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Goal

* Optimize location and size of energy storage

 Maximize benefits from spatio-temporal
arbitrage

» Consider congestion in transmission
» Consider uncertainty on renewable generation
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Optimal from which perspective?

System Operator
(SO)

Maintain Maximize
Reliability Welfare

Undefined value
Energy-limited resource
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—

|

Energy Storage Owner
(ESO)

Maximize Recover
Profit Investments

Undefined revenue
System expansion




Optimal from which perspective?

* Perspective leads to different problem
formulations

— Problem 1: SO perspective
— Problem 2: Mixed SO-ESO perspective

— Problem 3: ESO with transmission expansion
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Problem |: SO Perspective

 SOinvestsin storage to maximize welfare
— Benevolent monopolist
 SO’s objective:
Minimize (operating cost + investment cost in energy storage)

* Subjectto constraintson:
— Investments in energy storage
— Operation of energy storage
— System operation: generation and transmission limits

* Considerstochasticrenewable generation
 Considercongestioninthe transmission network (dc model)
* Formulationscalable to systems with 1000’s of buses
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Problem |: Test System and Data

* Three storage investment cost scenarios (ARPA-E):
— High: $75/kWh and $1300/kW
— Medium: S50/kWh and S1000/kW
— Low: $20/kWh and S500/kW

 Round-trip efficiency of 0.81
* 10-year lifetime
* 5% annualinterestrate

e 2024 WECCsystem
— 240 buses, 448 lines, 71 thermal generators

— 32 wind power and 7 solar power plants
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SO Perspective: Optimal Siting and Sizing
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SO Perspective: Optimal Siting and Sizing
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SO Perspective: Optimal Siting and Sizing
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SO Perspective: Optimal Siting and Sizing
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SO Perspective: Impact of the Capital Cost
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 Theinvestmentcostis the primary driver of sizing decisions

— As the capital cost increases, the installed storage capacity decreases
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SO Perspective: Impact of Wind Spillage
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* Rate-of-return (Profit/Cost)is sensitive to value of wind spillage
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SO Perspective: Impact of Wind Spillage
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* Insufficient profit from spatio-temporal arbitrage under the high
capital cost scenario
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Problem II: Mixed SO+ESO Perspective

 Optimallocation and size of merchant energy storagein a
centrally operated system

 Modified integrated optimization
— Minimize (operating cost + cost of investment in storage)
— Subject to constraints on operation and investments

 Adda minimum profit constraint:
— Lifetime net revenue = y -Investment Cost

— y is a given rate of return
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Problem IlI: Bilevel Formulation

Decisions on

Upper Level: Storage
Investments

Storage LMPs, accepted
bids/offers bids/offers

Operation for

Lower Level:

Typical Days
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Problem II: Test System and Data

e 8-zone model of the ISO NE system
— 8 market zones
— 13 transmission corridors
— 76 thermal generators

— 2030 renewable portfolio & load
expectations

* ARPA-e projections on storage cost and
characteristics
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Problem Il: Impact of the Rate of Return

* Lifetime Profit = y -Investment Cost
— If ¥ > 1 — Storage investment is profitable
— If y = 0 — Same solution as problem |

* Profit constraint affects both the siting
and sizing decisions

— Reduction in the total energy capacity
installed

— More diversity in locations
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Problem Il: Impact of the Capital Cost

e Results are strongly affected by the

[ ]Zone 1

"1 [___]Zone?2

[ 1Zone3
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capital cost
e Totalinstalled capacity of storage 2000
decreases when cost increases 1500/
* Underthe highest capital cost Mwh
scenario, storage is placed at the o0
bus with the highest intra-day LMP 500!
variability
0 Low High

Medium
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Case lll: Merchant ESO Perspective

 ESO chooses the optimal locations and sizes that maximize its profits
* SO minimizes the system operating cost

e Effect of transmission expansion?

 Formulation:
— ESO maximizes (Lifetime net revenue of ES — Cost of investment in storage)
— SO minimizes (Operating cost + Cost of investment in transmission expansion)

* Constraints
— System operation
— Investments in energy storage

— Profitability constraint: Revenue = y ‘Investment Cost
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Trilevel Formulation

Storage bids/offers

Upper Level
Merchant
Storage
Investments

LMPs, accepted
storage bids/offers

Solved using a CCG-type decomposition

Middle Level

Transmission
Expansion

Expansion Dispatch
Decisions decisions

Lower Level

Market Clearing
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Problem lll: Test System and Data

 Three storage investment cost scenarios (ARPA-E):
— High: $75/kWh and $1300/kW
— Medium: S50/kWh and $S1000/kW
— Low: S20/kWh and S500/kW

* Round-trip efficiency of 0.81
* 10-year lifetime
* 5% annualinterestrate

e 2024 WECCsystem

— 240 buses, 448 lines, 71 thermal generators
— 32 wind power and 7 solar power plants
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Effect of Transmission Expansion

Low 0.74 GWh Low| | 0.44 GWh
Med 0.30 GWh Med | 0.25 GWh
High High t
2;5 0 o_és 5 215 0 O.éS
GW GW
Expand lines connected Expand all lines

to storage only

Added line capacity, GW [ Added storage capacity, GW
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Comparison

e Sitingof 10 batteries for problems|, |l, and Il on the same
WECC-240 system with the same input data:

* Only 3 locations are the same for all three problems
* Problemsliland lll have 7 out of 10 common locations

* Best locationsfrom the SO’s perspective are not necessarily
the best locations from a merchant perspective
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Summary

Problem I: SO Perspective

Problem II: Mixed SO - ESO
Perspective

Problem Ill: ESO Perspective &
Transmission Expansion

Merchant perspective

Applicability to a market
environment

Modeling complexity
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Open research questions:
Storage as a temporary measure

e Battery lifetime < Transmission line lifetime
* Need to optimize investments over the years
» Combinatorial explosion

» Tremendous uncertainty over system
evolution
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Open research questions:
Multiple uses of storage

* Not just spatio-temporal arbitrage
— Frequency regulation
— Reserve

— Peak shaving

* Operational problem
— How do we combine these applications?
— State of charge constraints
— Multiple beneficiaries

* Planning problem
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Open research questions:
Battery degradation

e Complex phenomenon

* Depends on the chemistry of the battery:
* QOver charge
 QOverdischarge
* Cell temperature
* Cycle average state of charge (SoC)
Current rate (C-rate)
Cycle depth

* How to incorporate degradation in optimal operation
strategies?

* |Impact on investment decisions?

© 2017 D. Kirschen and University of Washington
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