
Online Optimal Power Flow

Yujie Tang
Steven Low

January 2017

Krishnamurthy
Dvijotham

Online OPF

Gan (FB) Dvijotham (PNNL) Tang (Caltech)

Li (Harvard) Mallada (JHU) Topcu (Austin) Zhao (NREL)

Dynamics

Bose (UIUC) Chandy Farivar Gan (FB) Lavaei (UCB)

Gan (FB)

Online OPF

Dvijotham (PNNL) Tang

Bialek (Skoltech)

OPF
relaxation

Optimal power flow (OPF)

Multiple solutions

11/66

Ian Hiskens, Michigan

OPF problem underlies numerous applications
•  nonlinearity of power flow equations è nonconvexity

How to deal with nonconvexity
of power flows?

Two ideas
1.  exact semidefinite relaxation
 Tutorial:

L, Convex relaxation of OPF, 2014
http://netlab.caltech.edu

How to deal with nonconvexity
of power flows?

Two ideas
1.  exact semidefinite relaxation

2.  use grid as implicit power flow solver

Relaxations of OPF

But traditional algorithms are all offline …
… unsuitable for real-time optimization of
 network of distributed energy resources

OPF: min
x∈X

 f x()

relaxation: min
x̂∈X+

 f x̂()

Key message

Large network of DERs
n  Real-time optimization at scale
n  Computational challenge: power flow solution

Online optimization [feedback control]

n  Network computes power flow solutions in real
time at scale for free

n  Exploit it for our optimization/control
n  Naturally adapts to evolving network conditions

Examples
n  Slow timescale: OPF
n  Fast timescale: frequency control

Key message

Large network of DERs
n  Real-time optimization at scale
n  Computational challenge: power flow solution

Online optimization [feedback control]

n  Network computes power flow solutions in real
time at scale for free

n  Exploit it for our optimization/control
n  Naturally adapts to evolving network conditions

Examples
n  Slow timescale: OPF
n  Fast timescale: frequency control

Prior work
Gan and Low, JSAC 2016

Dall’Anese, Dhople and Giannakis, TPS 2016
Dall’Anese and Simonetto, TSG 2016
Arnold et al, TPS 2016

Prior work
Gan and Low, JSAC 2016

Dall’Anese, Dhople and Giannakis, TPS 2016
Dall’Anese and Simonetto, TSG 2016
Arnold et al, TPS 2016

Outline

Problem formulation

Online Newton method for OPF

Optimal power flow
min tr CVV H()
over V, s()
subject to s j ≤ sj ≤ s j V j ≤ |Vj | ≤ V j

 sj = tr Yj
HVV H() power flow equation

gen cost, power loss

•  describes network topology and impedances

•  is net power injection (generation) at node j
•  “power balance at each node j” (Kirchhoff’s law)

Yj
H

sj

Optimal power flow
min tr CVV H()
over V, s()
subject to s j ≤ sj ≤ s j V j ≤ |Vj | ≤ V j

 sj = tr Yj
HVV H() power flow equation

gen cost, power loss

nonconvex feasible set

•  not Hermitian (nor positive semidefinite)

•  is positive semidefinite (and Hermitian)

nonconvex QCQP

Yj
H

C

OPF

power flow equations

min c0 (y)+ c(x)
over x, y
s. t. F(x, y) = 0
 y ≤ y
 x ∈ X := x ≤ x ≤ x{ }

operational constraints

capacity limits controllable
devices

uncontrollable
state

OPF

power flow equations

min c0 (y)+ c(x)
over x, y
s. t. F(x, y) = 0
 y ≤ y
 x ∈ X := x ≤ x ≤ x{ }

operational constraints

capacity limits

OPF

power flow equations

min c0 (y)+ c(x)
over x, y
s. t. F(x, y) = 0
 y ≤ y
 x ∈ X := x ≤ x ≤ x{ }

operational constraints

capacity limits

Assume: ∂F
∂y

≠ 0 ⇒ y(x) over X

OPF: eliminate y

min
x

 c0 (y(x))+ c(x)

