Robust policies for storage used to offset renewable variance

Daniel Bienstock, Gonzalo Muñoz and Shuoguang Yang, Columbia University Carsten Matke, NEXT ENERGY (Germany)

Talk outline

- Optimization framework for using storage to offset uncertainty in renewable forecast output
- "OPF-like" setup: minimize cost of generation
- Multiperiod model, with per-period renewable forecasts
- linear control for battery output
- nonconvex model for battery operation
- robust optimization used to handle forecast errors

Broader goal: dealing/using risky injections

- At some buses: controllable injections (e.g. generation) or known loads
- At some buses, uncontrollable (uncertain or adversarial) injections
- At other buses: controllable injection used to mitigate risk
- Multi-time period and 'OPF-like": minimize cost subject to being able to react to any (uncontrollable) event in each time period
- Three-level (not bilevel) optimization problem over multiple periods
- NP-hard in strong sense even for simple trees and one time period

Control setup outline

- 1. **T** time periods of equal length Δ . Assume $\Delta = 1$.
- 2. $P_k^{g,t}$ = output of generator at bus **k** at time **t** (decision variable)
- 3. $\bar{\boldsymbol{w}}_{\boldsymbol{i}}^{\boldsymbol{t}} + \boldsymbol{w}_{\boldsymbol{i}}^{\boldsymbol{t}} = \text{output of renewable at bus } \boldsymbol{i} \text{ at time } \boldsymbol{t}.$

 $\bar{\boldsymbol{w}}_{i}^{t} = \text{forecast}, \ \boldsymbol{w}_{i}^{t} = \text{error (uncertain)}.$

- 4. **Control** used to set battery output; applied as a function of observations of the w_i^t .
- 5. w_i^t estimated at start of period t.
- 6. **Control** held constant during period t.
- 7. Control does not handle additional real-time deviations.

A simple example on 2 periods

- **Period 1:** each renewable outputs **20**, no uncertainty.
- Period 2: each renewable outputs in the range [0, 20].
- Battery and generator are large, but battery starts **drained**.

- Period 1: each renewable outputs 20, no uncertainty.
- Period 2: each renewable outputs in the range [0, 20].

Period 1:

Notation

- T time periods of equal length Δ. Assume Δ = 1 for this talk.
 P^{g,t}_k = output of generator at bus k at time t (decision variable)
 \$\vec{w}_{i}^{t} + w_{i}^{t}\$ = output of renewable at bus i at time t.
 \$\vec{w}_{i}^{t}\$ = forecast, \$w_{i}^{t}\$ = error (uncertain).
 \$\delta_{j}^{t}\$ = output of battery at bus \$j\$ at time t.
 Assumption: all batteries at a given bus \$j\$ are of similar type.
 \$P^{d,t}_{k}\$ = load at bus \$k\$ at time t (data).
- 6. **DC** power flow \rightarrow for all \boldsymbol{t} , and all \boldsymbol{w} ,

$$\sum_{k} P_{k}^{g,t} + \sum_{i} (\bar{w}_{i}^{t} + \boldsymbol{w}_{i}^{t}) + \sum_{j} \delta_{j}^{t} = \sum_{k} P_{k}^{d,t}$$

- T time periods of equal length Δ. Assume Δ = 1 for this talk.
 P^{g,t}_k = output of generator at bus k at time t (decision variable)
 w^t_i + w^t_i = output of renewable at bus i at time t. w^t_i = forecast, w^t_i = error (uncertain).
 δ^t_i = output of battery at bus j at time t.
- 5. $P_k^{d,t} = \text{load at bus } k \text{ at time } t \text{ (data)}.$

6. For all \boldsymbol{t} , and all \boldsymbol{w} , $\sum_{k} P_{k}^{g,t} + \sum_{i} (\bar{w}_{i}^{t} + \boldsymbol{w}_{i}^{t}) + \sum_{j} \delta_{j}^{t} = \sum_{k} P_{k}^{d,t}$ Generic linear control:

$$oldsymbol{\delta_j^t} = -\sum_i \lambda_{ji}^t oldsymbol{w_i^t}$$

- λ^t : decision variables
- Complex? Requires many (accurate?) real-time observations

