A system-theoretic control framework for virtual power plants

Emiliano Dall'Anese

Santa Fe – January 12, 2017

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Acknowledgments

Andrea Simonetto

Andrey Bernstein

Sairaj Dhople

Funding agency:

Network Optimized Distributed Energy Systems (NODES)

Objective

□ Enable DER coordination to pursue objectives of customers and utility/aggregator

□ Enable feeder to emulate a *virtual power plant* providing services to the main grid

Feeder as a virtual power plant

Respect electrical limits (e.g., voltage regulation)

Feeder as a virtual power plant

Respect electrical limits (e.g., voltage regulation)

Design principles

Leverage the time-varying optimization formalism [Simonetto-Leus'14, Simonetto-Dall'Anese'16]

- "Sample and solve": series of time-invariant optimization problems, one every $\tau := t_k t_{k-1}$
- □ Not practical: computational/operational limits; convergence; model mismatches

Design principles

- Low-complexity *online* algorithms to find and track optimal solutions
- *Feedback* from the system to cope with model mismatches and promote adaptability [Dall'Anese at al'15, Bernstein at al'16, Dall'Anese-Simonetto'16, Gan-Low'16]
- □ Establish analytical results for tracking capabilities

Formalizing operational target

Nonlinear AC power flows

$$\begin{bmatrix} I_0 \\ \mathbf{i} \end{bmatrix} = \underbrace{\begin{bmatrix} y_{00} & \bar{\mathbf{y}}^\mathsf{T} \\ \bar{\mathbf{y}} & \mathbf{Y} \end{bmatrix}}_{:=\mathbf{Y}_{\text{net}}} \begin{bmatrix} V_0 \\ \mathbf{v} \end{bmatrix} \longrightarrow \begin{aligned} \mathbf{s}_{\text{inj}} = \operatorname{diag}\left(\mathbf{v}\right) \mathbf{i}^* = \operatorname{diag}\left(\mathbf{v}\right) \left(\mathbf{Y}^* \mathbf{v}^* + \bar{\mathbf{y}}^* V_0^*\right) \\ S_0 = |V_0|^2 (y_{01}^* + y_0^*) - V_0 (y_{01}^* V_1^*) \end{aligned}$$

Approximate) linear relationships

$$|\mathbf{v}| pprox \mathbf{R} \mathbf{p}_{\mathrm{inj}} + \mathbf{B} \mathbf{q}_{\mathrm{inj}} + \mathbf{a}$$
 $\left[egin{array}{c} P_0 \ Q_0 \end{array}
ight] pprox \mathbf{M} \mathbf{p}_{\mathrm{inj}} + \mathbf{N} \mathbf{q}_{\mathrm{inj}} + \mathbf{c}$

- □ How to obtain (and update) the model parameters?
 - □ *Regression-based*; e.g., online recursive least squares [Angelosante-Giannakis'09]
 - □ *Model-based* [Baran-Wu'89, Dhople at al'15, Bolognani-Dorfler'15]

Formalizing operational target

□ Targeted setpoint at feeder head: $h^{t_k} | P_0^{t_k}(\mathbf{p}, \mathbf{q}) - P_{0, \text{set}}^{t_k} | \le E^{t_k}$

□ Targeted problem:

Where:

$$\begin{split} g_n^{t_k}(\mathbf{p}, \mathbf{q}) &:= V^{\min} - \bar{a}_n^{t_k} - \sum_{i \in \mathcal{G}} (r_{n,i}^{t_k} P_i + b_{n,i}^{t_k} Q_i) &\approx V^{\min} - |V_n^{t_k}| \\ \bar{g}_n^{t_k}(\mathbf{p}, \mathbf{q}) &:= \sum_{i \in \mathcal{G}} (r_{n,i}^{t_k} P_i + b_{n,i}^{t_k} Q_i) + \bar{a}_n^{t_k} - V^{\max} &\approx |V_n^{t_k}| - V^{\max} \\ P_0^{t_k}(\mathbf{p}, \mathbf{q}) &:= \sum_{i \in \mathcal{G}} (m_{1,i}^{t_k} P_i + n_{1,i}^{t_k} Q_i) + \bar{c}_1^{t_k} &\approx P_0^{t_k} \end{split}$$