s. t. y(x) ≤ y
 x ∈ X := x ≤ x ≤ x{ }

OPF: add barrier

min
x

 c0 (y(x))+ c(x)

s. t. y(x) ≤ y
 x ∈ X := x ≤ x ≤ x{ }

min L(x, y(x); µ)
over x ∈ X

L: nonconvex

add barrier function
to remove
operational constraints

Online (feedback) perspective

Network: power flow solver
 y(t) : F(x(t), y(t)) = 0

DER : gradient update
x(t+1) = G(x(t), y(t))

control
x(t)

measurement,
communication

y(t)

physical
network

cyber
network

•  Explicitly exploits network as power flow solver
•  Naturally tracks changing network conditions

Prior work

x(t +1) = x(t)−η ∂L
∂x

(t)
#

$%
&

'(X
y(t) = y(x(t))

gradient projection algorithm:

active control

law of physics

min L(x, y(x); µ)
over x ∈ X

•  First-order algorithm
•  Static OPF

Gan & Low, JSAC 2016

This paper
min L(x, y(x); µ)
over x ∈ X

•  Quasi-Newton method
•  Drifting OPF

è Better tracking performance

Outline

Problem formulation

Online Newton method for OPF

Drifting OPF

min
x

 c0 (y(x))+ c(x)

s. t. y(x) ≤ y
 x ∈ X

min
x

 c0 (y(x),γ t)+ c(x,γ t)

s. t. y(x,γ t) ≤ y
 x ∈ X

drifting
OPF

static
OPF

Newton algorithm

x(t +1) = x(t) − η H (t)()−1 ∂ft
∂x

(x(t))
#

$%
&

'(Xt
y(t) = y(x(t))

active control

law of physics

min ft (x, y(x); µt)
over x ∈ Xt

•  (Quasi) Newton algorithm
•  Drifting OPF

Tracking performance

Theorem

error := 1
T

xonline (t)− x*(t)
t=1

T

∑

error ≤ λM
λm

⋅
ε

1−ε
⋅

1
T

x*(t)− x*(t −1) +Δt()
t=1

T

∑

avg rate of drifting

control error

Tracking performance

Theorem

error := 1
T

xonline (t)− x*(t)
t=1

T

∑

error ≤ λM
λm

⋅
ε

1−ε
⋅

1
T

x*(t)− x*(t −1) +Δt()
t=1

T

∑

avg rate of drifting

Tracking performance

Theorem

error := 1
T

xonline (t)− x*(t)
t=1

T

∑

error ≤ λM
λm

⋅
ε

1−ε
⋅

1
T

x*(t)− x*(t −1) +Δt()
t=1

T

∑

“initial distance” from
& error in Hessian approx

x*(t)

Tracking performance

Theorem

error := 1
T

xonline (t)− x*(t)
t=1

T

∑

error ≤ λM
λm

⋅
ε

1−ε
⋅

1
T

x*(t)− x*(t −1) +Δt()
t=1

T

∑

“condition number”
of Hessian

Tracking performance

Theorem

R(x, x*) := c0 (y(x),γ t)+ c(x,γ t)
t=1

T

∑

 − c0 (y(x*),γ t)+ c(x
*,γ t)

t=1

T

∑

cost of Alg

optimal cost

dynamic
regret

similarly cti, v
t
i , `

t
ik. We define the time-varying Lagrangian

Lµ,t analogously to (7).
For simplicity, we will assume that the set X and the

bounds vi, vi, `ij do not change with time, although the
results can be extended to this setting. Online optimization
problems are typically analyzed using regret [14] which
compares the sequence of iterates (and objective values
of these iterates) to an “optimal baseline”. The standard
formulation of regret compares to a static baseline that does
not change with time. However, in the context of online OPF,
it is more reasonable to look at a dynamic regret notion that
compares the online algorithm to a time-varying baseline. In
particular, we are interested in

R (x, y, T) =
T
X

t=1

ct
0

�

pt
0

�

xt
��

+

n
X

i=1

cti
�

xt
i

�

�
T
X

t=1

ct
0

�

pt
0

�

yt
��

+

n
X

i=1

cti
�

yti
�

for a feasible sequence {xt}Tt=1

produced by our algorithm
(9) for solving (8) with Lµ replaced with Lµ,t. Here,
{yt}Tt=1

is an arbitrary feasible sequence for comparison. In
particular, {yt} can be an optimal sequence where, for every
t = 1, . . . , T , yt is a globally optimal solution of (14).