- 1. **T** time periods of equal length Δ . Assume $\Delta = 1$.
- 2. $P_k^{g,t}$ = output of generator at bus **k** at time **t** (decision variable)
- 3. $\bar{\boldsymbol{w}}_{i}^{t} + \boldsymbol{w}_{i}^{t} = \text{output of renewable at bus } \boldsymbol{i} \text{ at time } \boldsymbol{t}. \quad \bar{\boldsymbol{w}}_{i}^{t} = \text{forecast},$ $\boldsymbol{w}_{i}^{t} = \text{error (uncertain)}.$
- 4. $\boldsymbol{\delta}_{\boldsymbol{j}}^{\boldsymbol{t}}$ = output of battery at bus \boldsymbol{j} at time \boldsymbol{t} .
- 5. $P_k^{d,t} = \text{load at bus } k \text{ at time } t \text{ (data)}.$

6. For all \boldsymbol{t} , and all \boldsymbol{w} , $\sum_{k} P_{k}^{g,t} + \sum_{i} (\bar{w}_{i}^{t} + \boldsymbol{w}_{i}^{t}) + \sum_{j} \delta_{j}^{t} = \sum_{k} P_{k}^{d,t}$ Specialized linear control:

$$oldsymbol{\delta_j^t} = - \lambda_j^t \sum_{i \in R(j)} oldsymbol{w_i}$$

- λ_i^t : decision variables
- R(j): set of buses that battery at j responds to

1. **T** time periods of equal length Δ . Assume $\Delta = 1$.

2. $P_k^{g,t}$ = output of generator at bus k at time t (decision variable)

3. $\bar{w}_i^t + w_i^t$ = output of renewable at bus i at time t. \bar{w}_i^t = forecast, w_i^t = error (uncertain). 4. δ_j^t = output of battery at bus j at time t.

5. $P_k^{d,t} = \text{load at bus } k \text{ at time } t \text{ (data)}.$

6. For all \boldsymbol{t} , and all \boldsymbol{w} , $\sum_{k} P_{k}^{g,t} + \sum_{i} (\bar{w}_{i}^{t} + \boldsymbol{w}_{i}^{t}) + \sum_{j} \delta_{j}^{t} = \sum_{k} P_{k}^{d,t}$ Specialized linear control:

$$oldsymbol{\delta_j^t} = - \lambda_j^t \sum_{i \in R(j)} oldsymbol{w_i}$$

• λ_j^t : decision variables

• R(j): set of buses that battery at j responds to

Example 1: (bad?) a battery at each renewable, R(j) = j for all j

Example 2: for all j, R(j) = all renewables

Regardless of control, **nominal case:** must hold

$$\sum_{k} P_k^{g,t} + \sum_{i} \bar{w}_i^t = \sum_{k} P_k^{d,t}$$

Balance: $\sum_{k} P_{k}^{g,t} + \sum_{i} (\bar{w}_{i}^{t} + \boldsymbol{w}_{i}^{t}) + \sum_{j} \delta_{j}^{t} = \sum_{k} P_{k}^{d,t}$ Nominal case: $\sum_{k} P_{k}^{g,t} + \sum_{i} \bar{w}_{i}^{t} = \sum_{k} P_{k}^{d,t}$ Generic linear control: $\delta_{j}^{t} = -\sum_{i} \lambda_{ij}^{t} \boldsymbol{w}_{i}^{t}$

Rewrite balance:

$$\sum_{k} P_{k}^{g,t} + \sum_{i} \bar{w}_{i}^{t} + \sum_{i} \left[\left(1 - \sum_{j} \lambda_{ji}^{t} \right) \boldsymbol{w}_{i}^{t} \right] = \sum_{k} P_{k}^{d,t}$$

Together with nominal case, implies:

$$\sum_{i} \left[\left(1 - \sum_{j} \lambda_{ji}^{t} \right) w_{i}^{t} \right] = 0$$

Balance: $\sum_{k} P_{k}^{g,t} + \sum_{i} (\bar{w}_{i}^{t} + \boldsymbol{w}_{i}^{t}) + \sum_{j} \delta_{j}^{t} = \sum_{k} P_{k}^{d,t}$ Nominal case: $\sum_{k} P_{k}^{g,t} + \sum_{i} \bar{w}_{i}^{t} = \sum_{k} P_{k}^{d,t}$ Generic linear control: $\boldsymbol{\delta}_{j}^{t} = -\sum_{i} \lambda_{ij}^{t} \boldsymbol{w}_{i}^{t}$ Rewrite balance:

$$\sum_{k} P_{k}^{g,t} + \sum_{i} \bar{w}_{i}^{t} + \sum_{i} \left[\left(1 - \sum_{j} \lambda_{ji}^{t} \right) \boldsymbol{w}_{i}^{t} \right] = \sum_{k} P_{k}^{d,t}$$

