗)
Comment: Requires solving small LPs

3. Procedure detects if a battery constraint (or line limit con-
straint) is violated.

4. If so – add corresponding cut (a disjunctive cut).

5. Else if the adversary fails, (P g∗, λ∗) is optimal



Adversarial procedure, batteries

Concentration models for renewable uncertainty:

W is the set of all w such that

C1w+ + C2w− ≤ b,

wmin
k,t ≤ wtk ≤ wmax

k,t for all t and k

•C1, C2 are nonnegative matrices



What is the problem?

Already in “simple” charge/discharge efficiency model, want for all k and t,

∆ max
w∈W


t∑
i=1

λk,i

−(ηdk,i)
−1

∑
j

wt
j,i

− + ηck,i

∑
j

wt
j,i

+

 ≤ Emax

k,t − Ek,0,

and

∆ min
w∈W


t∑
i=1

∆iλk,i

−(ηdk,i)
−1

∑
j

wt
j,i

− + ηck,i

∑
j

wt
j,i

+

 ≥ Emin

k,t − Ek,0.
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What is the problem?

Already in “simple” charge/discharge efficiency model, want for all k and t,

∆ max
w∈W


t∑
i=1

λk,i

−(ηdk,i)
−1

∑
j

wt
j,i

− + ηck,i

∑
j

wt
j,i

+

 ≤ Emax

k,t − Ek,0,

and

∆ min
w∈W


t∑
i=1

∆iλk,i

−(ηdk,i)
−1

∑
j

wt
j,i

− + ηck,i

∑
j

wt
j,i

+

 ≥ Emin

k,t − Ek,0.

Adversarial problem:
choose w ∈W to break either constraint.

Lemma!
An optimal solution to adversarial problem is sign-consistent.

Yields efficient routine!



Six-period results on Polish Grid (2746wp)

penetration max error Cost Iterations Time (s)

18 % 9 % 7236431 18 348

18 % 14 % 7257286 28 515

18 % 17 % 7263172 25 498

• base load ≈ 24.8 GW

• 32 wind farms, average predicted output ≈ 4.5 GW

• 50 batteries, total initial energy state ≈ 3.2 GW



Interesting results?

• Solution is sparse! 50 batteries, but only ∼ 14 participate
in the optimal control in any time period

• Solution is non-uniform! Different batteries participate to
different degree, even though batteries are all identical

•Which batteries participate depends on the time period!
Why?

> Tue.Jan.10.081736.2017@rabbitchaser