NATIONAL RENEWABLE ENERGY LABORATORY

Formalizing operational target

- **u** Targeted setpoint at feeder head: $h^{t_k} |P_0^{t_k}(\mathbf{p}, \mathbf{q}) P_{0, \text{set}}^{t_k}| \le E^{t_k}$
- □ Targeted problem:

$$\begin{array}{c} (\mathbf{P1}^{t_k}) & \min_{\mathbf{p},\mathbf{q}} \sum_{i \in \mathcal{G}} f_i^{t_k}(P_i,Q_i) \\ & \text{subject to } P_i, Q_i \in \mathcal{Y}_i^{t_k}, \quad \forall i \\ & h^{t_k}(P_0^{t_k}(\mathbf{p},\mathbf{q}) - P_{0,\text{set}}^{t_k}) \leq E^{t_k}, \\ & h^{t_k}(P_0^{t_k}(\mathbf{p},\mathbf{q}) - P_{0,\text{set}}^{t_k}) \geq -E^{t_k}, \\ & h^{t_k}(P_0^{t_k}(\mathbf{p},\mathbf{q}) - P_{0,\text{set}}^{t_k}) \geq -E^{t_k}, \\ & g_n^{t_k}(\mathbf{p},\mathbf{q}) \leq 0, \qquad \forall n \in \mathcal{M} \\ & \bar{g}_n^{t_k}(\mathbf{p},\mathbf{q}) \leq 0, \qquad \forall n \in \mathcal{M} \end{array} \right]$$
 Voltage regulation

 \Box (Ass. 1) $f_i^t(\mathbf{u}_i)$ convex and continuously differentiable

- (Ass. 2) The map $\mathbf{g}^t(\mathbf{u}) := [\nabla_{\mathbf{u}_1}^\mathsf{T} f_1^t(\mathbf{u}_1), \dots, \nabla_{\mathbf{u}_G}^\mathsf{T} f_G^t(\mathbf{u}_G)]^\mathsf{T}$ is Lipschitz continuous
- □ (Ass. 3) Problem is feasible

Controller design

$$(P1^{t_k}) \min_{\mathbf{p},\mathbf{q}} \sum_{i \in \mathcal{G}} f_i^{t_k}(P_i, Q_i)$$

subject to $P_i, Q_i \in \mathcal{Y}_i^{t_k}, \quad \forall i$
 $h^{t_k}(P_0^{t_k}(\mathbf{p}, \mathbf{q}) - P_{0, \text{set}}^{t_k}) \leq E^{t_k},$
 $h^{t_k}(P_0^{t_k}(\mathbf{p}, \mathbf{q}) - P_{0, \text{set}}^{t_k}) \geq -E^{t_k},$
 $g_n^{t_k}(\mathbf{p}, \mathbf{q}) \leq 0, \qquad \forall n \in \mathcal{M},$
 $\bar{g}_n^{t_k}(\mathbf{p}, \mathbf{q}) \leq 0, \qquad \forall n \in \mathcal{M},$

Primal-dual gradient method for regularized Lagrangian + online + feedback

$$\square \mathcal{L}_r^{t_k}(\mathbf{p}, \mathbf{q}, \mathbf{d}) := \mathcal{L}^{t_k}(\mathbf{p}, \mathbf{q}, \mathbf{d}) + \frac{\nu}{2} \sum_{i \in \mathcal{G}} (P_i^2 + Q_i^2) - \frac{\epsilon}{2} \|\mathbf{d}\|_2^2$$

$$\square \max_{\mathbf{d} \in \mathbb{R}^{2M+2}_{+}} \min_{\mathbf{p}, \mathbf{q} \in \mathcal{Y}^{t_k}} \quad \mathcal{L}^{t_k}_r(\mathbf{p}, \mathbf{q}, \mathbf{d})$$

 $\mathbf{z}^{*,t_k} := \{\mathbf{p}^{*,t_k}, \mathbf{q}^{*,t_k}, \mathbf{d}^{*,t_k}\}$: unique primal-dual (time-varying) solutions

Controller design

$$(P1^{t_k}) \min_{\mathbf{p},\mathbf{q}} \sum_{i \in \mathcal{G}} f_i^{t_k}(P_i, Q_i)$$

subject to $P_i, Q_i \in \mathcal{Y}_i^{t_k}, \quad \forall i$
 $h^{t_k}(P_0^{t_k}(\mathbf{p}, \mathbf{q}) - P_{0, \text{set}}^{t_k}) \leq E^{t_k},$
 $h^{t_k}(P_0^{t_k}(\mathbf{p}, \mathbf{q}) - P_{0, \text{set}}^{t_k}) \geq -E^{t_k},$
 $g_n^{t_k}(\mathbf{p}, \mathbf{q}) \leq 0, \qquad \forall n \in \mathcal{M}$
 $\bar{g}_n^{t_k}(\mathbf{p}, \mathbf{q}) \leq 0, \qquad \forall n \in \mathcal{M}$