Together with nominal case, implies:

$$\sum_{i} \left[\left(1 - \sum_{j} \lambda_{ji}^{t} \right) w_{i}^{t}
ight] = 0$$

"Full dimensional" uncertainty set \Rightarrow

$$\sum_{j} \lambda_{ji}^{t} = 1$$
 for all i (and t)

Balance: $\sum_{k} P_{k}^{g,t} + \sum_{i} (\bar{w}_{i}^{t} + \boldsymbol{w}_{i}^{t}) + \sum_{j} \delta_{j}^{t} = \sum_{k} P_{k}^{d,t}$ Nominal case: $\sum_{k} P_{k}^{g,t} + \sum_{i} \bar{w}_{i}^{t} = \sum_{k} P_{k}^{d,t}$ Specialized linear control: $\delta_{j}^{t} = -\lambda_{j}^{t} \sum_{i \in R(j)} \boldsymbol{w}_{i}^{t}$ Rewrite balance: $\sum_{k} P_{k}^{g,t} + \sum_{i} \bar{w}_{i}^{t} + \sum_{i} \left[\left(1 - \sum_{j:i \in R(j)} \lambda_{j}^{t} \right) \boldsymbol{w}_{i}^{t} \right] = \sum_{k} P_{k}^{d,t}$

Together with nominal case, implies:

$$\left(1 - \sum_{j:i \in R(j)} \lambda_j^t\right) \boldsymbol{w}_i^t = 0$$

"Full dimensional" uncertainty set \Rightarrow

S

$$\sum_{j:i \in R(j)} \lambda_j^t = 1 \text{ for all } i \text{ (and } t)$$
ign of λ^t ?

Battery model

• Energy state bounds. Let E_j^0 = initial energy state of battery at site *i*. Then

$$oldsymbol{E_j^t} = E_j^0 + \Delta \sum_{h=1}^t oldsymbol{\delta_j^h}$$

is the energy state at the end of period t. (Δ = length of time periods)

Must have lower- and upper-bounds on E_{i}^{t} .

- Special bounds for E_j^T ?
- Discharge rate bounds. We will want to lower- and upperbound

$$oldsymbol{\delta_j^t} = ar{D}_j^t - \lambda_j^t \left(\sum_{oldsymbol{i} \in R(j)} oldsymbol{w_i^t}
ight)$$

for all batteries \boldsymbol{i} , time \boldsymbol{t} and all \boldsymbol{w} .

Battery chemistry is complex. Traditional model:

- 1. $0 < \eta_i^c \leq 1$, $0 < \eta_i^d \leq 1$: charging, discharging efficiency for battery i
- 2. If we **inject electrical power** $D_i \ge 0$ into battery i, energy state increases by $\eta_i^c D_i$
- 3. If we extract electrical power $G_i \ge 0$ from battery i, energy state decreases by $(\eta_i^d)^{-1}G_i$
- Summary: if the electrical power injection into battery *i* is *P_i*, energy state changes by

$$(-\eta_i^d)^{-1} [P_i]^- + \eta_i^c [P_i]^+$$

5. A **nonconvex** model: if P_i is a decision variable, must enforce

$$[P_i]^- [P_i]^+ = 0$$

Piecewise-constant battery efficiency model

• Slope = charge (or discharge) efficiency

• **Constraint**: if the battery charge lies in some interval $[C(e_s), C(e_{s+1})]$

then can inject charge **at most**

 σ_s (= slope) per unit time

- Generalizes traditional constraint
- But very nonconvex

Should we rely on chance-constrained models?

Should we rely on chance-constrained models?

Suppose that x(t), t = 1, 2, ..., T is a stochastic process:

• Even if we understand each x(t) well enough to provide tail probabilities ...

Should we rely on chance-constrained models?

Suppose that x(t), t = 1, 2, ..., T is a stochastic process:

- Even if we understand each x(t) well enough to provide tail probabilities ...
- Partial sums $\sum_{t=1}^{k} x(t)$ are a different story

Except e.g. in the gaussian case

Output of renewable i at time t: $\bar{w}_i^t + w_i^t$ • \bar{w}_i^t = forecast output • w_i^t = error; $w \in \mathcal{W}$, where \mathcal{W} = uncertainty model.

