Online Optimal Power Flow

Yujie Tang Steven Low

Krishnamurthy Dvijotham

January 2017

Online OPF

Gan (FB) Dvijotham (PNNL) Tang (Caltech)

OPF relaxation

Online OPF

Bose (UIUC) Chandy Farivar Gan (FB) Lavaei (UCB)

Gan (FB)

Dvijotham (PNNL) Tang

Bialek (Skoltech)

Li (Harvard) Mallada (JHU) Topcu (Austin) Zhao (NREL)

OPF problem underlies numerous applications

• nonlinearity of power flow equations \rightarrow nonconvexity

How to deal with nonconvexity of power flows?

Two ideas

1. exact semidefinite relaxation

Tutorial: L, Convex relaxation of OPF, 2014 http://netlab.caltech.edu

How to deal with nonconvexity of power flows?

Two ideas

1. exact semidefinite relaxation

2. use grid as implicit power flow solver

OPF:
$$
\min_{x \in \mathbf{X}} f(x)
$$

relaxation:

$$
\min_{\hat{x}\in\mathbf{X}^+} f(\hat{x})
$$

But traditional algorithms are all offline … … unsuitable for real-time optimization of network of distributed energy resources

Large network of DERs

- **n** Real-time optimization at scale
- Computational challenge: power flow solution
- Online optimization [feedback control]
	- Network computes power flow solutions in real time at scale for free
	- \blacksquare Exploit it for our optimization/control
	- Naturally adapts to evolving network conditions

Examples

- Slow timescale: OPF
- Fast timescale: frequency control

Large network of DERs

- **n** Real-time optimization at scale
- n Computational challenge: power flow solution
- Online optimization [feedback control]
	- Network computes power flow solutions in real time at scale for free
	- **EXPLOIT IT FOR OUT OPTIMIZATION**/CONTROL
	- Naturally adapts to evolving network conditions

Examples

- **Slow timescale: OPF**
- Fast timescale: frequency control

Gan and Low, JSAC 2016 Dall'Anese, Dhople and Giannakis, TPS 2016 Dall'Anese and Simonetto, TSG 2016 Arnold et al, TPS 2016

Gan and Low, JSAC 2016

Dall'Anese, Dhople and Giannakis, TPS 2016 Dall'Anese and Simonetto, TSG 2016 Arnold et al, TPS 2016

Problem formulation

Online Newton method for OPF

- Y_j^H describes network topology and impedances
- s_j is net power injection (generation) at node *j*
- "power balance at each node *j*" (Kirchhoff's law)

nonconvex feasible set

- Y_j^H not Hermitian (nor positive semidefinite)
- C is positive semidefinite (and Hermitian)

nonconvex QCQP

min $c_0(y) + c(x)$ over *x*, *y* s. t. $F(x, y) = 0$

power flow equations

min
$$
c_0(y) + c(x)
$$

\nover x, y
\ns. t. $F(x, y) = 0$ power flow equations
\n $y \le \overline{y}$ operational constraints
\n $x \in X := \{ \underline{x} \le x \le \overline{x} \}$ capacity limits

Assume:
$$
\frac{\partial F}{\partial y} \neq 0
$$
 \implies $y(x)$ over X

min
$$
c_0(y(x)) + c(x)
$$

s.t. $y(x) \le \overline{y}$
 $x \in X := \{x \le x \le \overline{x}\}\$

min
$$
c_0(y(x)) + c(x)
$$

s.t. $y(x) \le \overline{y}$
 $x \in X := \{ \underline{x} \le x \le \overline{x} \}$

add barrier function to remove operational constraints

min $L(x, y(x); \mu)$ over $x \in X$

L: nonconvex

- Explicitly exploits network as power flow solver
- Naturally tracks changing network conditions

$$
\begin{array}{ll}\n\text{min} & L(x, y(x); \, \mu) \\
\text{over} & x \in X\n\end{array}
$$

gradient projection algorithm:

$$
x(t+1) = \left[x(t) - \eta \frac{\partial L}{\partial x}(t)\right]_X
$$
active control

