LANL Grid Science Winter School and Conference—
Held in January 2015—Next Event January 2017

New interdisciplinary R&D community for modernized infrastructure

2015 Grid Science Winter School and Conference
Physics, Control, Optimization, Computer Science, Statistics, Operations Research, Power Engineering

Students From: Columbia, Rutgers, MIT, CalTech, ETH Zurich, UC Berkeley, UCSD, UCSB, UTexas,
UVermont, UMinnesota, UMichigan, UWashington, UConn, NICTA Australia, Skolkovo Tech, LANL
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M. Chertkov, LANL; D. Bienstock, Columbia
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e unlqueness of this workshop is inarguable”
“I've never learnt that much in such a short time!”

“Great opportunity for interdisciplinary contact and
collaboration”

“l learnt a lot of things from the school and will apply those
right away in the coming weeks”
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LANL Infrastructure Science Team: advanced network

science initiative

Integrated at the Program Level (ansi)

Russell Bent (A Division)

Operations Research,
Discrete and Continuous
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Design, Stochastic/Robust

Michael Chertkov (T Division)

Mathematical Physics,
Statistical Physics, Applied
Probability, Machine Learning,
Graphical Models, Network

Aric Hagberg
ANSI Lead

Scott Backhaus
DOE and DHS Program
Management
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Design, Stochastic Networks
and Dynamics, Optimization

Network Design,
Infrastructure Expansion,
Resilient Design

New Scientific Staff Critical Infrastructure Analysis Team New Scientific Staff
Harsha Nagarajan Carleton Corm J. Ambrosiano R Boero M. Ewers S. Linger Anatoly Zlotnik Sidhant Mlsra . Marc Vuffray
& L J. Amold C. Coffrin D. Frank D. Pasqualini ‘ ¥ s :
% A. Barnes T. Crawford L. Inkret M. Rivera
R. Bent B. Edwards H. Khalsa R. Roberts
B. Tasseff

Current/Recent Postdocs and Students

. Sreenath Madathil ;
Kaarthik Sundar  Conrado Borraz-Sanchez g o Yamangil Mowen Lu Line Roald

Current Postdocs

Andrey Lokhov Deep Deka  Se-Young Yun

» Los Alamos
NATIONAL LABORATORY
EST.1943

Operated by Los Alamos National Security, LLC for NNSA /N 'A'D‘Zﬂ

UNCLASSIFIED




Resilient Infrastructure—Modeling,
Analysis, and Design

Los Alamos National Laboratory
Scott Backhaus

Manager for DOE Office of Electricity and DHS Critical
Infrastructure Programs
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Modeling and Analysis For Extreme Event Resilience—
Basic Concepts—Worst Case Versus Risk Assessment

1. Description of events of concern
* Physics model of event
* Probability of event occurrence
« Coupling to infrastructures

2. Assess quantitative impact on
* Infrastructure asset failure
» Infrastructure network performance
* End-use customers or systems

3. Quantitative models for managing/
reducing risk of impacts

* Optimal network hardening

» Alternative operating strategies

* Network redundancy
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Modeling and Analysis For Extreme Event Resilience—
Basic Concepts—Probabilistic Risk Assessment (PRA)

Sample Events
Generate historically-
consistent ensemble of
1000's of hurricanes
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Evaluate Impacts
Simulate consequences of
each hurricane sample—
e.g. electric power outage
locations and durations

Compute Metrics
Aggregate results to
evaluate risk—probability
distributions over
consequences

Impact Sample 1
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Modeling and Analysis For Extreme Event Resilience—
Event Distribution—Probabilistic Risk Assessment (PRA)

Statistical distribution over Historically-consistent
hurricane parameters hurricane ensemble

Sparse historical record

Landfall distance and heading
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Each of these independent analysis (PRA)
distributions is fit to the historical
data
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Modeling and Analysis For Extreme Event Resilience—
Basic Concepts—Worst Case Versus Risk Assessment

1. Description of events of concern
* Physics model of event
* Probability of event occurrence
« Coupling to infrastructures

2. Assess quantitative impact on
* Infrastructure asset failure
» Infrastructure network performance
* End-use customers or systems

3. Quantitative models for managing/
reducing risk of impacts

* Optimal network hardening

» Alternative operating strategies

* Network redundancy
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Electric Power Fragility Models—EXxisting/Historical
Coarse-Grained Models

Damage model is a statistical correlation between
the maximum sustained wind speed and the
number of customer accounts without power

Source data does not differentiate between
Wind damage to poles and wires
Inundation damage to transformers/substations