Fix a stepsize sequence {⌘t}. We say algorithm (9) is well
defined if the iterates xt it generates satisfy xt 2 Int

⇣

˜Xt
⌘

.
Define

�t
i :=

µb

vi (xt
)� vi

� µa

vi � vi (xt
)

�t
ij :=

µc

`ij � `ij (xt
)

and t
i analogously to Theorem 6. Define

�t := n
�

µa
+ µb

�

+mµc

+(Dia (X))

2

�
n
X

i=1

i min (0,�i)

!

gt (x) := r

ct
0

�

pt
0

(x)
�

+

X

i

cti (xi)

+

X

i

�t
iv

t
i (x) + �t

ij`ij (x)

!

Theorem 7. Suppose Assumptions 1–3 hold at each t =

1, . . . , T . Suppose algorithm (9) is well defined and produces
a feasible sequence {xt}Tt=1

, xt 2 ˜Xt. Consider any feasible
sequence {yt}Tt=1

, yt 2 ˜Xt.
(a) The regret R (x, y, T) is given by:

2Dia (X)

⌘T

T�1

X

t=1

�

�yt+1 � yt
�

�

!

+

(Dia (X))

2

⌘T+1

+

1

2

T�1

X

t=1

⇣

⌘t
�

�gt
�

xt
�

�

�

2

⌘

+

T�1

X

t=1

�t (15)

(b) If the algorithm is well defined with ⌘t =
⌘p
t

for some
⌘ > 0, then the regret grows asymptotically as

O

p
T

1 +

T
X

t=1

�

�yt+1 � yt
�

�

!!

+

T�1

X

t=1

�t

(c) If there is a uniform upper bound on �t  � and
PT

t=1

�

�yt+1 � yt
�

�

= o
⇣p

T
⌘

the average regret per
time-step (asymptotically) is bounded by �.

(d) If �t
i � 0 for every t, i, this number can be made

arbitrarily close to 0 for an appropriate choice of µ.

We now interpret the theorem. For concreteness, assume
y(t) is an optimal sequence in that y(t) is globally optimal
for the drifting OPF (14) at each time instant t. Then the
regret R(x, y, T) in Theorem 7(a) is small if the optimal
sequence y(t) does not change rapidly (

�

�yt+1 � yt
�

� are
small) and if the costs and power flow solutions are not
overly sensitive to power injections (kgt (xt

)k2 are small).
The regret R(x, y, T) also depends on �t which is an bound
on the suboptimality of any local optimal (compare with
the bound in Theorem 6 for static OPF). With diminish-
ing stepsize as in Theorem 7(b), then asymptotically the
regret R(x, y, T) is upper bounded by how fast the optimal
sequence y(t) changes and the size of the suboptimality
bound �t. If y(t) changes slowly on the order of o(

p
T) then

asymptotically the regret is dominated by average �t. This
seems unavoidable for gradient algorithms on a nonconvex
optimization problem.

VI. NUMERICAL RESULTS

A. Testing Validity of Assumptions
In this section, we comment on the validity of the as-

sumptions 1 and 2. on various test systems. Assumption 3 is
natural and is typically satisfied.

Assumption 1 is difficult to check since it requires finding
all power flow solutions corresponding to any given set of
injections. However, we can check the sufficient condition
for assumption 3 given in Corollary 5, which also guarantees
the existence of a unique well-defined power flow solution
V (x). Figure 2 plots the probability that a power flow
solution lies in the domain defined in Corollary 5 as a
function of the net apparent power loss computed at that
power flow solution. It is generated by constructing random
voltage profiles, computing the net apparent power loss at
that voltage profile, and getting a frequency estimate of the
number of times the voltage profile satisfies the nonlinear
matrix inequality constraints in Corollary 5.