□ Primal-dual gradient method for regularized Lagrangian + *online* + *feedback*

$$\square \mathcal{L}_r^{t_k}(\mathbf{p}, \mathbf{q}, \mathbf{d}) := \mathcal{L}^{t_k}(\mathbf{p}, \mathbf{q}, \mathbf{d}) + \frac{\nu}{2} \sum_{i \in \mathcal{G}} (P_i^2 + Q_i^2) - \frac{\epsilon}{2} \|\mathbf{d}\|_2^2$$

$$\square \max_{\mathbf{d} \in \mathbb{R}^{2M+2}_{+}} \min_{\mathbf{p}, \mathbf{q} \in \mathcal{Y}^{t_k}} \quad \mathcal{L}_r^{t_k}(\mathbf{p}, \mathbf{q}, \mathbf{d})$$

$$\Box \ \sigma := \sup \|\mathbf{z}^{*,t_{k+1}} - \mathbf{z}^{*,t_k}\|$$

[S1] Measure voltages and power at the substation

[S2a] Update dual variables using measurements

[S2a] Update dual variables using measurements

[S2b] Broadcast dual variables

Convergence

$$\square \quad \mu_n^{t_{k+1}} = \operatorname{proj}_{\mathbb{R}_+} \left\{ \mu_n^{t_k} + \alpha \left(|\hat{V}_n^{t_k}| - V^{\max} - \epsilon \mu_n^{t_k} \right) \right\} \\ \neq \nabla_{\mu_n} \bar{\mathcal{L}}^{t_k}|_{\mathbf{p}^{t_k}, \mathbf{q}^{t_k}, \mathbf{d}^{t_k}}$$

□ (Ass. 4) Measurement and model errors for voltages and powers at the feeder head are bounded.

□ (Ass. 5) There exists
$$0 \le e_{\rm out} < +\infty$$
 such that:

$$\left\| \begin{bmatrix} \mathbf{p}^{t_k} \\ \mathbf{q}^{t_k} \end{bmatrix} - \begin{bmatrix} \hat{\mathbf{p}}^{t_k} \\ \hat{\mathbf{q}}^{t_k} \end{bmatrix} \right\|_2 \le e_{\text{out}}$$

Convergence

Theorem [Dall'Anese et al'16]. Under current modeling assumptions, if the stepsize is chosen such that:

$$o(\alpha) := \sqrt{1 - 2\alpha \min\{\nu, \epsilon\} + \alpha^2 B} < 1$$

then the following holds for the closed-loop system above:

$$\limsup_{t_k \to \infty} \|\mathbf{z}^{t_k} - \mathbf{z}^{*, t_k}\|_2 = \frac{1}{1 - \rho(\alpha)} \left\| \alpha e + \sigma \right\|_{1 - \rho(\alpha)}$$

Where
$$e = \sqrt{(L+\nu)^2 e_{\text{out}}^2 + 2e_v^2 + 2e_0^2}$$
 and $\sigma := \sup \|\mathbf{z}^{*,t_{k+1}} - \mathbf{z}^{*,t_k}\|$.

- □ IEEE 37-node test feeder
- Real load and solar irradiance data from Anatolia, CA
- □ PQ updated every 300ms
- $\operatorname{cost} = \sum_{i} c_p P_{i, \text{curtailed}}^2 + c_q Q_i^2$
- PV inverter mimics first-order system

□ The value of communication

$$\Box \quad \text{Comparison: } P_n^{t_{k+1}} = \operatorname{proj}_{\mathcal{Y}_n} \left\{ P_n^{t_{k+1}} - \gamma_n (P_{0, \text{set}}^{t_k} - \hat{P}_0^{t_k}) \right\} + \quad \text{Volt/VAr}$$

Concluding remarks

□ Feeder as virtual power plants to provide services to the main grid

- Address voltage regulation and pursue optimization objectives
- Can be extended to control currents
- □ Value of communications to enable coordination
- Future efforts towards
 - Convergence to solution of nonconvex problems
 - □ Application of "closed-loop optimization" to other problems
 - Optimization layer to dispatch HVAC systems, EVs, and other DERs
 - □ Validation and implementation

Thank you!

Comments?