$$
y(t) = y(x(t))
$$
law of physics

- First-order algorithm
- Static OPF

- Quasi-Newton method
- Drifting OPF
- \rightarrow Better tracking performance

Problem formulation

Online Newton method for OPF

$$
\min_{x} c_0(y(x)) + c(x)
$$
\n
\n
$$
s.t. \quad y(x) \leq \overline{y}
$$
\n
$$
x \in X
$$
\n
\n
$$
x \in X
$$
\n
\n
$$
f(x) = \overline{y}
$$
\n
$$
oPF
$$

min
$$
c_0(y(x), y_t) + c(x, y_t)
$$

\ns.t. $y(x, y_t) \le \overline{y}$
\n $x \in X$

$$
\begin{array}{ll}\text{min} & f_t(x, y(x); \mu_t) \\ \text{over} & x \in X_t \end{array}
$$

$$
x(t+1) = \left[x(t) - \eta(H(t))^{-1} \frac{\partial f_t}{\partial x}(x(t))\right]_{X_t}
$$

$$
y(t) = y(x(t))
$$

active control

law of physics

- (Quasi) Newton algorithm
- Drifting OPF

error :=
$$
\frac{1}{T} \sum_{t=1}^{T} ||x^{\text{online}}(t) - x^*(t)||
$$
 control error

error :=
$$
\frac{1}{T} \sum_{t=1}^{T} ||x^{\text{online}}(t) - x^*(t)||
$$

Theorem

$$
\text{error} \leq \sqrt{\frac{\lambda_M}{\lambda_m}} \cdot \frac{\varepsilon}{1-\varepsilon} \cdot \frac{1}{T} \sum_{t=1}^T \left(\left\| x^*(t) - x^*(t-1) \right\| + \Delta_t \right)
$$
\n
$$
\text{avg rate of drifting}
$$

error :=
$$
\frac{1}{T} \sum_{t=1}^{T} ||x^{\text{online}}(t) - x^*(t)||
$$

Theorem

error
$$
\leq \sqrt{\frac{\lambda_M}{\lambda_m}} \cdot \frac{\varepsilon}{1-\varepsilon} \cdot \frac{1}{T} \sum_{t=1}^T (\left\| x^*(t) - x^*(t-1) \right\| + \Delta_t)
$$

\n"initial distance" from $x^*(t)$
\n& error in Hessian approx

error :=
$$
\frac{1}{T} \sum_{t=1}^{T} ||x^{\text{online}}(t) - x^*(t)||
$$

Theorem

$$
\text{error} \leq \sqrt{\frac{\lambda_M}{\lambda_m}} \cdot \frac{\varepsilon}{1-\varepsilon} \cdot \frac{1}{T} \sum_{t=1}^T \left(\left\| x^*(t) - x^*(t-1) \right\| + \Delta_t \right)
$$

"condition number" of Hessian

$$
R(x,x^*)\coloneqq
$$

dynamic regret

$$
= \sum_{t=1}^{T} c_0(y(x), y_t) + c(x, y_t) \qquad \text{cost of Alg}
$$

$$
= \sum_{t=1}^{T} c_0(y(x^*), y_t) + c(x^*, y_t) \qquad \text{optimal cost}
$$

$$
R(x,x^*)\coloneqq
$$

dynamic regret

$$
= \sum_{t=1}^{T} c_0(y(x), y_t) + c(x, y_t) \qquad \text{cost of Alg}
$$

$$
= \sum_{t=1}^{T} c_0(y(x^*), y_t) + c(x^*, y_t) \qquad \text{optimal cost}
$$

Theorem

$$
R(x, x^*) = O\left(\sqrt{T}\left(1 + \sum_{t=1}^T \left\|x_{t+1}^* - x_t^*\right\|\right)\right) + \sum_{t=1}^T \delta_t
$$

rate of
first-order alg
first-order alg

Implement L-BFGS-B

- **n** More scalable
- Handles (box) constraints *X*

Simulations n IEEE 300 bus

IEEE 300 bus

Fig. 3. The absolute and relative gap between the objective values of the real-time operations xˆ(*t*) and the optimal solutions x⇤(*t*). IEEE 300 bus

Large network of DERs

- **n** Real-time optimization at scale
- Computational challenge: power flow solution
- Online optimization [feedback control]
	- Network computes power flow solutions in real time at scale for free
	- \blacksquare Exploit it for our optimization/control
	- Naturally adapts to evolving network conditions

Examples

- Slow timescale: OPF
- Fast timescale: frequency control