Concentration models: \mathcal{W} is the set of all \boldsymbol{w} such that

$$C^{1}w^{+} + C^{2}w^{-} \leq b, \qquad (1a)$$

$$w_{k,t}^{\min} \leq w_{k}^{t} \leq w_{k,t}^{\max} \quad \text{for all } t \text{ and } k, \qquad (1b)$$

- C^1, C^2 are **nonnegative** matrices
- **b**, **w**^{min}, **w**^{max}: parameters of model
- Caution! (1a) is **not** a linear model
- Allows for spatial and temporal correlation

Output of renewable i at time t: $\bar{w}_i^t + w_i^t$ • \bar{w}_i^t = forecast output

• $\boldsymbol{w_i^t} = \text{error}; \ \boldsymbol{w} \in \mathcal{W}, \text{ where } \mathcal{W} = \text{uncertainty model}.$

Special example: uncertainty budgets

$$|w_i^t| \le \gamma_i^t, \quad \text{all } t \text{ and}$$
$$\sum_i \alpha_i^t |w_i^t| \le \Gamma^t \quad \text{all } t$$

i

Here, the γ_i^t , α_i^t and Γ^t are parameters. Extra special case: $\alpha_i^t = 1/\gamma_i^t$

Many variations, e.g. time-correlated models

$$\sum_{t} \alpha_{i}^{t} |w_{i}^{t}| \leq \Gamma_{i}, \quad \sum_{i} \sum_{t} \alpha_{i}^{t} |w_{i}^{t}| \leq \Gamma$$

Optimization Problem

Minimize generation cost subject to being feasible under all modeled renewable outputs.

- Variables: P^{g} , λ (both time-indexed)
- Constraints: feasibility for all $w \in W$ (soft-robustness for lines)

Optimization Problem

$$\min_{P^g,\lambda} \quad \sum_t \sum_k c_k^t(P_k^{g,t})$$

s.t. the following system is feasible at all times t, for all $w \in \mathcal{W}$: Flow balance:

$$B \boldsymbol{\theta^{t}} = P^{g,t} + \overbrace{\bar{w}^{t} + \boldsymbol{w^{t}}}^{\text{renewables}} - \left(\sum_{i} \boldsymbol{w_{i}^{t}}\right) \lambda^{t} - P^{d,t}$$

Energy state constraints Hard (?) line limits:

$$\frac{\mid \boldsymbol{\theta}_{k}^{t} - \boldsymbol{\theta}_{m}^{t} \mid}{x_{km}} \leq u_{km} \quad \forall \quad km, \quad t$$

Soft line limits are equally tractable and might be preferred

Soft line limits

Let \mathcal{W}^h and \mathcal{W} be **two** uncertainty models with $\mathcal{W}^h \subseteq \mathcal{W}$ • Require that

$$\frac{|\boldsymbol{\theta}_{k}^{t} - \boldsymbol{\theta}_{m}^{t}|}{x_{km}} \leq u_{km}$$

for all km, t and $w \in \mathcal{W}^h$

• Require that

$$\frac{\mid \boldsymbol{\theta}_{\boldsymbol{k}}^{\boldsymbol{t}} - \boldsymbol{\theta}_{\boldsymbol{m}}^{\boldsymbol{t}} \mid}{x_{km}} \leq u_{km}(1 + \epsilon)$$

for all km, t and $w \in W$

Ben-Tal, Boyd, Nemirovski, "Comprehensive Robust" models (2005)

(Familiar?) cutting-plane procedure

Start with a **relaxation** for the robust problem, e.g. the nominal problem (no errors), and then

- 1. Solve relaxation, with solution (P^{g*}, λ^*)
- 2. Play adversary: find a worst-case distribution \hat{w} for (P^{g*}, λ^*)

Comment: Requires solving small LPs

- 3. Procedure detects if a battery constraint (or line limit constraint) is violated.
- 4. If so add corresponding cut (a disjunctive cut).
- 5. Else if the adversary fails, (P^{g*}, λ^*) is optimal

Adversarial procedure, batteries

Concentration models for renewable uncertainty:

 ${\mathcal W}$ is the set of all ${\boldsymbol w}$ such that

$$C^{1}w^{+} + C^{2}w^{-} \leq b,$$

$$w_{k,t}^{\min} \leq w_{k}^{t} \leq w_{k,t}^{\max} \text{ for all } t \text{ and } k$$

•
$$C^1, C^2$$
 are **nonnegative** matrices

What is the problem?

