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Goal

• Optimize	location	and	size	of	energy	storage	
• Maximize	benefits	from	spatio-temporal	
arbitrage

ØConsider	congestion	in	transmission
ØConsider	uncertainty	on	renewable	generation
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Optimal	from	which	perspective?

System	Operator	
(SO)

Energy	Storage	Owner		
(ESO)

Maintain	
Reliability

Maximize	
Welfare

Maximize	
Profit

Recover	
Investments

Undefined	revenue
System	expansion	

Undefined	value
Energy-limited	resource	
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Optimal	from	which	perspective?

• Perspective	leads	to	different	problem	
formulations
– Problem	1:	SO	perspective
– Problem	2:	Mixed	SO-ESO	perspective
– Problem	3:	ESO	with	transmission	expansion
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Problem	I:	SO	Perspective

• SO	invests	in	storage	to	maximize	welfare
– Benevolent	 monopolist

• SO’s	objective:	
Minimize	(operating	cost	+	investment	cost	in	energy	storage)

• Subject	to	constraints	on:
– Investments	 	in	energy	storage
– Operation	of	energy	storage	
– System	operation:	generation	and	transmission	 limits	

• Consider	stochastic	renewable	generation
• Consider	congestion	in	the	transmission	network	(dc	model)
• Formulation	scalable	to	systems	with	1000’s	of	buses
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Problem	I:	Test	System	and	Data

• Three	storage	investment	cost	scenarios	(ARPA-E):	
– High:	 $75/kWh	and	$1300/kW	
– Medium:	 $50/kWh	and	$1000/kW
– Low:	 $20/kWh	and	$500/kW

• Round-trip	efficiency	of	0.81	
• 10-year	lifetime
• 5%		annual	interest	rate	

• 2024	WECC	system
– 240	buses,	448	lines,	71	thermal	generators
– 32	wind	power	and	7	solar	power	plants
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SO	Perspective:	Optimal	Siting	and	Sizing
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SO	Perspective:	Optimal	Siting	and	Sizing
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SO	Perspective:	Optimal	Siting	and	Sizing
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SO	Perspective:	Optimal	Siting	and	Sizing
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SO	Perspective:	Impact	of	the	Capital	Cost

• The	investment	cost	is	the	primary	driver	of	sizing	decisions
– As	the	capital	cost	increases,	 the	installed	storage	capacity	decreases
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SO	Perspective:	Impact	of	Wind	Spillage	

• Rate-of-return		(Profit/Cost)	is	sensitive	to	value	of	wind	spillage
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VoRS:	Value	of	
Renewable	Spillage



SO	Perspective:	Impact	of	Wind	Spillage	

• Insufficient	profit	from	spatio-temporal	arbitrage	under	the	high	
capital	cost	scenario
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Problem	II:	Mixed	SO+ESO	Perspective

• Optimal	location	and	size	of	merchant energy	storage	in	a	
centrally	operated	system

• Modified	integrated	optimization
– Minimize	(operating	cost	+	cost	of	investment	 in	storage)
– Subject	to	constraints	on	operation	and	investments

• Add	a	minimum	profit	constraint:
– Lifetime	net	revenue	≥ 𝜒 ⋅Investment	 Cost
– 𝜒 is	a	given	rate	of	return
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Problem	II:	Bilevel Formulation
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Decisions	on	
Storage	

Investments
Upper	Level:

Operation	for	
Typical	DaysLower	Level:

Storage	
bids/offers

LMPs,	accepted	
bids/offers



Problem	II:	Test	System	and	Data

• 8-zone	model	of	the	ISO	NE	system
– 8	market	zones
– 13	transmission	 corridors
– 76	thermal	generators
– 2030	renewable	 portfolio	&	load	

expectations

• ARPA-e	projections	on	storage	cost	and	
characteristics
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Problem	II:	Impact	of	the	Rate	of	Return