The results show that as long as the net apparent power
loss is small, the conditions of Corollary 5 are satisfied
with high probability. Since we typically expect that OPF
solvers will pick solutions with a small net power loss, it is
reasonable to expect that assumption 3 is satisfied often in
practical systems.

B. Tracking performance of the online algorithm
In order to evaluate our online algorithm, we present

preliminary tests of the approach on the IEEE 14 bus network

R(x, x*) =

rate of
drifting

subopt of
local min

Tracking performance

Theorem

R(x, x*) := c0 (y(x),γ t)+ c(x,γ t)
t=1

T

∑

 − c0 (y(x*),γ t)+ c(x
*,γ t)

t=1

T

∑

cost of Alg

optimal cost

dynamic
regret

R(x, x*) = O T 1+ xt+1
* − xt

*

t=1

T

∑
#

$
%

&

'
(

#

$
%%

&

'
((+ δ t

t=1

T

∑

rate of
drifting

subopt of
local min first-order alg

Implementation

Implement L-BFGS-B
n  More scalable
n  Handles (box) constraints X

Simulations
n  IEEE 300 bus

Tracking performance

IEEE 300 bus

Tracking performance
7

Fig. 3. The absolute and relative gap between the objective values of the real-time operations x̂(t) and the optimal solutions x

⇤(t).

0.376 sec. We can see that the proposed implementation of the
real-time OPF algorithm is quite computationally efficient.

Fig. 4. Histogram of computation times for each real-time update.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we proposed a real-time OPF algorithm based
on quasi-Newton methods. This algorithm utilizes real-time
measurement data and performs suboptimal updates on a
faster timescale than traditional OPF. We studied its tracking
performance, and also proposed a specific implementation
based on the L-BFGS-B algorithm. Simulations showed that
the proposed algorithm can track the optimal operations well
and is computationally efficient.

There still remain a number of issues in designing real-
time OPF algorithms. Currently the updates are carried out
every 6 seconds, which could be too short for us to neglect
the dynamics for large networks. To extend the time between
each updates, we need to improve the algorithm so that it will
still work when larger changes in loads and generations are
allowed.

One possible direction is to find more accurate methods of
estimating the Hessian. The L-BFGS-B method turns out to

work well as simulations have shown, but we have also found
some difficult situations where more accurate estimate of the
Hessian is needed.

Another possible direction is to introduce dual variables
instead of penalty functions. It has been observed that by
introducing dual variables, one can usually achieve better
convergence and smaller constraint violations, and potentially
avoid numerical issues. We are especially interested in com-
bining primal-dual methods with quasi-Newton methods.

Besides improving the tracking performance of the al-
gorithm, we are also interested in developing a distributed
algorithm for real-time OPF. As the number of controllable
devices increases, the communication between controllable
devices and the control center will become a bottleneck, and
distributed algorithms will be much favored.

APPENDIX A
PROOF OF THEOREM 1

We write the box constraint (5c)-(5e) as l(t)  x(t)  u(t).
First we note that, by the definition of �M and �m, we have

kxk2
Bt

= x

T
Btx  �Mx

T
Wx = �Mkxk2

W

,

kxk2
Bt

= x

T
Btx � �mx

T
Wx = �mkxk2

W

,

for any vector x and any t 2 {1, . . . , T}.
At the beginning of time t, the initial point is x0(t) =

Ptˆx(t�1), where Pt is the projection onto the current feasible
control region l(t)  x(t)  u(t), and ˆ

x(t�1) is the previous
operation. Let

mt(x) := g

T
t (x� x0(t))

+

1

2

(x� x0(t))
T
Bt(x� x0(t)).

Then the updated operation ˆ

x(t) is the optimal of

min

l(t)xu(t)
mt(x).

IEEE 300 bus

Key message

Large network of DERs
n  Real-time optimization at scale
n  Computational challenge: power flow solution

Online optimization [feedback control]

n  Network computes power flow solutions in real
time at scale for free

n  Exploit it for our optimization/control
n  Naturally adapts to evolving network conditions

Examples
n  Slow timescale: OPF
n  Fast timescale: frequency control