Already in "simple" charge/discharge efficiency model, want for all k and t,

$$\Delta \max_{\boldsymbol{w} \in \mathcal{W}} \left\{ \sum_{i=1}^{t} \lambda_{k,i} \left(-(\eta_{k,i}^{d})^{-1} \left[\sum_{j} \boldsymbol{w}_{j,i}^{t} \right]^{-} + \eta_{k,i}^{c} \left[\sum_{j} \boldsymbol{w}_{j,i}^{t} \right]^{+} \right) \right\} \leq E_{k,t}^{\max} - E_{k,0},$$
and
$$\left\{ \left(-\left(\eta_{k,i}^{d} \right)^{-1} \left[\sum_{j} \boldsymbol{w}_{j,i}^{t} \right]^{-} - \left[-\eta_{k,i}^{c} \left[\sum_{j} \boldsymbol{w}_{j,i}^{t} \right]^{+} \right) \right\} \right\}$$

$$\Delta \min_{\boldsymbol{w} \in \mathcal{W}} \left\{ \sum_{i=1}^{t} \Delta_i \lambda_{k,i} \left(-(\eta_{k,i}^d)^{-1} \left[\sum_j \boldsymbol{w}_{j,i}^t \right] + \eta_{k,i}^c \left[\sum_j \boldsymbol{w}_{j,i}^t \right]^\top \right) \right\} \ge E_{k,t}^{\min} - E_{k,0}.$$

What is the problem?

Already in "simple" charge/discharge efficiency model, want for all k and t,

$$\Delta \max_{\boldsymbol{w} \in \mathcal{W}} \left\{ \sum_{i=1}^{t} \lambda_{k,i} \left(-(\eta_{k,i}^{d})^{-1} \left[\sum_{j} \boldsymbol{w}_{j,i}^{t} \right]^{-} + \eta_{k,i}^{c} \left[\sum_{j} \boldsymbol{w}_{j,i}^{t} \right]^{+} \right) \right\} \leq E_{k,t}^{\max} - E_{k,0},$$

and
$$\Delta \min_{\boldsymbol{w} \in \mathcal{W}} \left\{ \sum_{i=1}^{t} \Delta_{i} \lambda_{k,i} \left(-(\eta_{k,i}^{d})^{-1} \left[\sum_{j} \boldsymbol{w}_{j,i}^{t} \right]^{-} + \eta_{k,i}^{c} \left[\sum_{j} \boldsymbol{w}_{j,i}^{t} \right]^{+} \right) \right\} \geq E_{k,t}^{\min} - E_{k,0}.$$

Adversarial problem: choose $w \in \mathcal{W}$ to break either constraint.

Adversarial problem appears to be NON convex!

What is the problem?

Already in "simple" charge/discharge efficiency model, want for all k and t,

$$\Delta \max_{\boldsymbol{w} \in \mathcal{W}} \left\{ \sum_{i=1}^{t} \lambda_{k,i} \left(-(\eta_{k,i}^{d})^{-1} \left[\sum_{j} \boldsymbol{w}_{j,i}^{t} \right]^{-} + \eta_{k,i}^{c} \left[\sum_{j} \boldsymbol{w}_{j,i}^{t} \right]^{+} \right) \right\} \leq E_{k,t}^{\max} - E_{k,0},$$

and
$$\Delta \min_{\boldsymbol{w} \in \mathcal{W}} \left\{ \sum_{i=1}^{t} \Delta_{i} \lambda_{k,i} \left(-(\eta_{k,i}^{d})^{-1} \left[\sum_{j} \boldsymbol{w}_{j,i}^{t} \right]^{-} + \eta_{k,i}^{c} \left[\sum_{j} \boldsymbol{w}_{j,i}^{t} \right]^{+} \right) \right\} \geq E_{k,t}^{\min} - E_{k,0}.$$

Adversarial problem: choose $w \in \mathcal{W}$ to break either constraint.

Lemma!

An optimal solution to adversarial problem is **sign-consistent**.

Yields efficient routine!

Six-period results on Polish Grid (2746wp)

penetration	max error	Cost	Iterations	Time (s)
18 %	9 %	7236431	18	348
18 %	14 %	7257286	28	515
18 %	17~%	7263172	25	498

- base load $\approx 24.8 \text{ GW}$
- 32 wind farms, average predicted output \approx 4.5 GW
- 50 batteries, total initial energy state $\approx 3.2 \text{ GW}$

Interesting results?

- Solution is sparse! 50 batteries, but only ~ 14 participate in the optimal control in any time period
- Solution is **non-uniform**! Different batteries participate to different **degree**, even though batteries are all identical
- Which batteries **participate** depends on the time period! Why?

> Tue.Jan.10.081736.2017@rabbitchaser