• Lifetime	Profit	≥ 𝜒 ⋅Investment	Cost		
– If	𝜒 > 1 → Storage	investment	 is	profitable
– If	𝜒 = 0 → Same	solution	as	problem	I

• Profit	constraint	affects	both	the	siting	
and	sizing	decisions
– Reduction	 in	the	total	energy	capacity	

installed
– More	diversity	 in	locations
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Problem	II:	Impact	of	the	Capital	Cost

• Results	are	strongly	affected	by	the	
capital	cost	

• Total	installed	capacity	of	storage	
decreases	when	cost	increases

• Under	the	highest	capital	cost	
scenario,	storage	is	placed	at	the	
bus	with	the	highest	intra-day	LMP	
variability
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Case	III:	Merchant	ESO	Perspective

• ESO	chooses	 the	optimal	 locations	and	sizes	 that	maximize	 its	profits
• SO	minimizes	 the	system	operating	cost
• Effect	of	transmission	 expansion?

• Formulation:
– ESO	maximizes	(Lifetime	net	revenue	of	ES	– Cost	of	investment	 in	storage)
– SO	minimizes	 (Operating	cost	+	Cost	of	investment	 in	transmission	expansion)	

• Constraints
– System	operation
– Investments	in	energy	storage
– Profitability	 constraint:	Revenue	≥ 𝜒 ⋅Investment	Cost
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Trilevel Formulation
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Middle	Level

Transmission	
Expansion

Lower	Level

Market	Clearing

Expansion	
Decisions

Dispatch	
decisions

Storage	bids/offers

Upper	Level
Merchant	
Storage	

Investments

LMPs,	accepted	
storage	bids/offers

Solved	using	a	CCG-type	decomposition



Problem	III:	Test	System	and	Data

• Three	storage	investment	cost	scenarios	(ARPA-E):	
– High:	$75/kWh	and	$1300/kW	
– Medium:	$50/kWh	and	$1000/kW
– Low:	$20/kWh	and	$500/kW

• Round-trip	efficiency	of	0.81	
• 10-year	lifetime
• 5%		annual	interest	rate	

• 2024	WECC	system
– 240	buses,	448	lines,	71	thermal	generators
– 32	wind	power	and	7	solar	power	plants
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Effect	of	Transmission	Expansion
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Expand	lines	connected	
to	storage	only

Expand	all	lines



Comparison

• Siting	of	10	batteries	for	problems	I, II,	and III	on	the	same	
WECC-240	system	with	the	same	input	data:

• Only	3	locations	are	the	same	for	all	three	problems
• Problems	II	and	III	have	7	out	of	10	common	locations
• Best	locations	from	the	SO’s	perspective	are	not	necessarily	

the	best	locations	from	a	merchant	perspective
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Summary
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Problem	I:	SO	Perspective

Problem	II:	Mixed	SO	- ESO	
Perspective

Problem	III:	ESO	Perspective	&	
Transmission	Expansion

Merchant	perspective

Applicability	to	a	market	
environment

Modeling	complexity



Open	research	questions:	
Storage	as	a	temporary	measure

• Battery	lifetime	<	Transmission	line	lifetime	
• Need	to	optimize	investments	over	the	years
ØCombinatorial	explosion
ØTremendous	uncertainty	over	system	
evolution
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Open	research	questions:	
Multiple	uses	of	storage

• Not	just	spatio-temporal	arbitrage
– Frequency	regulation
– Reserve
– Peak	shaving

• Operational	problem
– How	do	we	combine	these	applications?
– State	of	charge	constraints
–Multiple	beneficiaries

• Planning	problem
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Open	research	questions:	
Battery	degradation

• Complex	phenomenon
• Depends	on	the	chemistry	of	the	battery:
• Over	charge
• Over	discharge
• Cell	temperature
• Cycle	average	state	of	charge	(SoC)
• Current	rate	(C-rate)
• Cycle	depth

• How	to	incorporate	degradation	in	optimal	operation	
strategies?

• Impact	on	investment	decisions?
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