Not extensible to other hazard fields, e.g. peak
ground acceleration

Applied at the substation service area resolution

Does not resolve electrical distribution network
Cannot resolve:
Correlations in system resilience/hardening
Facility locations
Engineered properties of the network, e.g.
system protection

/ 1
—)
» Los Alamos

NATIONAL LABORATORY
EST.1943

Operated by Los Alamos National Security, LLC for NNSA UNCLASSIFIED /. \ 'A'b(ﬂj




Modeling and Analysis For Extreme Event Resilience—
Principled Path to Coarse-Grained Models

Naive averaging over important underlying correlations induces
systematic errors into coarse-grained models

Systematic errors appear at a scale
below the coarse-grain model
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Systematic errors preclude accurate
predictive simulation on the coarse-
grain scales

Damage and restoration modeling
should be done at same (or finer)
scale as the correlations...then used
to create coarse-grained models
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Modeling and Analysis For Extreme Event Resilience—
Asset-Level Damage Modeling

Physics-based models of probabilistic asset failure

Wind drag on cable and ice
/\ create bending torques

Test data for statistical model of utility

—_— pole ultimate strength

@ Ourcases

Weight of cable and ice
create compressive stress

Distribution of strength
of wooden poles
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Modeling and Analysis For Extreme Event Resilience—
Asset-Level/Crew-Level Restoration Modeling

Estimate the number of crews available
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Probabilistic Risk Analysis for Each Circuit/Facility
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Modeling and Analysis For Extreme Event Resilience—
Systems Exhibit Naturally-Evolved Resilience

Distribution systems that have experienced extreme events have
naturally evolved to protect critical loads

8.000 hurricane ensemble
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« Extending to other
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dependent critical
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improve resilience
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Modeling and Analysis For Extreme Event Resilience—
Computing Architecture and Environment

Service-Oriented Architecture

Client
Application /

Seto cacuton
Aun oger2
/ un oge13
Reviw caciton
Workflow Engine
Service
— Activiti BPMN Engine

Model 1 Model 2 Model 3 RESTful Web Services or
Service Service Service Amazon “Workers”

Logical Modeling Workflow

Acquire digital elevation

oo o trgt resoutn onbine fod deta Amazon Simple Work Flow

Data
Services

Amazon Cloud Virtual Machines
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Optimal Resilient Design for Extreme Events—Basic
Concepts

3. Quantitative models for managing/
reducing risk of impacts

« Optimal network hardening

« Alternative operating strategies

* Network redundancy
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Optimal Resilient Design for Extreme Events—Basic

Concepts
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ECONOMIC BENEFITS OF INCREASING ELECTRIC
GRID RESILIENCE TO WEATHER OUTAGES. Executive
Office of the President , August 2013
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Optimal Resilient Design for Extreme Events—
Operations-Based Planning for Resilience
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Optimal Resilient Design for Extreme Events—
Formulation

. e k k :
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Optimal Resilient Design for Extreme Events—
Algorithms

First Stage

Variables

First Scenario-based decomposition
Scenario strategies exploit the separable
structure of the problem over
scenarios when the first stage

Variables

Second variables are fixed
Scenario
2 Variables
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Optimal Resilient Design for Extreme Events—

Algorithms

ResilientDesign(S) \

s—chooseScenario(S)

o-solveM/IP(s) \

Select 1 scenario
\ Design network for

while (~Feasible(a, S\s))

Solve over all
damage scenarios

/ s—sUchooseScenario(S\s)

remaining scenarios

s solution feasible f
s solution feasible for /—)SO/VéM/P(S)

If NOT, add an infeasible
scenario to the set under
consideration
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Optimal Resilient Design for Extreme Events—Results
on Realistic Systems—Example #1

A Substation

Lines

== hardened
- new

— overhead
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- underground

@ Critical Loads
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(o))
o

2
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Optimal Resilient Design for Extreme Events—Results
on Realistic Systems—Example #2

/\ Substation

Lines

== hardened
- new
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Electric Power Hardening and Resilience Models—
Coarse-Grained Representation of Adpatation

Damage model is a statistical correlation between
the maximum sustained wind speed and the
number of customer accounts without power

Source data does not differentiate between
Wind damage to poles and wires
Inundation damage to transformers/substations

Not extensible to other hazard fields, e.g. peak
ground acceleration

Applied at the substation service area resolution

Does not resolve electrical distribution network
Cannot resolve:
Correlations in system resilience/hardening
Facility locations
Engineered properties of the network, e.g.
system protection
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LANL Grid Science Winter School and Conference—
Held in January 2015—Next Event January 2017

New interdisciplinary R&D community for modernized infrastructure
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